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1 Introduction

Axisymmetric structures surrounded by water are commonly encountered in several civil engi-

neering applications such as offshore platforms, bridge piers, and wind farms. When subjected to

earthquake loads, the interaction between an axisymmetricstructure and the surrounding water in-

duces hydrodynamic loads while affecting the structural dynamic properties such as natural periods.

Earlier literature devoted to the analysis of the vibrationcharacteristics and dynamic response of

immersed axisymmetric structures can be roughly classifiedinto three categories depending on the

type of modeling adopted for hydrodynamic loads: (i) added-mass formulations where the effect

of surrounding water is approximated by added masses distributed along the height of the struc-

ture (Lamb 1932, Nagaya and Hai 1985, Chang and Liu 1989, Barltrop and Adams 1991, Spyrakos

and Xu 1997, Úsciłowska and Kołodziej 1998,Öz 2003,Wu and Chen 2005), (ii) continuum-based

solutions where hydrodynamic loads are obtained as analytical solutions of the wave equation gov-

erning hydrodynamic pressure (Liaw and Chopra 1974, EatockTaylor and Duncan 1980, Williams

1986, Tanaka and Hudspeth 1988, Goyal and Chopra 1989, Xing et al. 1997, Wei et al. 2012), and

(iii) finite element, boundary element or scaled boundary finite element approaches based on the

discretization of the surrounding water (Everstine 1981,Olson and Bathe 1985,Chen 2000,Czygan

and Von Estorff 2002, Sigrist and Garreau 2007, Millán et al.2009, Lu and Jeng 2010, Tao et al.

2007,Meng and Zou 2012,Li et al. 2013,Li et al. 2013,Liu and Lin 2013).

Although the dynamic response of axisymmetric structures surrounded by water can now be solved

using coupled fluid-structure finite or boundary elements, most of these techniques have not yet

been fully implemented in day-to-day engineering practice, especially at the early stages of seismic

design, as they require specialized software or advanced programming, and may result in extensive

modeling and computational efforts, combined with high-level expertise. Simplified formulations

are therefore still needed to develop efficient procedures that may expedite design and safety eval-

uation processes. On the other hand, the need for higher structural performance and durability of

marine structures suggests increased recourse to composite construction where the efficiencies of

various materials can be combined and advantageously optimized. This need is usually coupled

to the requirement of using locally available materials foreconomic or practical reasons. Recent

projects illustrate that, in addition to conventional materials such as concrete and steel, researchers

and manufacturers are developing new materials such as fiberreinforced polymers that can be used

to build composite segments of deep water towers such as windfarms (Gutiérrez et al. 2003,Trick-

lebank et al. 2007,Seica and Packer 2007,Rashedi et al. 2012,Sun et al. 2012). However, available

simplified formulations generally assume that the designedaxisymmetric structure has a uniform

cross-section and is materially homogeneous, i.e. made with only one material. These methods also

usually neglect the effects of higher vibration modes and the flexibility of underlying soil founda-

tion.

In this work, we develop original simplified procedures thatwaive these restrictive assumptions

for enhanced practical seismic design and safety evaluation of axisymmetric structures vibrating in
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contact with water. Two types of formulations, i.e. I and II,are proposed depending if the mode

shapes of the dry structure, i.e. without water, are obtained using analytical expressions or finite el-

ement analysis, respectively. Both proposed formulationstake account of higher vibration modes,

water compressibility, and flexibility of underlying soil foundation. Formulation type II can also

be applied to composite structures made of different materials as well as those with non-uniform

hollow cross-sections due to geometric irregularity of theinterior wall. The developed methods are

assessed through examples that take account of variations in stiffness and mass densities in struc-

tures made of several constitutive materials, and having non-uniform hollow cross-sections with

irregular interior walls. The effects of higher vibration modes are also included. Expressions are

presented considering compressible or incompressible assumptions of surrounding water, as well

as rigid or flexible underlying soil foundation. The proposed equations are first derived while ne-

glecting the effects of surface gravity waves and the procedure steps are illustrated in flowcharts in

a manner that calculations can be easily implemented in a daily practical engineering environment,

for example using simple spreadsheets, as opposed to more sophisticated methods such as coupled

fluid-structure finite elements. The formulations are then extended to account for the effects of

surface gravity waves when required.

2 Proposed formulations for seismic response of an axisymme tric structure sur-
rounded by water

2.1 Basic assumptions and notations

We consider an axisymmetric structure such as the ones illustrated in Fig. 1. The structure has a

total heightHs and is surrounded by an infinite water domain of constant depthHw. The immersed

part of the structure has a uniform outer radiusRs. As illustrated in Fig. 1, two systems of axes are

adopted to define the geometry of the system studied: (i) a Cartesian system(x , y , z), with origin

at the center of the bottom cross-section of the structure, and an axisz coinciding with the axis of

axisymmetry; and (ii) a cylindrical system(r , θ , z), wherer denotes the radial distance andθ the

azimuth between the referencex-axis and the line from the origin to the projection of the point of

interest on the(x , y) plane. The response of the structure is studied under the effect of a ground

motion acceleration̈ug applied along thex direction. The following assumptions are adopted: (i) the

axisymmetric structure can be made of one or more materials;(ii) the cross section of the structure

can be solid or hollow, and its internal radius may vary as a function of height; (iii) all constitutive

materials have a linear elastic behavior during seismic excitation and convective effects in water

are neglected; (iv) water is inviscid but can be compressible or incompressible, with its motion

irrotational and small in amplitudes; (v) surface gravity waves are neglected. We note that this last

assumption is adopted first for practical purposes, it will be waived later in Section 2.5.

2.2 Coupling between hydrodynamic pressure and structural response

The time-history response for radial hydrodynamic pressure exerted at a point of cylindrical coor-

dinates(r , θ , z) is denoted hereafter asp(r, θ, z, t). It is governed by the classical wave equation
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expressed in cylindrical coordinates as (Lamb 1932)

∂2p

∂r2
+

1

r

∂p

∂r
+

1

r2
∂2p

∂θ2
+
∂2p

∂z2
=

1

C2
w

∂2p

∂t2
(1)

whereCw is the velocity of sound in water. Hydrodynamic pressure also obeys the following bound-

ary conditions (Liaw and Chopra 1974)

– No surface gravity waves at the free surfacez=Hw

p(r, θ,Hw, t) = 0 (2)

– No vertical motion at the bottom of the surrounding water domainz=0

∂p

∂z
(r, θ, 0, t) = 0 (3)

– Compatibility of displacements and pressure at the water-structure interfacer=Rs

∂p

∂r
(Rs, θ, z, t) = −ρwψ

(x)
j (z) cos(θ) eiωt (4)

in whichρw denotes water density.

– A condition of symmetry about thex−z plane, i.eθ=0

∂p

∂θ
(r, 0, z, t) =

∂p

∂θ
(r, π, z, t) (5)

Considering a unit harmonic exciting ground accelerationüg(t) = eiωt along thex-axis, with forc-

ing frequencyω, the frequency response function for hydrodynamic pressure can be expressed

asp̄(r, θ, z, ω)= p(r, θ, z, t) e−iωt. The frequency response function for radial hydrodynamic pres-

sure exerted at a point P of coordinates(r=Rs , θ=0 , z) at the outer surface of the immersed struc-

ture including higher vibration mode effects can be decomposed as (Liaw and Chopra 1974,Fenves

and Chopra 1984)

p̄(Rs, 0, z, ω) = p̄0(Rs, 0, z, ω)− ω2
Ns
∑

j=1

Z̄j(ω) p̄j(Rs, 0, z, ω) (6)

in which p̄0 is the frequency response function for hydrodynamic pressure due to rigid body motion

of the structure,̄pj is the frequency response function corresponding to hydrodynamic pressure

due to horizontal accelerationψj(z) of the structure, whereψj denotes thej th structural mode

shape alongx−direction including the effect of a massless soil foundation when considered in the

analysis,Z̄j is the corresponding generalized coordinate andNs is the total number of structural

mode shapes along thex−direction which are included in the analysis. The time- and frequency-

domain responses of radial hydrodynamic pressure at a pointof coordinates(r =Rs , θ , z) of the

outer surface of the immersed structure can be obtained fromradial hydrodynamic pressure at point

P using the following transformations as

p(Rs, θ, z, t) = p(Rs, 0, z, t) cos(θ) ; p̄(Rs, θ, z, ω) = p̄(Rs, 0, z, ω) cos(θ) (7)
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Analytical solutions for hydrodynamic pressure frequencyresponse functions̄p0 andp̄j were pro-

posed by Liaw and Chopra (1974) and are briefly reviewed and updated according to this paper’s

notation in Appendix A.

Using modal superposition and mode shapes orthogonality, we show that the vector of frequency

dependent generalized coordinatesZ̄j, j = 1 . . . Ns, can be obtained by solving the system of

equations

S̄ Z̄ = Q̄ (8)

in which, forj=1 . . . Ns andm=1 . . .Ns

S̄j,m(ω) =
(

− ω2 + ω2
j + 2 i ω ωj ξj

)

Mj δm,j − ω2Bj,m(ω) (9)

Q̄m(ω) = −Lm − B0,m(ω) (10)

where

B0,m(ω) = Rs

∫ Hw

0

∫ 2π

0
p̄0(Rs, θ, z, ω) cos(θ)ψm(z) dθ dz (11)

Bj,m(ω) = Rs

∫ Hw

0

∫ 2π

0
p̄j(Rs, θ, z, ω) cos(θ)ψm(z) dθ dz (12)

andδm,j denotes the Kronecker symbol,ωj the vibration frequency along thejth mode of vibra-

tion ψj of the dry axisymmetric structure,ξj the corresponding modal damping, andMj andLm
are the associated generalized mass and force given by

Mj =
∫ Hs

0
µs(z)

[

ψj(z)
]2

dz ; Lm =
∫ Hs

0
µs(z)ψm(z) dz (13)

whereµs is the line density of the axisymmetric structure along height. When mode shapes are

mass-normalized, the generalized masses have unit valuesMj=1 , j=1 . . . Ns.

Substituting Eqs. (A1) and (A2) of Appendix A into Eqs. (11) and (12), respectively, and consider-

ing Eq. (A4), we obtain forj=1 . . .Ns andm=1 . . . Ns

B0,m(ω) =
4πρwRs

Hw

[

−
n̄−1
∑

n=1

I0nImn
Dn(κnRs)

κn
ei τnRs +

Nw
∑

n=n̄

I0nImn
En(κ

′

nRs)

κ′n

]

(14)

Bj,m(ω) =
4πρwRs

Hw

[

−
n̄−1
∑

n=1

IjnImn
Dn(κnRs)

κn
ei τnRs +

Nw
∑

n=n̄

IjnImn
En(κ

′

nRs)

κ′n

]

(15)

whereNw is the number of considered acoustical water modes, and the parameters̄n, λn, κn, κ′n,

I0n, Ijn, Dn, En andτn are given in Appendix A. The following practical expressions of the last

three parameters are proposed in this work to further simplify and expedite the computation of the
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parametersB0,m andBj,m for j=1 . . . Ns andm=1 . . . Ns

Dn(κnRs) =
0.5 (κnRs)

3 − 0.038 (κnRs)
2 + 0.249 κnRs

(κnRs)3 − 0.013 (κnRs)2 + 0.019 κnRs + 0.473
(16)

En(κ
′

nRs) =
0.5 (κ′nRs)

2 + 0.345 κ′nRs

(κ′nRs)2 + 1.202 (κ′nRs) + 0.670
(17)

τnRs = tan−1

[

−3.06 (κnRs)
2 + 0.14 κnRs − 0.006

κnRs + 1.46

]

(18)

The accuracy of these approximations is illustrated in Fig.2 which compares the results of Eqs. (16)

to (18) to those of the exact expressions Eqs. (A5) to (A7), respectively.

We note that the effects of water compressibility have been studied previously by several re-

searchers such as Liaw and Chopra (1974) and Tanaka and Hudspeth (1988). These studies showed

that the effects of water compressibility on dynamic structural response should generally be in-

cluded for flexible water-surrounded structures with low slenderness ratiosRs/Hw of about0.25 or

less. It was namely found that water compressibility reduces response amplitudes at higher modes

of vibration of such squat structures manly because of addeddamping. If water is assumed in-

compressible, the parametersB0,m andBj,m become frequency-independent as Eqs. (14) and (15)

simplify to

B0,m =
4πρwRs

Hw

[

Nw
∑

n=1

I0nImn
En(κ

′

nRs)

κ′n

]

(19)

Bj,m =
4πρwRs

Hw

[

Nw
∑

n=1

IjnImn
En(κ

′

nRs)

κ′n

]

(20)

To solve the system of Eqs. (8), the frequencies and mode shapes of the dry axisymmetric structure

are to be determined first. For this purpose, two procedures based on an analytical formulation of

mode shapes and a finite element solution, respectively, areproposed hereafter.

2.3 Solution based on analytical formulation of mode shapes

The analytical formulation described here applies only to cylindrical cantilever structures with

a uniform cross-section. Assuming an Euler-Bernoulli beambehavior, the mode shapeψj , j =

1 . . .Ns, of the dry structure can be expressed as (Clough and Penzien1993)

ψj(z) = A
(j)
1 cos(βj z) + A

(j)
2 sin(βj z) + A

(j)
3 cosh(βj z) + A

(j)
4 sinh(βj z) (21)

whereβj is an eigenvalue related to thej th frequencyωj of the dry structure by

β4
j =

ω2
j µs

EsIs
; ωj = β2

j

√

EsIs

µs
(22)
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andA(j)
1 , A(j)

2 , A(j)
3 andA(j)

4 are unknown real constants to be determined using the following four

boundary conditions (Michaltsos and Ermopoulos 2001,Wu and Chen 2005)

EsIsψ
′′′(0) = −KT ψ(0) (23)

EsIsψ
′′(0) = KRψ

′(0) (24)

EsIsψ
′′(Hs) = m0 e ω

2 ψ(Hs) + (J0 +m0 e
2)ω2 ψ′(Hs) (25)

EsIsψ
′′′(Hs) = −m0 ω

2 ψ(Hs)−m0 e ω
2 ψ′(Hs) (26)

in whichEsIs is the flexural rigidity,m0 is the rigid tip mass lumped at a distancee of the top of

the structure,J0 is the corresponding rotary moment of inertia, andKT andKR are the translational

and rotational stiffness coefficients at the base of the structure, respectively.

Substituting Eq. (21) into Eqs. (23) to (26), we obtain a system of equations (Auciello 1996)



























α
(j)
11 α

(j)
12 α

(j)
13 α

(j)
14

α
(j)
21 α

(j)
22 α

(j)
23 α

(j)
24

α
(j)
31 α

(j)
32 α

(j)
33 α

(j)
34

α
(j)
41 α

(j)
42 α

(j)
43 α

(j)
44





















































A
(j)
1

A
(j)
2

A
(j)
3

A
(j)
4



























= 0 (27)

in which

α
(j)
11 = α

(j)
13 = KT ; α

(j)
12 = −α

(j)
14 = −EsIsβ

3
j (28)

α
(j)
21 = −α23 = −EsIsβ

2
j ; α

(j)
22 = α24 = −KR βj (29)

α
(j)
31 =

β5
j (m0 e

2 + J0) sin(βj Hs)

µs
− β2

j cos(βj Hs)−
β4
j m0 e cos(βj Hs)

µs
(30)

α
(j)
32 = −β2

j sin(βj Hs)−
β5
j (m0 e

2 + J0) cos(βj Hs)

µs
−
β4
j m0 e sin(βj Hs)

µs
(31)

α
(j)
33 = β2

j cosh(βj Hs)−
β5
j (m0 e

2 + J0) sinh(βj Hs)

µs
−
β4
j m0 e cosh(βj Hs)

µs
(32)
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α
(j)
34 = β2

j sinh(βj Hs)−
β5
j (m0 e

2 + J0) cosh(βj Hs)

µs
−
β4
j m0 e sinh(βj Hs)

µs
(33)

α
(j)
41 = β3

j sin(βj Hs) +
β4
j m0 cos(βj Hs)

µs
−
β5
j m0 e sin(βj Hs)

µs
(34)

α
(j)
42 = −β3

j cos(βj Hs) +
β4
j m0 sin(βj Hs)

µs
+
β5
j m0 e cos(βj Hs)

µs
(35)

α
(j)
43 = β3

j sinh(βj Hs) +
β4
j m0 cosh(βj Hs)

µs
+
β5
j m0 e sinh(βj Hs)

µs
(36)

α
(j)
44 = β3

j cosh(βj Hs) +
β4
j m0 sinh(βj Hs)

µs
+
β5
j m0 e cosh(βj Hs)

µs
(37)

The system of equations (27) admits a non trivial solution ifand only if

det



























α
(j)
11 α

(j)
12 α

(j)
13 α

(j)
14

α
(j)
21 α

(j)
22 α

(j)
23 α

(j)
24

α
(j)
31 α

(j)
32 α

(j)
33 α

(j)
34

α
(j)
41 α

(j)
42 α

(j)
43 α

(j)
44



























= 0 (38)

Expansion of Eq. (38) leads to a transcendental equation which has an infinite number of roots.

It can be solved for frequency coefficientsβ1, β2, . . . , βj , . . . usingRegula falsi method (Mathews

1992,MATLAB 2011). UsingA(j)
1 as a normalization factor of the shape functions, the relationship

between the ratiosA(j)
2 /A

(j)
1 , A(j)

3 /A
(j)
1 andA(j)

4 /A
(j)
1 can be obtained by solving the system of

equations






















α
(j)
12 α

(j)
13 α

(j)
14

α
(j)
22 α

(j)
23 α

(j)
24

α
(j)
32 α

(j)
33 α

(j)
34

















































A
(j)
2

A
(j)
1

A
(j)
3

A
(j)
1

A
(j)
4

A
(j)
1



























=























−α
(j)
11

−α
(j)
21

−α
(j)
31























(39)

The mode shapesψj can then be determined by introducing the values ofβj, A
(j)
1 , A(j)

2 , A(j)
3 and

A
(j)
4 into Eq. (21). Introducing Eq. (21) into the expression of the integralIjn given in Eq. (A4)

yields

Ijn = A
(j)
1



χ
(1)
jn +

A
(j)
2

A
(j)
1

χ
(2)
jn +

A
(j)
3

A
(j)
1

χ
(3)
jn +

A
(j)
4

A
(j)
1

χ
(4)
jn



 (40)
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where

χ
(1)
jn =

∫ Hw

0
cos(λn z) cos(βj z) dz =

λn cos(βj Hw) sin(λnHw)

λ2n − β2
j

(41)

χ
(2)
jn =

∫ Hw

0
cos(λn z) sin(βj z) dz =

λn sin(βj Hw) sin(λnHw)− βj
λ2n − β2

j

(42)

χ
(3)
jn =

∫ Hw

0
cos(λn z) cosh(βj z) dz =

λn cosh(βj Hw) sin(λnHw)

λ2n + β2
j

(43)

χ
(4)
jn =

∫ Hw

0
cos(λn z) sinh(βj z) dz =

λn sinh(βj Hw) sin(λnHw)− βj
λ2n + β2

j

(44)

2.4 Solution based on finite element determination of mode sh apes

The analytical formulation described in the previous section assumes that the structure studied is

a cylindrical cantilever with a uniform cross-section. More general axisymmetric structures such

as the one illustrated in Fig. 1 (c) require recourse to 3D finite element modeling since they can

be made of one or more materials and have non-uniform hollow cross-sections. Such finite ele-

ment analysis can be conducted using standard finite elementsoftware that includes only classical

solid finite elements and not necessarily fluid-structure interaction capabilities. The obtained lateral

structural mode shapesψj along the axis of axisymmetry of the studied structure, can be approxi-

mated by a polynomial function of orderNψj , j=1 . . . Ns

ψj(z) ≈

Nψj
∑

k=0

aj,k

(

z

Hs

)k

(45)

in which the coefficientsaj,k can be determined using a classical fitting technique. The term aj,0=

ψj(0) takes account of translations due to soil flexibility as illustrated in Fig. 3.

It is important to note that 3D finite element modal analysis of an axisymmetric structure yields

pairs of lateral mode shapes along two orthogonal directions. Each pair corresponds to one natural

frequency. In the present work, the numberNs of mode shapes includes only those modes which

are along thex−direction corresponding to that of the applied ground motion üg. We also note

that the values of the mode shapes can be taken along the axis of axisymmetry or along the line of

intersection of planexz and the structure as indicated in Fig. 3.

On substituting Eq. (45) into the integral given by Eq. (A4) of Appendix A, we obtain

Ijn =

Nψj
∑

k=0

aj,k
Hk

s

∫ Hw

0
cos(λnz) z

k dz (46)

Bouaanani and Perrault (2010) (Bouaanani and Perrault 2010) showed thatIjn can also be ex-

pressed as

Ijn = Fjn I0n +Gjn (47)
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where

Fjn =
∑

k







[

k
∑

ℓ=0

(−1)k−ℓ
Λ2ℓ(λnHw)

Λ2k(λnHs)

]

aj,2k +

[

k
∑

ℓ=0

(−1)k−ℓ
Λ2ℓ+1(λnHw)

Λ2k+1(λnHs)

]

aj,2k+1







(48)

Gjn = −
1

λnHw

∑

k







[

(−1)k

Λ2k+1(λnHs)

]

aj,2k+1







(49)

with the functionΛm defined as

Λm(z) =
zm

m!
(50)

wherez andm are real and integer numbers, respectively. Substituting Eq. (47) into Eqs. (14) and

(15) respectively, yields the following expressions for parametersB0,m andBj,m for j = 1 . . .Ns

andm=1 . . . Ns

B0,m =
4πρwRs

Hw







−
n̄−1
∑

n=1

[

Fmn + (−1)n+1 λnGmn

]

Dn(κnRs)

λ2n κn
ei τnRs

+
Nw
∑

n=n̄

[

Fmn + (−1)n+1 λnGmn

]

En(κ
′

nRs)

λ2n κ
′

n







(51)

Bj,m =
4πρwRs

Hw







−
n̄−1
∑

n=1

Fjn
[

Fmn + (−1)n+1 λnGmn

]

Dn(κnRs)

λ2n κn
ei τnRs

−
n̄−1
∑

n=1

λnGjn

[

(−1)n+1 Fmn + λnGmn

]

Dn(κnRs)

λ2n κn
ei τnRs

+
Nw
∑

n=n̄

Fjn
[

Fmn + (−1)n+1 λnGmn

]

En(κ
′

nRs)

λ2n κ
′

n

+
Nw
∑

n=n̄

λnGjn

[

(−1)n+1 Fmn + λnGmn

]

En(κ
′

nRs)

λ2n κ
′

n







(52)

where the parametersλn, κn, κ′n, Dn, En andτn are given by Eqs. (A3) and (A5) to (A7) of Ap-

pendix A.
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When water compressibility is neglected, Eqs. (51) and (52)simplify to

B0,m =
4πρwRs

Hw







Nw
∑

n=1

[

Fmn + (−1)n+1 λnGmn

]

En(κ
′

nRs)

λ2n κ
′

n







(53)

Bj,m =
4πρwRs

Hw







Nw
∑

n=1

Fjn
[

Fmn + (−1)n+1 λnGmn

]

En(κ
′

nRs)

λ2n κ
′

n

+
Nw
∑

n=1

λnGjn

[

(−1)n+1 Fmn + λnGmn

]

En(κ
′

nRs)

λ2n κ
′

n







(54)

in which all the parameters are given by the same equations aspreviously, exceptκ′n which is

obtained from Eq. (A12) of Appendix A.

2.5 Effects of surface gravity waves

The effects of surface gravity waves on the seismic responseof water-surrounded structures are

known to be generally small and limited to the low frequency range (Liaw and Chopra 1974; Goyal

and Chopra 1989). For comprehensiveness however, we provide the following equations to account

for the effects of surface gravity waves when required. In this case, the boundary condition in

Eq. (2) of the manuscript has to be changed to

∂2p

∂t2
(r, θ,Hw, t) = −g

∂p

∂z
(r, θ,Hw, t) (55)

where g denotes gravity acceleration. Considering this newboundary condition and solving the

wave equation (1) for hydrodynamic pressure frequency response functions̄p0 andp̄j , j=1 . . .Ns,

Liaw and Chopra (1974) showed that Eqs. (A1) and (A2) of Appendix A have to be replaced by

Eqs. (A13) and (A14) of the same appendix, respectively. Thefollowing remarks can then be made

to evaluate the main additional calculations involved whensurface gravity waves are to be included

in the analysis:

– Contrary to obtaining the values of eigenvalueλn through the closed-form expressions in Eq. (A3),

these parameters can be determined only numerically by solving Eq. (A16) when surface gravity

waves are included.

– Additional parametersλ0 andκ0 have to be determined numerically by solving Eq. (A15).

– The first sums in each of Eqs. (A13) and (A14) have to be determined to obtain hydrodynamic

pressures̄p0 andp̄j, j = 1 . . . Ns.

Substituting Eqs. (A13) and (A14) into Eqs. (11) and (12), respectively, we obtain new expressions
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for the quantitiesB0,m andBj,m, j=1 . . . Ns,m=1 . . . Ns, and Eqs. (14) and (14) transform to

B0,m(ω) = 8πρwRs







−
λ0 I00 Im0D0(κ0Rs)

κ0
[

2λ0Hw + sinh(2λ0Hw)
] ei τ0Rs

−
n̄−1
∑

n=1

λn I0n ImnDn(κnRs)

κn
[

2λnHw + sin(2λnHw)
] ei τnRs

+
Nw
∑

n=n̄

λn I0n Imn En(κ
′

nRs)

κ′n
[

2λnHw + sin(2λnHw)
]







(56)

Bj,m(ω) = 8πρwRs







−
λ0 Ij0 Im0D0(κ0Rs)

κ0
[

2λ0Hw + sinh(2λ0Hw)
] ei τ0Rs

−
n̄−1
∑

n=1

λn Ijn ImnDn(κnRs)

κn
[

2λnHw + sin(2λnHw)
] ei τnRs

+
Nw
∑

n=n̄

λn Ijn Imn En(κ
′

nRs)

κ′n
[

2λnHw + sin(2λnHw)
]







(57)

whereNw is the number of considered acoustical water modes and the parametersκ′n, Ijn, Dn, En
andτn are given by the same equations as previously, whileλ0 andλn are numerical solutions of

Eqs. (A15) and (A16) of Appendix A andκ0, κn, I00, I0n, andIj0 are given by Eqs. (A17) to . As

previously, the integer̄n in the second sums of Eqs. (58) and (59) denotes the smallest value of

integern such thatλn >
ω

Cw
. Following the same approach described previously, new simplified

expressions for parametersB0,m andBj,m, j=1 . . .Ns,m=1 . . . Ns, are proposed

B0,m(ω) = 8πρwRs







−
λ0 I00

[

I00 Fm0(iλ0) +Gm0(iλ0)
]

D0(κ0Rs)

κ0
[

2λ0Hw + sinh(2λ0Hw)
] ei τ0Rs

−
n̄−1
∑

n=1

λn I0n
[

I0n Fmn(λn) +Gmn(λn)
]

Dn(κnRs)

κn
[

2λnHw + sin(2λnHw)
] ei τnRs

+
Nw
∑

n=n̄

λn I0n
[

I0n Fmn(λn) +Gmn(λn)
]

En(κ
′

nRs)

κ′n
[

2λnHw + sin(2λnHw)
]







(58)
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Bj,m(ω) = 8πρwRs







−
λ0

[

I00 Fj0(iλ0) +Gj0(iλ0)
][

I00 Fm0(iλ0) +Gm0(iλ0)
]

D0(κ0Rs)

κ0
[

2λ0Hw + sinh(2λ0Hw)
] ei τ0Rs

−
n̄−1
∑

n=1

λn
[

I0n Fjn(λn) +Gjn(λn)
][

I0n Fmn(λn) +Gmn(λn)
]

Dn(κnRs)

κn
[

2λnHw + sin(2λnHw)
] ei τnRs

+
Nw
∑

n=n̄

λn
[

I0n Fmn(λn) +Gmn(λn)
]

En(κ
′

nRs)

κ′n
[

2λnHw + sin(2λnHw)
]







(59)

It can be seen from Eqs. (55), (A13) and (A14) that the effectsof surface gravity waves are con-

centrated in the very low frequency range and that they vanish rapidly as frequencies increase. In

the limiting caseω → +∞, we can easily show that including or neglecting the effectsof sur-

face gravity waves yield the same results, since: (i) the solutions of Eq. (55) are the same as those

given by Eq. (A3) when surface gravity waves are neglected, and (ii) the first sums in Eqs. (A13)

and (A14) vanish. Therefore, surface gravity waves could affect structural seismic response only if:

(i) the vibration frequencies of the water-surrounded structure are very low, and (ii) the earthquake

ground motion is rich of low frequency content in the same range as the structure.

2.6 Hydrodynamic pressure and structural response due to se ismic loading

The vectorZ̄ of complex-valued frequency response functions is first determined from Eq. (8) for

frequencies in the range of interest. Eq. (6) is then appliedto obtain frequency response functions

for hydrodynamic pressure, and those for structural lateral displacements and accelerations can be

expressed as

ū(z, ω) =
Ns
∑

j=1

ψj(z) Z̄j(ω) ; ¯̈u(z, ω) = −ω2
Ns
∑

j=1

ψj(z) Z̄j(ω) (60)

whereū and ¯̈u denote the lateral displacement and acceleration along ground motion directionx,

respectively.

The time-history response of the real part of hydrodynamic pressure along the directionx of appli-

cation of ground acceleration̈ug(t) can be obtained as

Re
[

p(Rs, θ, z, t)
]

=
1

2π

∫

∞

−∞

p̄∗(Rs, θ, z, ω) ¯̈ug(ω) e
iωt dω (61)

wherep̄∗ denotes the complex conjugate of hydrodynamic pressure frequency response function̄p

given by Eq.(6).

The structural displacement and acceleration time-history response to a ground accelerationüg(t)
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applied along thex direction can be obtained as

u(z, t) =
Ns
∑

j=1

ψj(z)Zj(t) ; ü(z, t) =
Ns
∑

j=1

ψj(z) Z̈j(t) (62)

where the time-domain generalized coordinatesZj(t) are given by the Fourier integrals

Zj(t) =
1

2π

∫

∞

−∞

Z̄j(ω) ¯̈ug(ω) e
iωt dω ; Z̈j(t) = −

1

2π

∫

∞

−∞

ω2Z̄j(ω) ¯̈ug(ω) e
iωt dω (63)

in which ¯̈ug(ω) is the Fourier transform of the ground accelerationüg(t)

¯̈ug(ω) =
∫ ta

0
üg(t) e

−iωt dt (64)

in which ta is the time duration of the applied accelerogram.

3 Illustrative examples

The dynamic responses of simple and complex axisymmetric structures are investigated in this

section to verify and illustrate the applicability of the proposed methods. The description as well as

the frequency- and time-domain analyses of the studied systems are presented next.

The developed formulations were programmed using MATLAB (MATLAB 2011) according to the

flowcharts in Fig. 4 and 5. The flowchart in Fig. 4 shows the proposed procedure to determine the

dynamic response based on the analytical formulation of themode shapes of the stydied axisym-

metric structure as presented in Section 2.3. This method isreferred to as analysis type I hereafter.

Fig. 5 illustrates the flowchart to be applied when finite element determination of mode shapes and

their interpolation are used instead of the analytical formulation as described in Section 2.4. This

method is referred to as analysis type II hereafter. For clarity, both flowcharts in Figs. 4 and 5 refer

to equation numbers from the previous sections. We also notethat for brevity, the flowcharts are

presented only for the most common cases where effects surface gravity waves can be neglected.

The flowcharts can be adapted easily considering the equations given in Section 2.5.

In this section, we assess the effectiveness of these formulations in determining the seismic re-

sponse of 3D axisymmetric towers surrounded by water. Four examples are proposed next to il-

lustrate the application of the proposed methods and assesstheir ability to account for various pa-

rameters including composite construction, non-uniform structure’s cross-section, higher vibration

modes, soil flexibility and surface gravity waves.

3.1 Example 1: Seismic response of a tower with a uniform soli d cross-section

In this example, we investigate the dynamic response of a42m high axisymmetric cylindrical

tower illustrated in Fig. 6 (a). The tower has a4m diameter uniform solid cross-section and is

surrounded by and infinite water domain as indicated in Fig. 6(b). It is made of a material with

an elastic modulusEs = 25GPa, a mass densityρs = 2500 kg/m3 and a Poisson’s ratioν = 0.2.
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Water is considered compressible, with a velocity of pressure wavesCw = 1440m/s and a mass

densityρw=1000 kg/m3. Both cases of rigid and flexible soil foundations underlying the tower are

considered while the effects of surface gravity waves are neglected.

The seismic analysis of the cylindrical tower subjected to the horizontal N-S component of the

1940 Imperial Valley earthquake recorded on rock site at El Centro (PEER 2011) is conducted

using analysis types I and II. Fig. 7 shows the correspondingaccelerogram and displacement time-

history nondimensionalized by the peak ground acceleration (PGA) |üg|max = 0.313 g and peak

ground displacement(PGD) |ug|max=0.133m, respectively. The ground motion is applied along the

x−direction and computations are conducted neglecting soil flexibility at first. A constant modal

damping ratioξ = 5% is assigned to all the modes included in the analysis. Fig. 8 (a) illustrates

the first four modes of vibrationψj , j = 1 . . . 4, and corresponding vibration frequencies of the

cylindrical structure obtained and used in analysis type I.Analysis type II is also conducted for

comparison purposes. In this case, the software ADINA (2014) is used to discretize the tower into

20-node solid 3D finite elements according to the mesh density illustrated in Fig. 9 (a). The resulting

four mode shapes included in the analysis are shown in Fig. 8 (b).

A coupled 3D finite element analysis of the tower-water system is carried out to validate the results

of analysis types I and II. The tower and surrounding water are then modeled using 3D 20-node

solid and potential-based finite elements from ADINA as illustrated in Fig. 9 (b). A fixed rigid

wall boundary condition is applied at a far end located at a radius of 2Hw = 60m around the

structure. Fluid-structure interaction is accounted for through special interface elements included in

ADINA. The bulk modulus of the potential-based fluid elements is determined asρw C
2
w=2.07GPa.

The performance of the potential-based formulation and thefluid-structure interface elements was

assessed in a previous work (Bouaanani and Lu 2009). The results of the coupled finite element

model are denoted as the reference solution in what follows.

The obtained time-histories of hydrodynamic pressure at6m above the heel of the tower, i.e. Point

A in Fig. 9, and horizontal acceleration and displacement alongx−direction at the top of the tower,

i.e. Point B in Fig. 9, are nondimensionalized with respect to the maximum hydrostatic pressure

ρwgHw at the heel of the tower, the PGA and PGD of the applied ground motion, respectively.

Fig. 10 compares the results obtained using the coupled finite element model, i.e. reference solution,

to those of proposed analysis types I and II. It can be seen that the seismic responses predicted using

the proposed methods are in close agreement with the finite element solutions.

Soil flexibility is included next using spring elements introduced between the bottom of the tower

and the underlying ground. A stiffnessKT = 1.0 × 108 N/m along the horizontal direction and

KV =5.0 × 109 N/m along the vertical direction are adopted for the finite element model without

water to calculate the mode shapes for analysis type II. The rotational stiffnessKR required in
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analysis type I is related to the vertical stiffnessKV using the following equation

KR =
KV

As
Is (65)

in whichAs andIs denote the area and moment of inertia of the bottom cross-section of the tower,

respectively. Equivalent distributed soil stiffness is introduced in the coupled finite element model

to obtain the reference solution. Fig. 11 shows the mode shapes and corresponding vibration fre-

quencies obtained using the analytical formulation and finite elements including soil flexibility. A

very good agreement is observed in Fig. 12 which compares thetime-histories of hydrodynamic

pressure at Point A and horizontal acceleration and displacement alongx−direction at Point B ob-

tained from analysis types I and II to reference solutions. This example shows that both analysis

types I and II yield almost identical results for axisymmetric towers with a uniform solid sections

laying on whether rigid or flexible soil foundations.

3.2 Example 2: Hollow-section axisymmetric tower with a tip mass

In this example, we investigate the seismic response of a47m high axisymmetric tower illustrated

in Fig. 13 (a). The42m-high lower part of the tower has a hollow cross-section with 4m and8m

interior and exterior diameters, respectively. The top of the tower is made of a solid cylindrical part

with a diameter of12m. The structure is surrounded by an infinite water domain as indicated in

Fig. 13 (b). The lower hollow part of the tower is made of a material with an elastic modulusEs=

25GPa, a mass densityρs=2500 kg/m3 and a Poisson’s ratioν=0.2. The constitutive material of

the top part has an elastic modulusEs=30GPa, a Poisson’s ratioν=0.2 and a mass densityρs=

884 kg/m3 yielding to a total mass of500 t. Water is assumed compressible, with the same properties

as in Example 1. The effects of surface gravity waves are neglected.

The earthquake input is the same as in Example 1. A constant modal damping ratioξ = 5% is

assigned to all the modes included in the analysis and both rigid and flexible soil assumptions are

considered as previously. Fig. 14 shows the finite element model of the tower without water as

well as the coupled 3D finite element model of the tower-watersystem constructed to obtain the

reference solution. Four mode shapes and corresponding vibration frequencies of the tower without

water are considered in analysis types I and II and are given in Figs. 15. Soil flexibility is included

using the same stiffness coefficients as in Example 1, yielding to the first four mode shapes and

corresponding vibration frequencies presented in Fig. 16.

Analysis types I and II as well as the reference solution are used to compute hydrodynamic pres-

sure at Point A and the horizontal acceleration and displacement alongx−direction at Point B as

illustrated in Fig. 14. The obtained time-histories are nondimensionalized using the same factors as

in Example 1. Figs. 17 and 18 show the obtained results for a rigid and flexible soil foundation, re-

spectively. Although the agreement between analysis type Iand the reference solution is still very

satisfactory, there is a slight difference which originates mainly from the dissimilarity between

higher mode frequencies predicted by the Euler-Bernoulli beam-based analytical formulation pre-
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sented in Section 2.3 and those from 3D solid finite elements,as illustrated in Figs. 15 and 16.

Figs. 17 and 18 also reveal that analysis type II gives excellent results when compared to the refer-

ence solution for both rigid and flexible soil conditions.

3.3 Example 3: Composite axisymmetric structure with a mass on top

In this example, we investigate the dynamic response of the structure illustrated in Fig. 19 (a): a

composite axisymmetric tower, i.e. several constitutive materials, with a non-uniform cross-section,

i.e. irregular interior wall. The inhomogeneous and irregular characters of the structure prevent the

application of analysis type I, therefore only results of analysis type II and the reference solution

are described next. The tower has the same exterior dimensions as in Example 2 while having an

irregular interior wall as indicated in Fig. 19 (a). It is made of five materials, with the mechanical

properties presented in Table 1.

The structure is surrounded by an infinite water domain as indicated in Fig. 19 (b). Water is assumed

compressible, with the same properties as in the previous examples. The effects of surface gravity

waves are neglected. The same earthquake input as in the previous examples is applied. Fig. 21

shows the finite element model of the tower without water, as well as the coupled 3D finite element

model of the tower-water system constructed to obtain the reference solution. A constant modal

damping ratioξ = 5% is assigned to all the modes included in the analysis and bothrigid and

flexible soil assumptions are considered as previously. Soil flexibility is considered using the same

properties as in Example 1. The first four modes of the tower without water are included in analysis

type II. They are illustrated as well as the corresponding vibration frequencies for both rigid and

flexible soil foundation in Figs. 20 (a) and (b), respectively.

Hydrodynamic pressure at Point A and the horizontal acceleration and displacement alongx−direction

at Point B illustrated in Fig. 21 are computed and nondimensionalized as described in the previous

examples. Figs. 22 and 23 compare the reference solutions tothe results of proposed analysis type

II for rigid and flexible underlying soil foundations, respectively. It is seen that both types of re-

sults are almost identical, which confirms the high performance of the proposed analysis type II

in determining the seismic response of towers with complex geometrical and material configura-

tions, while enhancing the efficiency of the analysis process by waiving the need for coupled finite

element solutions and associated discretization of the surrounding water domain.

3.4 Example 4: Frequency response functions and vibration p eriods of the studied
tower-water systems

The results shown in the previous examples focused on the time-history responses of tower-water

systems subjected to an earthquake. In this example, we verify the ability of the procedures devel-

oped to evaluate the frequency response and vibration periods of the tower-water systems described

in the previous examples. For each case, analysis type II is applied to determine frequency response

functions for horizontal acceleration at point B through Eq. (60). A frequency range from0 to10Hz
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is considered. Fig. 24 compares the acceleration frequencyresponse functions̈̄u obtained using the

proposed technique under the effect of a unit harmonic exciting ground acceleration̈ug(t)=eiωt to

those from coupled finite element models of the tower-water systems described in Examples 1 to 3.

The very good agreement between both methods confirms the validity of the proposed procedure in

predicting dynamic response in the frequency domain. The curves also illustrate the shift towards

lower frequencies due to soil flexibility. The assessment ofcoupled vibration periods is also an

important step for structural seismic analysis and safety evaluation. These vibration periods can

be determined as the resonances on the frequency response curves. Fig. 25 compares the first three

vibration periods obtained for each of the three axisymmetric towers to those given by the coupled

finite element models. We can clearly observe the excellent agreement with finite element solutions

independently of the case studied.

3.5 Example 5: Effects of surface gravity waves on the dynami c response of the
studied tower-water systems

The equations presented Section 2.5 are applied next to illustrate the effects of surface gravity

waves on the dynamic response of the six tower-water systemsstudied previously. Fig. 26 presents

the nondimensionalized hydrodynamic pressure frequency response functions̄p/(ρwgHw) obtained

at three points of the structure-water interface, located at z = 6m, z = 26m andz = 28m above

the heel of each tower. A low frequency range from0 to 3Hz is considered for better visualization

of the response curves. Comparison of the results with and without surface gravity waves reveals

that the effects on hydrodynamic pressure are: (i) mainly concentrated at the low frequency range,

i.e. frequencies less than0.5Hz, and (ii) are more important closer to water surface. It can also

be seen that hydrodynamic pressures in flexible foundation tower-water systems, i.e. lower cou-

pled vibration frequencies, are more sensitive to surface gravity waves than those with rigid foun-

dations. Fig. 27 shows the nondimensionalized hydrodynamic force frequency response functions

f̄/(ρwgH2
w) obtained for the six tower-water systems studied, wheref̄ is determined by integrating

hydrodynamic pressurēp over water depth. These results confirm that the effects of surface gravity

waves on hydrodynamic loads are limited to the low frequencyrange. The same conclusion applies

to the influence on dynamic structural response as can be seenfrom Figure28 illustrating frequency

response functions for horizontal acceleration¯̈u obtained at point B of each of the towers.

4 Conclusions

In this paper, we developed original and efficient analysis procedures to determine the dynamic re-

sponse of axisymmetric structures vibrating in contact with water. Two types of formulations were

proposed: (i) Type I, where the mode shapes of the dry structure, i.e. without water, are obtained

using analytical expressions based on Euler-Bernoulli beam theory, and (ii) Type II, where these

modes shapes are extracted from a finite element analysis. Both formulations take account of higher

vibration modes, water compressibility, flexibility of underlying soil foundation and surface gravity

waves. Formulation type II further applies to composite axisymmetric structures made of different
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materials, i.e. variation of stiffness and mass density along structure’s height, as well as those with

non-uniform hollow cross-sections due to geometric irregularity of the interior wall. Flowcharts il-

lustrating the application of the proposed procedures wereprovided to facilitate practical program-

ming. Illustrative examples of homogeneous and composite towers laying on rigid and flexible soil

foundations were proposed and examined to illustrate the application of the proposed techniques

and assess their efficiency. The results of the proposed methods were successfully validated against

those from coupled tower-water finite element solutions built for this purpose. Analysis type II was

shown to be more efficient in determining the dynamic and seismic response of axisymmetric struc-

tures with complex geometrical and material configurations. The effects of surface gravity waves

on the dynamic response of the studied tower-systems were also discussed. The proposed tech-

niques constitute interesting alternatives to more conventional methods since they: (i) can be easily

programmed as illustrated by the flowcharts provided, (ii) include several analysis parameters such

as material inhomogeneity, geometrical irregularity, higher mode effects, and soil conditions, (iii)

enhance the efficiency of the analysis process by waiving theneed for coupled finite element or

boundary element solutions and required discretization ofthe surrounding water domain.
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Appendix A: Expressions for Hydrodyanmic Frequency Respon se Functions

The analytical expressions for hydrodynamic pressure are reviewed in this appendix. By solving

Eq. (1) under boundary conditions (2) to (5), Liaw and Chopra(1974) proposed the following ex-

pressions for frequency response functionsp̄0 andp̄j , j=1 . . .Ns

p̄0(Rs, θ, z, ω) =
4ρw

Hw

[

−
n̄−1
∑

n=1

I0n
κn

Dn(κnRs) cos(λnz) e
i τnRs

+
Nw
∑

n=n̄

I0n
κ′n

En(κ
′

nRs) cos(λnz)

]

cos(θ)

(A1)

p̄j(Rs, θ, z, ω) =
4ρw

Hw

[

−
n̄−1
∑

n=1

Ijn
κn

Dn(κnRs) cos(λnz) e
i τnRs

+
Nw
∑

n=n̄

Ijn
κ′n

En(κ
′

nRs) cos(λnz)

]

cos(θ)

(A2)

whereNw is the number of considered acoustical water modes, and the parametersλn, κn, κ′n, I0n,

Ijn, Dn, En andτn are given by

λn =
(2n− 1) π

2Hw
; κn =

√

√

√

√

ω2

C2
w

− λ2n ; κ′n = −i κn (A3)

I0n = −
2Hw(−1)n

π(2n− 1)
; Ijn =

∫ Hw

0
ψ

(x)
j (z) cos(λnz) dz (A4)

Dn(κnRs) =

√

√

√

√

[J1(κnRs)]
2 + [Y1(κnRs)]

2

[J0(κnRs)− J2(κnRs)]
2 + [Y0(κnRs)− Y2(κnRs)]

2 (A5)

En(κ
′

nRs) =
K1(κ

′

nRs)

K0(κ′nRs) + K2(κ′nRs)
(A6)

τnRs = tan−1

{

[Y0(κnRs)− Y2(κnRs)] J1(κnRs)− [J0(κnRs)− J2(κnRs)]Y1(κnRs)

[J0(κnRs)− J2(κnRs)] J1(κnRs) + [Y0(κnRs)− Y2(κnRs)]Y1(κnRs)

}

(A7)

in which Kℓ is the modified Bessel function of orderℓ of the second kind and Jℓ and Yℓ are the

Bessel functions of orderℓ of the first and second kind, respectively. The integern̄ in the first sums

of Eqs. (A1) and (A2) is the smallest value of integern such thatλn >
ω

Cw
. We note that the first

series in Eqs. (A1) and (A2) vanishes ifn̄=1.

If water is assumed incompressible, the frequency-independent hydrodynamic pressure solutions

p̄0 andp̄j given by Eq. (A1) and (A2) can be simplified to

p̄0(Rs, z, θ, ω) =
Nw
∑

n=1

p̄0n(Rs, z, θ, ω) (A8)

20



p̄j(Rs, z, θ, ω) =
Nw
∑

n=1

p̄jn(Rs, z, θ, ω) (A9)

with

p̄0n(Rs, z, θ, ω) =
4ρw

Hw

I0n
κ′n

En(κ
′

nRs) cos(λnz) cos(θ) (A10)

p̄jn(Rs, z, θ, ω) =
4ρw

Hw

Ijn
κ′n

En(κ
′

nRs) cos(λnz) cos(θ) (A11)

in whichλn, I0n, Ijn andEn(κ′nRs) are still given by Eqs. (A3), (A4) and (A6), while

κ′n =
(2n− 1) π

2Hw
(A12)

When the effects of surface gravity waves are to be included in the analysis, Liaw and Chopra

(1974) solved the wave equation (1) considering the boundary condition in Eq. (55) and showed

that hydrodynamic pressure frequency response functionsp̄0 andp̄j, j=1 . . .Ns, can be expressed

as

p̄0(Rs, θ, z, ω) = 8ρw

[

−
λ0
κ0

I00
[

2λ0Hw + sinh(2λ0Hw)
] D0(κ0Rs) cosh(λnz) e

i τ0Rs

−
n̄−1
∑

n=1

λn
κn

I0n
[

2κnHw + sin(2λnHw)
] Dn(κnRs) cos(λnz) e

i τnRs

+
Nw
∑

n=n̄

λn
κ′n

I0n
[

2κ′nHw + sin(2λnHw)
] En(κ

′

nRs) cos(λnz)
]

cos(θ)

(A13)

p̄j(Rs, θ, z, ω) = 8ρw

[

−
λ0
κ0

Ij0
[

2λ0Hw + sinh(2λ0Hw)
] Dn(κnRs) cosh(λnz) e

i τnRs

−
n̄−1
∑

n=1

λn
κn

Ijn
[

2κnHw + sin(2λnHw)
] Dn(κnRs) cos(λnz) e

i τnRs

+
Nw
∑

n=n̄

λn
κ′n

Ijn
[

2κ′nHw + sin(2λnHw)
] En(κ

′

nRs) cos(λnz)
]

cos(θ)

(A14)

whereNw is the number of considered acoustical water modes and the parametersκ′n, Ijn, Dn,

En andτn are given by the same equations as previously, while the parametersλ0 andλn are now

solutions of the following two equations, respectively

λ0 tanh(λ0Hw) =
ω2

g
(A15)

λn tan(λnHw) = −
ω2

g
; n = 1 . . .Nw (A16)
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and the parametersκ0, κn, I00, I0n, andIj0 are given by

κ0 =

√

ω2

C2
+ λ20 (A17)

κn =

√

ω2

C2
− λ2n ; n = 1 . . .Nw (A18)

I00 =
∫ Hw

0
cosh(λ0z) dz =

sinh(λ0Hw)

λ0
(A19)

Ij0 =
∫ Hw

0
ψ

(x)
j (z) cosh(λ0z) dz ; j = 1 . . . Ns (A20)

I0n =
∫ Hw

0
cos(λnz) dz =

sin(λnHw)

λn
; n = 1 . . . Nw (A21)

As previously, the integer̄n in the second sums of Eqs. (A13) and (A14) denotes the smallest value

of integern such thatλn >
ω

Cw
.
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Table 1
Constitutive materials of the axisymmetric tower studied in Example 3.

Mass density Elastic modulus

(kg/m3) (GPa) Poisson’s ratio

Material 1 7850 210 0.3

Material 2 2400 35 0.2

Material 3 2500 25 0.2

Material 4 1900 50 0.2

Material 5 2400 30 0.2
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Figure 21. Finite element models of the composite axisymmetric tower studied in Example 3: (a) Finite
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Figure 25. Vibration periods obtained using the reference and proposed solutions: (a) Tower of Example 1
with rigid foundation; (b) Tower of Example 1 with flexible foundation; (c) Tower of Example 2 with rigid
foundation; (d) Tower of Example 2 with flexible foundation;(e) Tower of Example 3 with rigid foundation;
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Figure 27. Nondimensionalized hydrodynamic force frequency response functions̄f/(ρwgH2
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