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ABSTRACT

This paper presents a novel approach for automatic detec-
tion of microaneurysms and haemorrhages in fundus images.
First, it begins with a preprocessing stage for shade correc-
tion, contrast enhancement and denoising. Second, all re-
gional minima with sufficient contrast are extracted and con-
sidered as candidates. Third, in an image flooding scheme, a
new set of dynamic shape features is computed as a function
of intensity. Finally, a Random Forest classifies the candi-
dates into lesions and non lesions. A set of 143 fundus im-
ages with an average of 2210 pixels in diameter was acquired
using different cameras and used for training and testing. The
proposed approach achieved a global score over the FROC
curve of 0.393, while previous work with images of similar
resolution reported a score of 0.233.

Index Terms— Image processing, features extraction,
computer aided detection, fundus images.

1. INTRODUCTION

Diabetic retinopathy (DR) is the leading cause of preventable
blindness in the working-age population [1]. Early detection,
together with appropriate treatment, can help prevent visual
impairment. In current diagnostic procedure, a retina special-
ist analyzes fundus images and visually identifies lesions such
as microaneurysms (MA) and heamorrhages (HM). The grade
of DR depends mainly on the location, number and type of le-
sions. With the increasing number of diabetic patients, com-
puter aided detection systems are becoming essential for DR
screening and grading [2]. It adds more objectivity and repro-
ducibility to the task and it accelerates the process.

Several methods for red lesions detection are proposed in
the literature [3–7]. The most popular approach consists in
candidate extraction followed by region classification. Once
a candidate is identified, a region growing [4, 5] is performed
to find its boundaries. Shape and color features are then com-
puted and used for classification. A major limitation is that
the features extracted are consequently highly dependent on
the edges found by region growing.

Most of the papers focus mainly on the detection of MAs
[3–7]. Because of their regular small circular shape, MAs
can be detected or at least enhanced using 2D gaussian match
filtering [3, 6] or through local rotation cross-section profile
analysis [7]. However, even though MAs are considered as
a critical component for DR screening, DR grading requires
also the detection of HMs. By using the top-hat filter to re-
move connected components larger than the structuring ele-
ment [4, 5], vessels as well as larger HMs are removed and
thus missed in subsequent processing.

Several methods proposed in the literature have been built
and validated on a common publicly available dataset, the
retinopathy online challenge dataset [8]. The reported scores
vary between 0.206 and 0.434 [7] depending on the detec-
tion algorithm. Unfortunately, the images of this dataset have
a resolution much smaller than the one provided by most of
the up-to-date retinographs. According to [9], a resolution
of 50 pixels per degree of field of view (FOV) is needed to
provide diagnostic power comparable to film-based images.
Thus, for a 45o FOV, images must have about 2250 pixels on
the diameter of the region of interest (ROI), while images of
the retinopathy online challenge only have about 540 pixels.
Only Lazar et al. [7] considered images with 2200 pixels in
diameter for the validation of their detection algorithm, they
reported a score of 0.233.

In this paper, a novel approach for the detection of MAs
and HMs in high resolution fundus images is proposed and
validated. It introduces a novel set of dynamic shape features
used for region classification. It is motivated by the fact that
the shape of a candidate region depends highly on the inten-
sity threshold for which the region is defined.

2. METHOD

The proposed approach is divided into four steps, each of
which will be detailed in the following subsections.

2.1. Image preprocessing
A shade correction is performed to remove variations in the
background illumination. A mean filter of size 401 × 401 is
applied to the input image and the result is then subtracted



(a) Candidate regions (b) Flooding level i = 70

(c) Flooding level i = 78 (d) Flooding level i = 112

Fig. 1. Morphological flooding of image (a) with 2 can-
didate regions encircled in white: R1 (in red) and R2 (in
green). Subfigures (b), (c) and (d) show the resulting catch-
ment basins CR1

i (in red) and CR2
i (in green) for i = 70,

i = 78 and i = 112, respectively.

from the image. The resulting image is noted Isc. Contrast
enhancement is achieved by stretching and clipping the green
histogram of Isc on the range µ ± 3σ, where µ and σ are
the mean and standard deviation, respectively, of Isc’s green
channel. The green channel is considered because of the high
contrast it offers around the lesions. Finally, a 7 × 7 median
filter is applied to remove and attenuate the noise resulting
from the acquisition and compression steps. The final prepro-
cessed image is noted Ip.

2.2. Candidate extraction

To locate potential red lesions, all regional minima of Ip are
identified. A regional minimum is defined as a group of con-
nected pixels with same intensity h, such that all its adjacent
pixels have strictly higher intensities [10].

Then, two criteria are applied. First, only minima that
are darker than Ip’s mean intensity are considered. Second,
only minima with a contrast superior to a threshold K are
retained. In a topographic representation of Ip, the contrast of
a minimum M is defined as the difference in altitude between
M and the highest point of the paths reaching a minimum
with lower intensity [11]. The advantage of this definition of
contrast is that it is independent on the size and shape of the
structure. All remaining minima constitute candidate regions.

2.3. Features extraction

Extracted candidates include red lesions, vessel segments and
the fovea. A candidate classification step is required to dis-
criminate between lesions and non lesions. A new set of fea-
tures is thus proposed in this subsection.

In a topographic representation of Ip, each candidate (a
regional minimum) corresponds to a water source, noted Rj .

Fig. 2. Solidity curves (in solid lines) for the two candidate
regions R1 (in red) and R2 (in green) of Fig. 1. The slopes
(0.05 and -1.92) and the intercepts (86 and 206.43) of the lin-
ear least-square fits (dashed lines) are examples of DSFs.

A morphological flooding, inspired from the watershed algo-
rithm, is applied to Ip starting from the lowest water source
and ending when Ip’s mean intensity is reached. At each
flooding level i, pixels that are adjacent to a water source Rj

and lower than the flooding level i are added to the catchment
basin of Rj , noted CRj

i . When two basins merge, they start
to share the same pixels and thus the same attributes.

Fig. 1 illustrates three flooding steps with two candidates
taken from a single image. The first candidate, noted R1 and
coloured in red, corresponds to a true MA, and the second
one, noted R2 and coloured in green, corresponds to a vessel
segment. Throughout the image flooding, R2 starts as a small
compact shape, it then turns into an elongated shape, and fi-
nally, it merges with adjacent candidate to form the vessel
network. Whereas, R1 grows more isotropically and remains
isolated from other candidates even for higher flooding levels.

At each flooding level i, for each candidate region Rj , 7
shape attributes are computed on the catchment basin CRj

i :

1. Area: number of pixels in C
Rj

i , divided by the total
number of pixels in the ROI.

2. Number of collisions: number of catchment basins
merged into CRj

i .
3. Elongation: 1 − W/L with W and L the width and

length respectively of the bounding box of CRj

i ori-
ented along its major axis.

4. Excentricity:
√
(L2 −W 2)/L2.

5. Circularity: ratio of the area of CRj

i over its squared
perimeter and divided by 1/4π.

6. Rectangularity: ratio of the area of CRj

i over the area
of its bounding box oriented along its major axis.

7. Solidity: ratio of the area of CRj

i over the area of its
convex hull.

For each candidate region, a total of 7 curves are obtained,
one for each shape attribute. Each curve corresponds to an



Fig. 3. Sensitivity (dashed line) and average number of candi-
dates per image (solid line) as functions of the contrast thresh-
old K.

attribute’s value as a function of the flooding level i, from the
minimum value hRj

to Ip’s mean intensity. Fig. 2 shows the
solidity curves obtained for candidates R1 (in red) and R2 (in
green) illustrated in Fig. 1. In this example, the image’s mean
intensity is 114, and hR1 = 70 and hR2 = 66.

Each curve is then represented as a vector of 5 dynamic
shape features (DSF). The first three are the slope, intercept
and root mean squared error of a linear least-square fit of the
curve. The last two are the mean and median of the attribute’s
values along the curve. In total, 7 × 5 = 35 DSFs are com-
puted for each candidate region. Color information is added
to the resulting feature vector as 5 separate static features: the
RGB values of the regional minima computed on Isc, its in-
tensity h in Ip, and its contrast in Ip, previously calculated
according to [11]. In Fig. 2, the linear least-square fits of the
solidity curves are represented as dashed lines and the values
of two DSFs (the slope and intercept) are shown.

2.4. Classification
To distinguish between lesions and non lesions, we consid-
ered a Random Forest (RF) classifier [12]. It is robust to im-
balanced training data and incorporates an implicit features
selection step. An RF is a combination of T decision trees
trained independently using T bootstrap samples from the
training set. Each node is split using the best of m features
randomly chosen at that node. The output probability of a
candidate is given by aggregating the decisions of the T trees.
In this study, the RF is made of T = 500 trees and m =
b
√
Mc = 6, where M = 40 is the number of features.

3. MATERIAL

A dataset of 143 fundus images with 45o FOV and an average
of 2210 pixels along the ROI diameter is used. Images were
acquired in the context of a tele-medecine project, thus us-
ing a large variety of retinographs (different models of Zeiss,
Topcon, Canon and Centerview). It is saved in JPEG format,
the mean compression rate being 14:1.

Fig. 4. FROC curves computed on the test images, before and
after OD removal.

All red lesions in the dataset were manually segmented
without distinction between MAs and HMs. The segmenta-
tion was validated by an ophthalmologist. Among the 143 im-
ages, 1515 red lesions were found in a total of 56 images, the
remaining images being red lesions free. The overall dataset
was randomly split into a training set made of 73 images (847
lesions) and a test set made of 70 images (668 lesions).

4. RESULTS AND DISCUSSION

4.1. Performance at the candidate extraction step

Fig. 3 shows the sensitivity and average number of candi-
dates per image for different values of the contrast threshold
K. With K = 15, the average number of candidates per im-
age is 1115. Over all the manually segmented lesions, only
10% are missed and are not present in the classification step.
To the best of our knowledge, only one paper [4] reports the
sensitivity at the candidate extraction step. On images with 4
times less pixels in diameter, the sensitivity is 89.8%, for an
average of about 300 candidates per image.

4.2. Performance of the RF classifier

To analyze the classification performance of the RF, the ROC
curve was computed on the test set and we obtained an area
under the curve of 0.932. Considering that only 0.8% of
the candidates in the test set correspond to manually seg-
mented lesions, the results demonstrate that the RF classifier
efficiently overcomes the high imbalance in our dataset.

4.3. Overall performance

To assess the overall performance of the proposed approach,
the FROC curve is computed according to [8]. It is shown in
blue on Fig. 4. Qualitative analysis of the results revealed first
that both MAs and larger HMs are correctly detected by the
proposed algorithm (Fig. 5b), as opposed to most of the meth-
ods in the literature which focus solely on detection of MAs.
Second, most of the false negatives correspond to lesions di-
rectly connected to or very close to vessels (about 5 pixels



(a) Original image A (b) Detections in image A

(c) Original image B (d) Detections in image B

Fig. 5. Examples of true (green) and false (red) positives.

distance). Third, most of the false positives (FP) are located
inside the optic disk (OD) (Fig. 5d) and others correspond to
vessel crossings (Fig. 5b).

The second FROC curve, shown in red in Fig. 4, is com-
puted after removal of all candidates inside the OD. Auto-
matic detection of the OD is achieved by first, identifying the
ROI’s subsection with highest variance on a mean filtered ver-
sion of the image, second, detecting edges in the original im-
age using Canny’s filter, and finally, applying Hough’s trans-
form for circle detection. The improved results suggest that
OD removal should be used as a preprocessing step.

After OD removal, our system’s sensitivity is 58% and
the average number of FPs per image is 7.8, for a probabil-
ity threshold of 0.15. The global score of the system, calcu-
lated as in [8] over the test set, is 0.367 before OD removal
and 0.393 after. Unfortunately, no straightforward compari-
son with previously published scores can be done since the
dataset is different. However, for a rough comparison, the
scores obtained on the low resolution images of the retinopa-
thy online challenge vary between 0.206 and 0.434 [7]. The
only method [7] that was validated on images with a resolu-
tion similar to ours achieved a score of only 0.233 which is
lower than ours.

5. CONCLUSION

A novel method for MAs and HMs detection is proposed in
this paper. It is developed and validated on images with a
resolution similar to the one provided by most state-of-the-art
retinographs. The performance of the system is higher than
the one proposed in the literature for images of similar reso-

lution. The satisfying preliminary results demonstrate that the
new DSFs are highly efficient in discriminating lesions from
other candidate regions.
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