
Computers & Graphics 62 (2017) 15–27
Contents lists available at ScienceDirect
Computers & Graphics
http://d
0097-84

n Corr
journal homepage: www.elsevier.com/locate/cag
Virtual Special Section on Expressive 2016
Local texture-based color transfer and colorization

B. Arbelot a,n, R. Vergne a, T. Hurtut b, J. Thollot a

a Univ. Grenoble Alpes, CNRS, Inria, France
b Polytechnique Montréal, Canada
a r t i c l e i n f o

Article history:
Received 28 October 2016
Received in revised form
25 November 2016
Accepted 3 December 2016
Available online 13 December 2016

Keywords:
Texture analysis
Color transfer
Colorization
Stroke-based edition
x.doi.org/10.1016/j.cag.2016.12.005
93/& 2016 Elsevier Ltd. All rights reserved.

esponding author.
a b s t r a c t

This paper targets two related color manipulation problems: Color transfer for modifying an image's
colors and colorization for adding colors to a grayscale image. Automatic methods for these two appli-
cations propose to modify the input image using a reference that contains the desired colors. Previous
approaches usually do not target both applications and suffer from two main limitations: possible
misleading associations between input and reference regions and poor spatial coherence around image
structures. In this paper, we propose a unified framework that uses the textural content of the images to
guide the color transfer and colorization. Our method introduces an edge-aware texture descriptor based
on region covariance, allowing for local color transformations. We show that our approach is able to
produce results comparable or better than state-of-the-art methods in both applications.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

In this paper, we propose a method to automatically apply local
color transfer and colorization between images. Manually color-
izing a grayscale image, or tuning colors to obtain a desired
ambiance is challenging, tedious and requires advanced skills.
Exemplar-based methods offer an intuitive alternative by auto-
matically changing colors of an input image according to a
reference image (the exemplar) containing the desired colors. The
main challenge of these methods is to accurately match content
between the input and reference image.

The first color transfer algorithms were based on global
approaches reshaping the input image color histogram to match
the histogram of the reference image. While these approaches can
be simple and successful with carefully chosen image pairs, they
often mismatch regions in the input and reference images, and are
not suited for the colorization problem when the input image does
not have a color histogram to begin with.

Alternatively, local approaches (soft-)segment an image into
several subregions that can be processed independently. Colors are
then added or transferred between similar regions. Those regions
can be either manually provided, or automatically computed based
on image descriptors.

Our approach is automatic and relies on regions defined as
areas of similar textural content. This choice was driven by the fact
that textures can be found everywhere in nature, and thus in a lot
of photographs. Moreover, perceptual studies showed that the
early stages of human vision are composed of several filters to
analyze textures and color variations in our visual field [1,2]. This
suggests that textures are important when observing images and
should be a pertinent basis for local color transformations. Fur-
thermore, textures can be efficiently described by a summary of
first and second order statistics, and present an attractive middle
ground between low-level descriptors (luminance, chromaticity)
that cannot efficiently describe textured regions, and high-level
descriptors (object and region semantic) that are complex, error-
prone and slow to compute.

While our approach automatically matches every region of the
input and reference images, as presented in [3], we extend it here
to allow the user to define this matching through simple strokes.
This is done using the edge-aware texture descriptor introduced in
this paper, and gives the user the ability to use different reference
images to quickly edit and fine-tune the result of our automatic
approach locally. When strokes are given, our texture description
is used to automatically segment homogeneously textured regions
from the strokes, and restrict the color manipulation to those
regions.

To apply color transfer between textured regions, our descrip-
tors are computed on a large scale to be able to characterize large
textures, but they must also preserve image structures. Existing
methods for texture and structure decomposition are not well
suited for our application: edge-aware image descriptors (such as
bilateral filtering) have trouble analyzing highly contrasted tex-
tures and may introduce discontinuities in the color transfer. The
alternative consists in detecting variations of the descriptors
themselves (such as region covariance), but in that case, image
edges are smoothed, leading to halos in the transfer.

www.sciencedirect.com/science/journal/00978493
www.elsevier.com/locate/cag
http://dx.doi.org/10.1016/j.cag.2016.12.005
http://dx.doi.org/10.1016/j.cag.2016.12.005
http://dx.doi.org/10.1016/j.cag.2016.12.005
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cag.2016.12.005&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cag.2016.12.005&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cag.2016.12.005&domain=pdf
http://dx.doi.org/10.1016/j.cag.2016.12.005


B. Arbelot et al. / Computers & Graphics 62 (2017) 15–2716
Our solution to estimate texture properties is based on a tex-
ture analysis, followed by an edge-aware processing to compute
edge-aware texture based descriptors. Our main contribution is to
compute accurate textural information while preserving image
structure. We use it in a generic framework for local color transfer
and colorization between images based on textural properties.
2. Related work

In this section, we review previous work on color transfer and
colorization, before discussing several approaches to extract and
analyze textures for image manipulation.

Color Transfer. An extensive review of color transfer methods
can be found in [4]. Color transfer consists in changing the colors
of an input image to match those of a reference image. It was first
introduced in [5] as a simple histogram reshaping, where the
mean and variance of each channel are transferred separately,
using the decorrelated Lαβ color space. This rather straightforward
method can be surprisingly effective with well chosen input
images. A rotation component was added in the matching process
by Xiao and Ma [6], allowing the transfer to be done in a correlated
color space (such as RGB). Instead of processing each channel
independently, Pitié et al. [7] proposed to tightly match the 3-
dimensional histograms using iterative 1-dimensional matchings.
While the matching offered by this approach is very good, it is
almost “too good” for the color transfer application as it tends to
produce artifacts by forcing the input to have exactly the same
number of pixels of each color as the reference. Finally, a more
recent approach based on multiscale histogram reshaping was
proposed in [8] where the user can control how tightly the his-
tograms should be matched. Overall, these global methods are
simple, but histogram matchings do not ensure colors to be
transferred between similar regions. When such automatic
methods fail, manual segmentations can be provided to locally
transfer between selected regions [9–11].

In order to automatically apply a local color transfer, Tai et al.
[12] used mixtures of Gaussians to segment the input images and
transfer colors between regions of similar luminance. A method to
color grade videos based on color transfer between sequences was
proposed in [13]. Their color transformation segments the images
using the luminance and transfer chrominance between shadows,
mid-tones and highlight regions. In a similar vein, Hristova et al.
[14] partition the images into Gaussian distributed clusters con-
sidering their main features between light and colors. Color-based
segmentation was also used in [15] to extract color palettes and
transfer between them using optimal transportation. While more
accurate than global transfers, these approaches are still only
based on first order information to segment the image and do not
take higher order information to match regions between images.
Consequently, regions with different textural properties but simi-
lar luminance cannot be distinguished.

Other approaches similar to Image Analogies [16] have been
applied to color transfer [17,18]. However they differ from our
approach as they use an additional input to compute the
transformation.

Colorization. Colorization deals with the problem of adding
colors to a grayscale image. One of the first approaches to tackle
this issue relies on user input scribbles being extended via opti-
mization across regions of similar luminance [19]. This optimiza-
tion is used with automatically generated scribbles in a lot of
example-based colorization methods [20–22]. Because they rely
on a luminance-based optimization in their final step, these
methods tend to have trouble with highly contrasted textures
where the optimization does not propagate colors properly. More
recently, Jin et al. [23] proposed a randomized algorithm to better
match color distributions between user segmented regions.

Since last year, deep learning algorithms such as convolutional
neural networks were also successfully used for automatic image
colorization [24–26]. However those approaches require extensive
datasets to train the algorithms and the learned image statistics
are complex and hard to interpret.

Closer to our approach, other methods rely on higher-order
information to transfer the chrominance between pixels contain-
ing similar statistics [27–30]. However, they often produce halos
due to the window used in the statistics computation. These
methods also rely on an energy minimization which typically
makes them slow and hard to use on large images.

Texture Analysis. Many different descriptors have been used to
manipulate images according to their textural content. Previous
automatic colorization methods used SURF, Gabor features, or the
histogram of oriented gradients as base tools for texture analysis
[28,21,22]. These descriptors are known to be discriminative, but
also computationally and memory intensive due to their high
number of features. Similarly, the shape-based texture descriptors
introduced in [31,32], although offering multiple invariants, are
too complex for an image manipulation application where we
expect to compute results in a reasonable time for relatively large
images. The recent approaches proposed in [33,34] precisely
separate texture from structure using a relative total variation, but
their descriptors are not accurate enough to discriminate textures
among themselves. Finally, Karacan et al. [35] proposed to use
region covariance as a texture descriptor for image smoothing. Our
method also relies on a variant of this descriptor, as it is compact
and efficient in describing textural properties. One main drawback
is that most of these descriptors tend to be unreliable around
image edges and texture transitions, especially when estimated on
large neighborhoods. For that reason, we also briefly describe
edge-aware filtering methods that could be used to solve
this issue.

Edge-aware filters are crucial to preserve image structures
when smoothing, denoising, enhancing details, or extracting tex-
tural information from images. A well known approach regarding
that goal is the bilateral filter [36], which efficiently smoothes
images while mostly preserving luminance edges. However, it
tends to locally introduce halos and gradient reversal artifacts
which can modify textural properties. The guided filter [37] offers
a different approach by using a linear transform of a guidance
image to filter an image but may also produce halos around edges.
The anisotropic diffusion [38] or the unnormalized bilateral filter
[39] are more appropriate for our descriptors, since they avoid
both halos and gradient reversal when large scale diffusions are
needed.
3. Overview

Our approach for automatically editing image colors based on
textural content is summarized in Fig. 1. First, descriptors are
computed for the input and reference images in three steps (A):
covariance matrices of several local image features are computed
over a coarse scale to roughly characterize the textural content of
each region (A.1). A multi-scale gradient descent then locally dis-
places descriptors in order to recover texture edges lost during the
coarse scale analysis (A.2). Finally, an edge-aware filter is applied
to obtain descriptors that accurately discriminate homogeneous
textural regions while preserving detailed texture transitions (A.3).

Our descriptors allow the computation of similarities between
pixels. As such, they also enable soft segmentations of the input
and reference images, where smooth and sharp structures are
preserved. This is illustrated in Fig. 1 (B), where the vegetation is



Fig. 1. Pipeline overview. Edge-aware descriptors are first computed to accurately describe the textural content of the input and reference images (A). They are then used to
compute per-pixel distances and allows similar regions to be associated, as shown for the vegetation in (B). We finally use these distance maps for both color transfer (C1)
and colorization (C2), where attributed colors depends on pixel similarities.

Fig. 2. Texture descriptors. Patches taken from several regions of the image in Fig. 1
(top) and their respective descriptors computed for the central pixel of the window

B. Arbelot et al. / Computers & Graphics 62 (2017) 15–27 17
automatically isolated in both the input and reference images.
Finally, similarity maps locally control the transfer of colors
between images (C1) or colorize regions according to similar
textural content (C2). The remainder of the paper is organized as
follows: Descriptors are described in Section 4 and local color
manipulation algorithms are detailed in Section 5. Results and
comparisons are then presented in Section 6 before concluding in
Section 7.
(bottom). Yellow and blue values correspond to positive and negative values
respectively. Patches from similar regions have similar descriptors.(For interpreta-
tion of the references to color in this figure legend, the reader is referred to the web
version of this article).
4. Edge-aware texture descriptors

4.1. Local texture descriptors

We want to analyze the textural information surrounding each
pixel in both the input and the reference images. To that end, we
chose to use region covariance [40,35] as it is an efficient and
compact way of describing image regions. Region covariance
captures the underlying texture by computing a small set of sec-
ond order statistics on specific image features such as the lumi-
nance or the gradient. Let us consider a pixel p, described by a
d-dimensional feature vector zðpÞ. The region covariance is defined
as the following d� d covariance matrix:

CrðpÞ ¼
1
W

X
qANp

r

ðzðqÞ�μrÞðzðqÞ�μrÞTwrðp;qÞ;

where Np
r is a square neighborhood centered on p of size ð2rþ1Þ �

ð2rþ1Þ and μr is a vector containing the mean of each feature
inside this region. Unlike [40], we add a Gaussian weighting
function with standard deviation r=3 that ensures descriptors to be

smoothly defined from pixel to pixel: wrðp;qÞ ¼ exp �9 Jq�p J 2

2r2

� �
.

Note that this weight function should also be used to compute the
mean features μr . W is the normalization factor: W ¼ P

qANp
r

wrðp;qÞ.

In practice, r should be set to the lowest value that still allows to
capture most textural properties accurately. For 512� 512 natural
images, we typically use rA ½20;30� and rely on a 6-dimensional
feature vector based on luminance derivatives to capture coarse
scale textural content:

zðpÞ ¼ LðpÞ ∂LðpÞ
∂x

∂LðpÞ
∂y

∂2LðpÞ
∂x2

∂2LðpÞ
∂y2

∂2LðpÞ
∂x∂y

� �T
;

where LðpÞ denotes the luminance of pixel p. In practice, each
feature is first centered and normalized (i.e. we substract its mean
and divide by its standard deviation) to equally contribute to the
analysis. Note that other features, such as color derivatives, could
also be used for different applications. For our color manipulations,
we found that luminance carried most of the relevant texture
information, especially in natural images.

As explained in [41,35], region covariances only describe
second-order statistics, which can be a limitation when describing
textural content as it cannot separate two distributions which only
vary with their mean. Moreover, computing distances between
covariance matrices is expensive because they do not lie in a
Euclidean space. We thus follow the solution proposed by Karacan
et al. [35] who use the Cholesky decomposition to transform
covariance matrices into vectors that can be easily compared and
enriched with first-order statistics. Our descriptor is then repre-
sented by:

Sr ¼ L1r⋯Ldrμr

� �
; ð1Þ

where Lir is the ith column of the lower triangular matrix Lr
obtained with the Cholesky decomposition Cr ¼ LrLTr at scale r and
μr are the first-order mean features in the corresponding region.

Visualizations of our descriptors are shown in Fig. 2 where we
can see that their values are similar when computed on the same



Fig. 3. Descriptors scales. Small scales lead to noisy descriptors (b). Large scales
lead to more homogeneous descriptors and smooth sharp texture transitions. For
visualization clarity, only the first element of Sr is shown (i.e. the first value of L1r )
but the rest of the set presents the same behavior.

Fig. 4. Gradient descent illustration. (a) A zoom in the sky/trees transition of the
image shown in Fig. 3. (b) A gradient descent guided by the variance of the coarse
scale descriptor tends to sharpen edges (top), but may mistakenly assign descrip-
tors to the wrong side of the edges: The red sky pixel (bottom) is considered as part
of the trees here. (c) A gradient descent gradually performed at multiple scales
(from fine to coarse) better preserves complex texture transitions. The red pixel is
now successfully assigned to the sky. (a) Descriptor S21 (b) Standard descent
(c) Multiscale descent.(For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article).

Fig. 5. Multiscale gradient descent algorithm.

B. Arbelot et al. / Computers & Graphics 62 (2017) 15–2718
types of regions. On the other hand, these values are dissimilar
between different regions, making our descriptor able to dis-
criminate different textural regions. Fig. 3 shows how descriptors
are affected by the scale r. Small scales (b) preserve edges but tend
to produce noisy descriptors. Conversely, larger scales successfully
describe uniform regions but fail to accurately preserve sharp
texture transitions that often occur inside images. This is shown in
(c), where the sharp transition between trees and sky is blurred
when computing the descriptor with a large neighborhood. This
phenomenon is due to the fact that on these particular pixels both
tree and sky features are mixed to compute the descriptor, which
then tend to represent this transition as a third texture. However,
this is problematic for our color manipulation applications, where
such descriptors will produce halos around edges. Note that we
cannot integrate luminance edges in the weight function wr (as in
the bilateral filter for instance). Indeed, this would prevent highly
contrasted textures to be accurately captured since such textures
would be fragmented into multiple pieces. For our purpose, we
need both constraints to be satisfied: homogeneous descriptors
inside regions and sharp texture edges preserved.

4.2. Multiscale gradient descent

To prevent texture transitions from being blurred, we propose
to use a multiscale gradient descent algorithm to give these
regions valid descriptors. Intuitively this multiscale gradient des-
cent locally propagates relevant descriptor values (occurring inside
homogeneous textural regions) to replace irrelevant ones (occur-
ring around region borders). In order to do so, we use the variance
of the descriptors to guide a gradient descent as this variance is
low on homogeneous regions and high around texture edges. This
gradient descent will then replace descriptors with high variance
by those contained in uniform regions. Formally, the variance of a
pixel p is computed as follows:

VrðpÞ ¼
1
W

X
qANp

r

ðSrðqÞ�νrÞðSrðqÞ�νrÞTwrðp;qÞ
������

������; ð2Þ

where SrðpÞ is the descriptor at pixel p and νr is the weighted
average of the descriptors over the neighborhood Np

r .
The gradient descent replaces the descriptors on either side of

the variance (e.g. texture edges) by descriptors with lower var-
iance, consequently sharpening descriptor edges. Fig. 5 (top)
shows the pseudo-code of the gradient descent, where the
returned map contains the coordinates of the descriptor that
should be used for each pixel. The result is shown in the top row of
Fig. 4, where initial descriptors (a) are replaced by descriptors
from homogeneous regions by following the gradient of the var-
iance (b). The result obviously depends on the scale at which
descriptors are computed. On large scales, complex texture tran-
sitions are smoothed out and consequently, some descriptors
might be incorrectly attributed to different regions. This is
illustrated in the bottom row of Fig. 4, where the red pixel located
in the sky (a) is mistakenly associated with the descriptor of a tree
(b) after the gradient descent pass. Our solution to preserve
complex texture changes with large scale descriptors is to use a
multiscale gradient descent, where the scale of both descriptor
and variance are gradually increased to guide the gradient descent
of the initial (large scale) descriptor.

Fig. 5 (bottom) shows the pseudo-code of the proposed multi-
scale gradient descent process. The idea is to iteratively apply
gradient descents, from fine to coarse scales, in order to propagate
desciptors from homogeneous regions while preserving complex
texture edges. At small scales, the descent accurately preserves
edges, but quickly falls into local minima. Increasing scales slowly
select pixels further and further away from the detailed edges,
ensuring that the descriptors are consistent. In practice, the
number of iterations used for a given scale is set to the size of the
neighborhood (small and large scales may respectively lead to



B. Arbelot et al. / Computers & Graphics 62 (2017) 15–27 19
small and large propagations). Note that, even if small scale
descriptors are needed to compute the variance, the resulting new
coordinates only modify the coarse scale descriptor. The result is
shown in Fig. 4 (c). The obtained descriptor (top) better preserves
complex texture transitions. The red pixel (bottom) now success-
fully takes descriptor values of a homogeneous region inside
the sky.

4.3. Unnormalized bilateral filtering

Gradient descent ensures the precise capture of textural
properties around each pixel, even near texture edges. Yet,
descriptors might still contain some variations that do not appear
in the original image. These might happen around U-shaped tex-
ture transitions (as in the left part of Fig. 4 (c)) or when a region
cannot be properly defined by its textural content (such as a fine
edge on a uniform background). This has to be prevented since any
variations in the descriptors might lead to color changes during
transfer or colorization. In a last step, we thus smooth the
descriptor using an edge-aware filter to perfectly fit to the image
structure. To that end, we adapt the unnormalized bilateral filter
[39], such that it iteratively smoothes the descriptor according to
luminance variations. This filter is simple, efficient, and introduces
very little halos if any. However, any other edge-aware filter could
have been used [36–38]. Formally, we use the unnormalized
bilateral filter as follows:

Subf ðpÞ ¼SðpÞþ
X
qANp

Gσs ðq�pÞGσ l ðLðqÞ�LðpÞÞðSðqÞ�SðpÞÞffiffiffiffiffiffiffiffiffiffiffiffi
2πσ2

s

p ; ð3Þ

where GσðxÞ ¼ exp � Jx J 2

2σ2

� �
is a standard Gaussian kernel. σs and σl

respectively control the influence of spatial distances and lumi-
nance variations. In practice, we iteratively apply Eq. (3) with
rather small values of σs and σl (typically 2 and 0:05) in order to
accurately diffuse descriptors on large neighborhoods. Fig. 6 shows
the effect of the filter on a problematic region, where the
descriptors do not precisely follow edges around the palm tree (a).
The unnormalized bilateral filter accurately brings back the leaf
edges, as shown in (b). The last image (c) shows the effect of the
filter when applied on the original descriptor (i.e. without gradient
descent). In that case, halos are propagated inside regions and
create unreliable descriptors.

4.4. Effect of each step on color transfer result

An example showcasing the effect of each of the previous steps
on a color transfer result is given in Fig. 7. Initial descriptors
(a) tend to produce strong color halos around texture transitions.
The multiscale gradient descent (b) produces much sharper tran-
sitions, but may also introduce discontinuities around U-shaped
regions. When applied alone, the unnormalized bilateral filtering
(c) smudges halos instead of suppressing them. Combining mul-
tiscale gradient descent and unnormalized bilateral filtering
Fig. 6. Unnormalized bilateral filter. (a) The descriptor obtained from the image
after gradient descent. (b) The unnormalized bilateral filter accurately propagates
descriptors and follows luminance edges. (c) Without the multiscale gradient
descent, halos are propagated inside regions and descriptors are altered. In these
examples, we used 2000 iterations with σs ¼ 2 and σl ¼ 0:05.
(d) creates a clean result where even strong initial halos are effi-
ciently removed.
5. Local color manipulation

Now that we have obtained reliable descriptors, we propose to
use them for color manipulations by defining transfer functions
that only rely on similar pixels between the input and reference
images.

5.1. Pixel similarity

We define a similarity measure based on the L2 Euclidean
distance between two descriptors:

Dσd ðp;qÞ ¼ exp
� JSðpÞ�SðqÞJ2

2σ2
d

 !
; ð4Þ

where SðpÞ and SðqÞ are the descriptors at locations p and q and
σd is the standard deviation that controls how close descriptors
should be to contribute to the similarity measure. Note that other
metrics could have been used as detailed in [41,35], but we did not
find any significant differences for our purpose. An example of
similarity measure is shown in Fig. 8, where pixels (b), (c) and
(d) are compared with all the other pixels of the input image (a).
We can observe that trees, sky and grass regions are accurately
selected and distinguished in the results.

5.2. Color transfer

The main idea for transferring colors between images is to rely
on local histogram matchings between input and reference ima-
ges, where both sets of color points are defined by their texture
similarities. The matching process is based on a translation and
scaling of the distribution in a decorrelated color space, as ori-
ginally proposed by Reinhard et al. [5]. Input and reference images
are therefore first transformed into the uncorrelated and percep-
tually uniform CIE-Lab color space before being processed. The
following transfer function is then applied on each channel cAf
L; a; bg separately:

T σd ðpÞ ¼
stdref ðpÞ
stdinðpÞ

cinðpÞ�μinðpÞ
� �

þμref ðpÞ; ð5Þ

where superscripts “in” and “ref ” denote the input and reference
images. “μ” and “std” are the weighted mean and standard
deviations respectively, computed as follows, according to the
similarities of the pixel p of the input image:

μimgðpÞ ¼ 1
W

X
q
cimgðqÞDσd ðpin;qimgÞ

stdimgðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
W

X
q

cimgðqÞ�μimgðpÞ� 	2Dσd ðpin;qimgÞ
s

;

where imgAfin; ref g, q iterates over img and W is the normal-
ization factor:

W ¼P
q
Dσd ðpin;qimgÞ. A color transfer example is shown in Fig. 9

(top) where we can observe the effect of the σd parameter. When
σd is small, colors are transferred only between highly similar
regions, such as the sea or the clouds of the input and reference
images here. Wider and wider regions are considered when
increasing σd, leading to results closer to the global matching
of [5].



Fig. 7. Processing effect on the transfer result. In this example, initial descriptors are blurry and create strong color halos above the trees in the transfer result (a). The
Multiscale Gradient Descent (MGD) prevents the apparition of halos but some incorrect edges remain in U-shaped transitions between the sky and the trees (b). The
Unnormalized Bilateral Filtering (UBF) accurately preserves the structure but smudges halos instead of suppressing themwhen used alone (c). The combination of both MGD
and UBF leads to a cleaner result as shown in (d).

Fig. 8. Similarity maps. (a) Input image luminance. The green, yellow and red
pixels are compared with all pixels using Eq. (4) to obtain the corresponding
similarity maps (b), (c) and (d). The similarity measure allows the three regions to
be accurately discriminated. Similarities were computed with σd ¼ 1 in these
examples.(For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article).

B. Arbelot et al. / Computers & Graphics 62 (2017) 15–2720
5.3. Colorization

Histogram matching techniques cannot be used directly for
colorizing images that do not contain chrominance channels. In
this case, we assign the mean chrominance of the reference image
to each input pixel, weighted by our similarity measure:

Cσd ðpÞ ¼

P
q
cref ðqÞDσd ðpin;qref ÞP
q
Dσd ðpin;qref Þ : ð6Þ

Note that this transfer function is applied on chrominance
channels only, although the luminance could also be modified
depending on the purpose. A colorization example is shown in
Fig. 9 (bottom). Large values of σd tend to average colors on large
regions and consequently create pale and monochrome results.
Therefore σd should be kept small enough for colorization pur-
pose, in order to only average colors over regions of highly similar
descriptors.

5.4. Implementation and performances

We fully implemented our color manipulation functions on the
GPU using Cuda. All the results presented in this paper were
obtained with a NVIDIA Quadro 6000 graphics card. In practice, we
first precompute the descriptors S for both the input and refer-
ence images before applying a transfer or a colorization. However,
Eqs. (5) and (6) require to iterate over all the pixels of the input
image, and compute the similarities with the whole reference for
each of them in order to obtain the weighted mean and standard
deviations. A naïve implementation of these equation leads to
extensive computation times.

To achieve reasonable speed, we propose to quantify simila-
rities using a user-defined distance τ that controls how close two
descriptors should be to be considered as equal. Considering a
particular input pixel p, all the other pixels pi such as Dσd ðp;piÞoτ
are processed using the same similarity function. That way,
increasing τ decreases the total number of iterations needed to
obtain the result. The effect of this optimization can be seen in
Fig. 10, where important speed-up is achieved without visual
impacts. High values of τ tend to produce quantization artifacts,
but may be used to interactively explore the result space.

To summarize, the user can tune the following parameters to
achieve the desired results:

� rmax controls the size of the window on which descriptors are
computed and thus defines the scale at which textures are
estimated. Typically, we found that rmax ¼ 21 works well for
natural images of resolution 512� 512.

� σs and σl respectively control the influence of spatial distances
and luminance variations when smoothing the descriptor with
the unnormalized bilateral filter. All the results in the paper
were done with σs ¼ 2 and σl ¼ 0:05. The number of iterations
used for this filter depends on the complexity of texture edges.
We typically used 500 iterations for our results.

� σd controls how strongly the weight between two pixels is
influenced by their distances in the descriptors space. In prac-
tice, we respectively used σd ¼ 1 and σd ¼ 0:2 for most color
transfer and colorization results.

� τ controls the quantization step. In our results, we used τ¼ 0:01
as it provides a good speed-up while keeping a good visual
quality in almost every case.



Fig. 9. Impact of σd on transfer functions. Top: color transfer example. When increasing σd , more and more pixels are considered as similar, resulting in a transfer close to a
basic global histogrammatching. Bottom: colorization example. As colors are obtained from the weighted average of similar pixels in the reference image, increasing σd tends
to produce a monochrome result.

Fig. 10. Optimization impact. Color transfer results for increasing τ values for 512� 512 images. The lower τ, the higher the speed-up and the probability of quantization
artifacts. In this example, τ¼ 0:1 allows for a fast transfer which can be used for efficient results exploration with minimal visual artifacts.

B. Arbelot et al. / Computers & Graphics 62 (2017) 15–27 21
The timings of our algorithm for the image in Fig. 10 using
those parameters are described in the following table:
C
(σ
C

Algorithm
 Image Size
 Desc.
 Transfer
 Total

olorization
 512� 512
 19 s
 47 s
 66 s

d ¼ 0:2)
 1024� 1024
 78 s
 490 s
 568 s

olor Transfer
 512� 512
 19 s
 21 s
 40 s

d ¼ 1)
 1024� 1024
 78 s
 132 s
 210 s
(σ

where “Desc.” stands for the descriptors computation and
“Transfer” stands for the color transfer or colorization step. Typi-
cally the colorization takes longer because of the lower σd used
which create less similarity between pixels (see Eq. (4)), leading to
more computation during the transfer step.
Note that our code was designed to be strongly flexible, while
maintaining decent timings as much as possible. We believe fur-
ther optimization could still provide significant speed-up. For
example a bilateral grid could be used to compute the filtering
step much faster during the descriptors computation. The transfer
step could also be further optimized by considering subsampled
versions of the reference and input images which would greatly
reduce the transfer time for large images. However this unopti-
mized code still allows for computation times similar to other
color transfer or colorization methods relying on image
descriptors.



Fig. 11. Transfer and colorization results. Different colors are clearly associated
with different regions based on their textural content.

B. Arbelot et al. / Computers & Graphics 62 (2017) 15–2722
6. Results

Results and comparisons presented in the paper and in Sup-
plemental materials were all made with the default parameters
given in the previous section.

6.1. Color transfer results

Fig. 12 (top) shows the results of our color transfer against
other state-of-the-art methods. The results of [5] were computed
with our own implementation of their method. The results of [7,8]
were computed using the available code on the authors webpage,
we used a full match (100%) for [8]. The results of [15] were
provided by the authors. The results of [14] were taken from the
authors webpage and drove our choice of images.

These results show that global approaches [5,7] tend to pro-
duce saturated colors due to the stretching of the input color
histogram. Furthermore, global histogram matchings match
regions of similar colors and luminance, failing in transferring
colors between similar textured regions if they have highly dif-
ferent luminance or colors. This is showcased in the bottom row
where the orange color of the reference buildings is transferred to
the input sky. The progressive approach of [8] also fails to accu-
rately preserve the colors of the reference in their results. Local
approaches based on color information [15,14] lead to better
results, but also fail in matching regions of similar textural content
because they define similar regions by their luminance and color
distributions.

Our approach successfully matches those regions, as shown in
the third row, where the flower field of the reference is matched to
the grass of the input (making it yellow); or in the fourth row
where the buildings of the reference are matched to those of the
input (making them orange). Fig. 11 shows three more examples
where the matching between different regions is clearly effective
thanks to our descriptors.

6.2. Colorization results

Fig. 12 (bottom) compares the results of our colorization
against other state-of-the-art methods. The results of [27,28,21]
were taken from [21]. The results of [29,42] were computed using
the code provided by the authors, using the default parameters
suggested in their code.

Those results show that the method of [27] based on luminance
matching fails when the input images are too complex: different
regions with similar luminance get the same colors, such as the
building and clouds in the first example. The method of [28] uses
SURF descriptors and Gabor filters which are strongly dis-
criminative, leading to efficient colorization when the input and
reference images have identical or very similar content. However,
they have to crop image borders and colors often smudge in their
results. The method from [21] produces better results by com-
bining superpixel segmentation and similarly robust descriptors
(i.e. image intensity, standard deviation features, Gabor filters and
SURF features). While achieving better results than previous
methods, they still fail to distinguish between intricate regions
such as the clouds and the sky in the first and fourth row, or the
river and the land in the fourth row. Finally, the method from [29]
uses descriptors based on standard-deviation, discrete Fourier
transform and cumulative histograms of image patches. It is very
prone to halos due to the window used in the descriptors com-
putation and was improved in [42] where a new luminance-
chrominance model was used to better propagate colors. While
this model is very good to avoid artifacts, the final colors are not
always faithful to the reference image colors, as seen in the first
and third rows.

As seen in the last column, our approach accurately matches
corresponding textures and produces colorful results: sky, cloud,
vegetation, mountain and building colors of the references are
successfully transferred into the input images. Fig. 11 shows three
more results demonstrating a clear separation between regions of
the input image and correct color associations from the
reference image.

To evaluate the coherency of our descriptors, we also tried to
colorize a desaturated image using the original color image as
reference. These results are shown in Fig. 13, where we can
observe that color differences between the reference and the
output images depends on σd: the lower σd, the higher the fidelity.
This is due to the fact that input and reference images have exactly



Fig. 12. Comparison with previous methods. Top and bottom respectively compare color transfer and colorization results with previous state-of-the-art methods. See the
text for more details.

B. Arbelot et al. / Computers & Graphics 62 (2017) 15–27 23
the same descriptors in that case. In the limit case, when σd-0,
only one pixel will be taken into account when comparing
descriptors (cf. Eq. (6)) and the result will be equal to the refer-
ence. The pixel-wise difference between the result and the refer-
ence image was computed as the sum of the absolute RGB differ-
ences. Note that, when input and reference images differ, σd

should be given a higher value to avoid color artifacts.
6.3. Combining colorization and transfer

Since our framework is the same for colorization and color
transfer, we can easily apply a combination of both to a grayscale
input by adding chrominance via colorization, while modifying the
luminance by transferring only the luminance from the reference
image. The results of this approach can be seen in Fig. 14. They



Fig. 13. Self colorization. The reference color image was desaturated to create the input image. In the difference images, the brighter a pixel, the higher the color difference
between the result and the reference. The result colors fidelity depends on σd: as σd-0, the result approaches the reference.

Fig. 14. Combining colorization and luminance transfer. Our framework allows for
an easy combination of colorization and luminance transfer. This combination
provides a good style transfer between the input and reference images. While less
colorful than a color transfer result, this result only requires a grayscale input. In
those results, σd ¼ 0:5.

Fig. 15. Binary connected mask algorithm.

B. Arbelot et al. / Computers & Graphics 62 (2017) 15–2724
show that this combination can produce a result closer to the style
of the reference image, while still using only the input luminance.
Comparing this to the result of the color transfer (which also
transfers luminance), we see that color transfer remains more
colorful because the chrominance information of the input image
is also used, however it requires a color image as input which is
more restrictive.
Fig. 16. Strokes and the resulting mask. The binary mask defines a connected
homogeneous texture region according to the stroke similarity map. In these
examples, λm ¼ 0:05.
6.4. Stroke-based local transfer and colorization

The results presented in the previous sections were obtained
fully automatically, however our method can easily be extended to
support user-provided strokes. These strokes are used to quickly
define user desired regions in the input and reference images,



Fig. 17. Local color transfer tuning with strokes. The automatic color transfer
provides a result with a blue sky similar to the first reference blue sky. We used a
second reference to fine-tune the sky with a pair of strokes. The final result colors
are closer to the red colors of a sunset.(For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article).

Fig. 18. Improving color transfer with strokes.The automatic color transfer of the
input image is very dark because of absence of bright area (like a sky) in the
reference image (left column). Using strokes, only selected regions of the reference
are used (the road and the leaves). In this example, λm ¼ 0:01.

Fig. 19. Improving colorization with strokes. The automatic colorization of the
input image fails because of the similarity in the tree textures in the reference
image (left column). Using strokes, the colors of different trees of the reference
image are segmented (middle row) and used to colorize the trees of the input
image (bottom row). In this example, λm ¼ 0:01.

Fig. 20. Colorization with several targets and strokes. The color of the trees is taken
from the first reference with the red strokes, the colors of the sky and the grass are
taken from the second reference with the blue and yellow strokes.(For inter-
pretation of the references to color in this figure legend, the reader is referred to
the web version of this article).

B. Arbelot et al. / Computers & Graphics 62 (2017) 15–27 25
through the use of our descriptors. We can then apply a local
transfer or colorization between the two user-selected regions of
the input and reference images. This allows the user to edit a
single part of an image, or to fine-tune the result of the automatic
approach.

To extract the homogeneous texture region corresponding to
some user strokes in an image, we compute a region-based image
segmentation. More specifically, we compute the similarity maps
of this image for each pixel of the strokes, then average them to
obtain the similarity map DS

σd
corresponding to the strokes. From

this similarity map, we compute a connected binary mask to
segment the desired texture region. We chose to make this binary
mask connected to each stroke in order to make the selection
process more intuitive and avoid a fragmented selection from a
single stroke. However several different regions can still be
simultaneously selected by using several strokes. The mask com-
putation is detailed in Fig. 15.

This mask is initialized with the strokes, then iteratively
extended to include pixels whose similarity is close to the simi-
larity of their neighbor in the mask. In practice, if a pixel p is
outside of the mask and one of its neighbors q is inside the mask, p
is added to the mask if DS

σd
ðpÞ�DS

σd
ðqÞ




 


rλm where λm is a

threshold controling how similar two neighbors should be to
belong to the mask. The higher λm, the larger the mask. We used
λm ¼ 0:05 for most examples and lowered it to 0:01 when trying to



Fig. 21. Failure case. Semantic information such as man-made objects or faces may
locally modify the descriptors and produce incoherent colorizations. For example
here, the motorbike wheels are colored in blue because they are detected as a
texture resembling the one of the input girl hat.(For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this
article).

B. Arbelot et al. / Computers & Graphics 62 (2017) 15–2726
distinguish between similarly textured regions. An example of the
strokes similarity maps and the resulting connected mask is
shown in Fig. 16. We can see that the mask accurately selects the
region underlying the stroke (the sky and the hedge). In the sec-
ond example, making the mask connected avoids selecting the
grass with the hedge stroke even though their textures are slightly
similar.

In Fig. 17, we use strokes to fine-tune a color transfer result. The
automatic transfer result with the first reference image creates a
nice red tint on the house and hedge, however the sky remains
blue because of the blue part of the sky in the reference. To
increase the sunset feeling, we use a stroke to transfer colors from
another reference into the sky of the automatic result, resulting in
a red tinted sky. Note that an automatic transfer from the sunset
shot of the second reference only would have globally produced a
much darker image.

In Fig. 18, we see an example where the automatic method fails
because of the absence of sky or bright area in the reference image.
With additional user strokes, we manage to get a pleasing result
using only relevant regions from the reference image. Similarly in
Fig. 19, the input image is homogeneously colorized because the
reference trees contain similar textural information and their
colors are then blended together. Using strokes, we are able to
colorize only the trees of the input image of Fig. 14 with different
tree colors from the reference image. Other images can then be
used to colorize the remaining input regions as showcased in
Fig. 20 where we used a second reference image to separately
colorize the sky and grass regions of the input image. Note that
this approach differs from the color strokes used in [19,42,24] as
our strokes are used to segment texture regions based on their
luminance through our descriptors. The colors of the segmented
reference region are then transferred to the segmented input
region according to the descriptor similarities inside those regions.

Since the stroke similarity map is computed using each pixel of
the stroke independently, the shape of the stroke does not matter.
When the textured region to segment is homogeneous, as in
Figs. 16, 17 and 19, the strokes can be very simple. However, when
the region is more heterogeneous, as in the input of Fig. 18,
detailed strokes can be necessary. In this image, the grass and rock
textures contain many different parts (bushes and rocks in the
grass, shadows and holes in the rock) that cannot be easily seg-
mented with a simple stroke.
7. Discussion and future works

In this paper, we presented a generic framework for both color
transfer and colorization. Our edge-aware descriptor accurately
captures similar textural content in images while being robust to
texture transitions. It allows local color transfer and colorization
between similar regions of an input and reference images. Fur-
thermore, the user can select, with strokes, regions to match
between the input and the reference images. This allows to fine-
tune parts of the automatic approach results and to locally edit an
image colors. Our method suffers from two main limitations, as
described below.

(1) Considering colorization, the input and reference images
should be similar enough to produce coherent results. If a parti-
cular region in the input image does not have any correspondence
in the reference one, the similarity function (based on a Gaussian
distance) tends to give the same weight to all pixels, resulting in a
monochrome colorization. Note that this is equivalent to increas-
ing σd for this particular region, as seen in Fig. 9 (bottom-right).
This problem also occurs for color transfer but is much less visible
since the mean and variance are only used to modify the histo-
gram. To prevent this, one possibility would be to automatically
detect mismatched regions and ask the user to disambiguate the
transfer by providing more specific reference images.

(2) The proposed descriptors efficiently capture texture regions
and their transitions, but are not able to detect higher-level
semantic information such as faces, man made objects or back-
ground and foreground. Our descriptors might be altered by such
objects, thus affecting the quality of the transfers. Again, this is
most visible in colorization results, as shown in Fig. 21. The yellow
color obtained in the top left part of the image is due to the electric
wires that are associated to the warning sign of the reference. The
wheels of the motorbike contain fine structures associated to the
girl's hat, resulting in a bluish color. One way to mitigate these
issues would be to rely on more complex, but slower, descriptors
combining both semantic and texture information.

Despite these limitations, we believe that our descriptor con-
stitutes a good basis that could contribute to other applications
such as tone mapping, edge-aware image decomposition, and
color content modification of videos.
Acknowledgments

We thank the anonymous reviewers for their relevant com-
ments. We also thank Oriel Frigo for helping generating the
comparison results in Fig. 12, and Olivier Le Meur for his helpful
comments. Finally, for providing access to their code, we thank
Fabien Pierre, Raj Kumar Gupta and all authors whose code was
accessible online. The input image used in Figs. 2, 3, 4, 8, 10, 14 and
the house reference image in Fig. 9 are courtesy of www.free
bigpictures.com. Color transfer comparisons were made using the
images from [14]. Colorization comparison images were taken
from [21]. This work is partially supported by French National
Research Agency, MapStyle project [ANR-12-CORD-0025].
References

[1] Yellott Jr JI, et al. Implications of triple correlation uniqueness for texture
statistics and the julesz conjecture. JOSA A 1993;10(5):777–93.

[2] Balas BJ. Texture synthesis and perception using computational models to
study texture representations in the human visual system. Vision Res 2006;46
(3):299–309.

[3] Arbelot B, Vergne R, Hurtut T, Thollot J. Automatic texture guided color
transfer and colorization. In: Proceedings of the joint symposium on compu-
tational aesthetics and sketch based interfaces and modeling and non-
photorealistic animation and rendering. Expressive '16; Eurographics Asso-
ciation; 2016. p. 21–32.

[4] Faridul HS, Pouli T, Chamaret C, Stauder J, Reinhard E, Kuzovkin D, et al.
Colour mapping: a review of recent methods, extensions and applications.
Comput Graph Forum 2015.

[5] Reinhard E, Ashikhmin M, Gooch B, Shirley P. Color transfer between images.
IEEE Comput Graph Appl 2001;21(5):34–41.

http://www.freebigpictures.com
http://www.freebigpictures.com
http://refhub.elsevier.com/S0097-8493(16)30139-X/sbref1
http://refhub.elsevier.com/S0097-8493(16)30139-X/sbref1
http://refhub.elsevier.com/S0097-8493(16)30139-X/sbref1
http://refhub.elsevier.com/S0097-8493(16)30139-X/sbref2
http://refhub.elsevier.com/S0097-8493(16)30139-X/sbref2
http://refhub.elsevier.com/S0097-8493(16)30139-X/sbref2
http://refhub.elsevier.com/S0097-8493(16)30139-X/sbref2
http://refhub.elsevier.com/S0097-8493(16)30139-X/sbref3
http://refhub.elsevier.com/S0097-8493(16)30139-X/sbref3
http://refhub.elsevier.com/S0097-8493(16)30139-X/sbref3
http://refhub.elsevier.com/S0097-8493(16)30139-X/sbref4
http://refhub.elsevier.com/S0097-8493(16)30139-X/sbref4
http://refhub.elsevier.com/S0097-8493(16)30139-X/sbref4


B. Arbelot et al. / Computers & Graphics 62 (2017) 15–27 27
[6] Xiao X, Ma L. Color transfer in correlated color space. In: Proceedings ACM
international conference on virtual reality continuum and its applications
(VRCIA). ISBN 1-59593-324-7; 2006. p. 305–309.

[7] Pitié F, Kokaram AC, Dahyot R. Automated colour grading using colour dis-
tribution transfer. Comput Vis Image Underst 2007;107(1–2):123–37.

[8] Pouli T, Reinhard E. Progressive color transfer for images of arbitrary dynamic
range. Comput Graph 2011;35(1):67–80.

[9] Dong Y, Xu D. Interactive local color transfer based on coupled map lattices. In:
Proceedings computer-aided design and computer graphics. 2009. p. 146–149.

[10] An X, Pellacini F. User-controllable color transfer. Comput Graph Forum 2010.
[11] Liu S, Sun H, Zhang X. Selective color transferring via ellipsoid color mixture

map. J Vis Commun Image Represent 2012;23(1):173–81.
[12] Tai YW, Jia J, Tang CK. Local color transfer via probabilistic segmentation by

expectation-maximization. In: Proceedings IEEE CVPR; vol. 1; 2005, vol. 1. p.
747–754.

[13] Bonneel N, Sunkavalli K, Paris S, Pfister H. Example-based video color grading.
ACM Trans Graph 2013;32(4) [1–39:12].

[14] Hristova H, Le Meur O, Cozot R, Bouatouch K. Style-aware robust color transfer.
In: Proceedings computational aesthetics; 2015. p. 67–77.

[15] Frigo O, Sabater N, Demoulin V, Hellier P. Optimal transportation for example-
guided color transfer. In: Computer vision – ACCV 2014; vol. 9005 of lecture
notes in computer science. springer international publishing. ISBN 978-3-319-
16810-4; 2015. p. 655–670.

[16] Hertzmann A, Jacobs CE, Oliver N, Curless B, Salesin DH. Image analogies. In:
Proceedings of the 28th annual conference on Computer graphics and inter-
active techniques. SIGGRAPH '01. ISBN 1-58113-374-X; 2001. p. 327–340.

[17] Shih Y, Paris S, Durand F, Freeman WT. Data-driven hallucination of different
times of day from a single outdoor photo. ACM Trans Graph 2013;32(6)
[200:1–200:11].

[18] Okura F, Vanhoey K, Bousseau A, Efros A, Drettakis G. Unifying color and
texture transfer for predictive appearance manipulation. Comput Graph
Forum (Proc Eurographics Symp Render) 2015;34:4.

[19] Levin A, Lischinski D, Weiss Y. Colorization using optimization. ACM Trans
Graph 2004;23(3):689–94.

[20] Irony R, Cohen-Or D, Lischinski D. Colorization by example. In: Proceedings
EGSR. ISBN 3-905673-23-1; 2005. p. 201–210.

[21] Gupta RK, Chia AYS, Rajan D, Ng ES, Zhiyong H. Image colorization using
similar images. In: Proceedings ACM international conference on multimedia.
ISBN 978-1-4503–1089-5; 2012. p. 369–378.

[22] Kuzovkin D, Chamaret C, Pouli T. Descriptor-based image colorization and
regularization. in: Proceedings computational color imaging workshop. ISBN
978-3-319-15978-2; 2015. p. 59–68.

[23] Jin SY, Choi HJ, Tai YW. A randomized algorithm for natural object color-
ization. Comput Graph Forum 2014;33(2):205–14.
[24] Endo Y, Iizuka S, Kanamori Y, Mitani J. DeepProp: extracting Deep Features
from a Single Image for Edit Propagation. Comput Graph Forum 2016.

[25] Zhang R, Isola P, Efros AA. Colorful image colorization. ECCV 2016.
[26] Iizuka S, Simo-Serra E, Ishikawa H. Let there be color!: joint end-to-end

learning of global and local image priors for automatic image colorization with
simultaneous classification. ACM Trans Graph (Proc SIGGRAPH 2016) 2016;35
(4) [110:1–110:11].

[27] Welsh T, Ashikhmin M, Mueller K. Transferring color to greyscale images. ACM
Trans Graph 2002;21(3):277–80.

[28] Charpiat G, Hofmann M, Schölkopf B. Automatic image colorization via mul-
timodal predictions. In: Proceedings ECCV. ISBN 978-3-540-88689-1; 2008. p.
126–139.

[29] Bugeau A, Ta VT. Patch-based image colorization. In: Pattern Recognition
(ICPR), 2012 Proceedings of the 21st international conference on. 2012. p.
3058–3061.

[30] Bugeau A, Ta VT, Papadakis N. Variational exemplar-based image colorization.
IEEE Trans Image Process 2014;23(1):298–307.

[31] Xia GS, Delon J, Gousseau Y. Shape-based invariant texture indexing. Int J
Comput Vision 2010;88(3):382–403.

[32] Xu Y, Huang S, Ji H, Fermüller C. Scale-space texture description on sift-like
textons. Comput Vision Image Underst 2012;116(9):999–1013.

[33] Xu L, Yan Q, Xia Y, Jia J. Structure extraction from texture via relative total
variation. ACM Trans Graph 2012;31(6) [139:1–139:10].

[34] Cho H, Lee H, Kang H, Lee S. Bilateral texture filtering. ACM Trans Graph
2014;33:4.

[35] Karacan L, Erdem E, Erdem A. Structure-preserving image smoothing via
region covariances. ACM Trans Graph 2013;32(6) [176:1–176:11].

[36] Tomasi C, Manduchi R. Bilateral filtering for gray and color images. In: Pro-
ceedings ICCV. ISBN 81-7319-221-9; 1998. p. 839–.

[37] He K, Sun J, Tang X. Guided image filtering. IEEE Trans Pattern Anal Mach Intell
2013;35(6):1397–409.

[38] Perona P, Malik J. Scale-space and edge detection using anisotropic diffusion.
IEEE Trans Pattern Anal Mach Intell 1990;12(7):629–39.

[39] Aubry M, Paris S, Hasinoff SW, Kautz J, Durand F. Fast local laplacian filters:
theory and applications. ACM Trans Graph 2014;33:5 [167:1–167:14].

[40] Tuzel O, Porikli F, Meer P. Region covariance: A fast descriptor for detection
and classification. in: Proceedings ECCV; 2006. p. 589–600.

[41] Hong X, Chang H, Shan S, Chen X, Gao W. Sigma set: A small second order
statistical region descriptor. in: Proceedings IEEE CVPR; 2009. p. 1802–1809.

[42] Pierre F, Aujol JF, Bugeau A, Papadakis N, Ta VT. Luminance-chrominance
model for image colorization. SIAM J Imaging Sci 2015;8(1):536–63.

http://refhub.elsevier.com/S0097-8493(16)30139-X/sbref5
http://refhub.elsevier.com/S0097-8493(16)30139-X/sbref5
http://refhub.elsevier.com/S0097-8493(16)30139-X/sbref5
http://refhub.elsevier.com/S0097-8493(16)30139-X/sbref6
http://refhub.elsevier.com/S0097-8493(16)30139-X/sbref6
http://refhub.elsevier.com/S0097-8493(16)30139-X/sbref6
http://refhub.elsevier.com/S0097-8493(16)30139-X/sbref7
http://refhub.elsevier.com/S0097-8493(16)30139-X/sbref8
http://refhub.elsevier.com/S0097-8493(16)30139-X/sbref8
http://refhub.elsevier.com/S0097-8493(16)30139-X/sbref8
http://refhub.elsevier.com/S0097-8493(16)30139-X/sbref9
http://refhub.elsevier.com/S0097-8493(16)30139-X/sbref9
http://refhub.elsevier.com/S0097-8493(16)30139-X/sbref10
http://refhub.elsevier.com/S0097-8493(16)30139-X/sbref10
http://refhub.elsevier.com/S0097-8493(16)30139-X/sbref10
http://refhub.elsevier.com/S0097-8493(16)30139-X/sbref11
http://refhub.elsevier.com/S0097-8493(16)30139-X/sbref11
http://refhub.elsevier.com/S0097-8493(16)30139-X/sbref11
http://refhub.elsevier.com/S0097-8493(16)30139-X/sbref12
http://refhub.elsevier.com/S0097-8493(16)30139-X/sbref12
http://refhub.elsevier.com/S0097-8493(16)30139-X/sbref12
http://refhub.elsevier.com/S0097-8493(16)30139-X/sbref13
http://refhub.elsevier.com/S0097-8493(16)30139-X/sbref13
http://refhub.elsevier.com/S0097-8493(16)30139-X/sbref13
http://refhub.elsevier.com/S0097-8493(16)30139-X/sbref14
http://refhub.elsevier.com/S0097-8493(16)30139-X/sbref14
http://refhub.elsevier.com/S0097-8493(16)30139-X/sbref15
http://refhub.elsevier.com/S0097-8493(16)30139-X/sbref16
http://refhub.elsevier.com/S0097-8493(16)30139-X/sbref16
http://refhub.elsevier.com/S0097-8493(16)30139-X/sbref16
http://refhub.elsevier.com/S0097-8493(16)30139-X/sbref16
http://refhub.elsevier.com/S0097-8493(16)30139-X/sbref17
http://refhub.elsevier.com/S0097-8493(16)30139-X/sbref17
http://refhub.elsevier.com/S0097-8493(16)30139-X/sbref17
http://refhub.elsevier.com/S0097-8493(16)30139-X/sbref18
http://refhub.elsevier.com/S0097-8493(16)30139-X/sbref18
http://refhub.elsevier.com/S0097-8493(16)30139-X/sbref18
http://refhub.elsevier.com/S0097-8493(16)30139-X/sbref19
http://refhub.elsevier.com/S0097-8493(16)30139-X/sbref19
http://refhub.elsevier.com/S0097-8493(16)30139-X/sbref19
http://refhub.elsevier.com/S0097-8493(16)30139-X/sbref20
http://refhub.elsevier.com/S0097-8493(16)30139-X/sbref20
http://refhub.elsevier.com/S0097-8493(16)30139-X/sbref20
http://refhub.elsevier.com/S0097-8493(16)30139-X/sbref21
http://refhub.elsevier.com/S0097-8493(16)30139-X/sbref21
http://refhub.elsevier.com/S0097-8493(16)30139-X/sbref22
http://refhub.elsevier.com/S0097-8493(16)30139-X/sbref22
http://refhub.elsevier.com/S0097-8493(16)30139-X/sbref23
http://refhub.elsevier.com/S0097-8493(16)30139-X/sbref23
http://refhub.elsevier.com/S0097-8493(16)30139-X/sbref24
http://refhub.elsevier.com/S0097-8493(16)30139-X/sbref24
http://refhub.elsevier.com/S0097-8493(16)30139-X/sbref24
http://refhub.elsevier.com/S0097-8493(16)30139-X/sbref25
http://refhub.elsevier.com/S0097-8493(16)30139-X/sbref25
http://refhub.elsevier.com/S0097-8493(16)30139-X/sbref25
http://refhub.elsevier.com/S0097-8493(16)30139-X/sbref26
http://refhub.elsevier.com/S0097-8493(16)30139-X/sbref26
http://refhub.elsevier.com/S0097-8493(16)30139-X/sbref27
http://refhub.elsevier.com/S0097-8493(16)30139-X/sbref27
http://refhub.elsevier.com/S0097-8493(16)30139-X/sbref27

	Local texture-based color transfer and colorization
	Introduction
	Related work
	Overview
	Edge-aware texture descriptors
	Local texture descriptors
	Multiscale gradient descent
	Unnormalized bilateral filtering
	Effect of each step on color transfer result

	Local color manipulation
	Pixel similarity
	Color transfer
	Colorization
	Implementation and performances

	Results
	Color transfer results
	Colorization results
	Combining colorization and transfer
	Stroke-based local transfer and colorization

	Discussion and future works
	Acknowledgments
	References




