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1 Introduction

Axisymmetric structures surrounded by water are commonboantered in several civil engi-
neering applications such as offshore platforms, bridgespand wind farms. When subjected to
earthquake loads, the interaction between an axisymnsgtticture and the surrounding water in-
duces hydrodynamic loads while affecting the structurakatyic properties such as natural periods.
Earlier literature devoted to the analysis of the vibrawt@aracteristics and dynamic response of
immersed axisymmetric structures can be roughly clasdiitedhree categories depending on the
type of modeling adopted for hydrodynamic loads: (i) addeks formulations where the effect
of surrounding water is approximated by added masseshiigtd along the height of the struc-
ture (Lamb 1932, Nagaya and Hai 1985, Chang and Liu 198%/Bprdnd Adams 1991, Spyrakos
and Xu 1997, @citowska and Kotodziej 1998, Oz 2003, Wu and Chen 2005)¢¢intinuum-based
solutions where hydrodynamic loads are obtained as aoalwolutions of the wave equation gov-
erning hydrodynamic pressure (Liaw and Chopra 1974, Ealaglor and Duncan 1980, Williams
1986, Tanaka and Hudspeth 1988, Goyal and Chopra 1989, Xiamg ¥997, Wei et al. 2012), and
(iii) finite element, boundary element or scaled boundaridialement approaches based on the
discretization of the surrounding water (Everstine 198408 and Bathe 1985, Chen 2000, Czygan
and Von Estorff 2002, Sigrist and Garreau 2007, Millan e2809, Lu and Jeng 2010, Tao et al.
2007,Meng and Zou 2012, Li et al. 2013, Li et al. 2013, Liu and2013).

Although the dynamic response of axisymmetric structuwesnded by water can now be solved
using coupled fluid-structure finite or boundary elementssinof these techniques have not yet
been fully implemented in day-to-day engineering praceéspecially at the early stages of seismic
design, as they require specialized software or advan@gtgnming, and may result in extensive
modeling and computational efforts, combined with higleleexpertise. Simplified formulations
are therefore still needed to develop efficient procedurasray expedite design and safety eval-
uation processes. On the other hand, the need for highetwtaiiperformance and durability of
marine structures suggests increased recourse to composistruction where the efficiencies of
various materials can be combined and advantageously iaptimThis need is usually coupled
to the requirement of using locally available materialséoonomic or practical reasons. Recent
projects illustrate that, in addition to conventional migtls such as concrete and steel, researchers
and manufacturers are developing new materials such asdibéorced polymers that can be used
to build composite segments of deep water towers such asfainm (Gutiérrez et al. 2003, Trick-
lebank et al. 2007, Seica and Packer 2007, Rashedi et al, 2042t al. 2012). However, available
simplified formulations generally assume that the designeésymmetric structure has a uniform
cross-section and is materially homogeneous, i.e. madeonly one material. These methods also
usually neglect the effects of higher vibration modes ardffgxibility of underlying soil founda-
tion.

In this work, we develop original simplified procedures thative these restrictive assumptions
for enhanced practical seismic design and safety evaluafiaxisymmetric structures vibrating in



contact with water. Two types of formulations, i.e. | anddig proposed depending if the mode
shapes of the dry structure, i.e. without water, are obthirsgng analytical expressions or finite el-
ement analysis, respectively. Both proposed formulatiake account of higher vibration modes,
water compressibility, and flexibility of underlying soddindation. Formulation type Il can also
be applied to composite structures made of different malteas well as those with non-uniform
hollow cross-sections due to geometric irregularity ofittterior wall. The developed methods are
assessed through examples that take account of variatiatgfness and mass densities in struc-
tures made of several constitutive materials, and havimgumform hollow cross-sections with
irregular interior walls. The effects of higher vibratiorodes are also included. Expressions are
presented considering compressible or incompressiblergssons of surrounding water, as well
as rigid or flexible underlying soil foundation. The propdsguations are first derived while ne-
glecting the effects of surface gravity waves and the procedteps are illustrated in flowcharts in
a manner that calculations can be easily implemented inlaplactical engineering environment,
for example using simple spreadsheets, as opposed to nuhvssoated methods such as coupled
fluid-structure finite elements. The formulations are thetereded to account for the effects of
surface gravity waves when required.

2 Proposed formulations for seismic response of an axisymme tric structure sur-
rounded by water

2.1 Basic assumptions and notations

We consider an axisymmetric structure such as the onesrdted in Fig. 1. The structure has a
total heightHs and is surrounded by an infinite water domain of constantdBpt The immersed
part of the structure has a uniform outer radiis As illustrated in Fig. 1, two systems of axes are
adopted to define the geometry of the system studied: (i) e€lan systenix , y , z), with origin

at the center of the bottom cross-section of the structur@ aa axis: coinciding with the axis of
axisymmetry; and (ii) a cylindrical systefn, 6, =), wherer denotes the radial distance afthe
azimuth between the referenceaxis and the line from the origin to the projection of thergaf
interest on théx , y) plane. The response of the structure is studied under theteff a ground
motion acceleratioiig applied along the direction. The following assumptions are adopted: (i) the
axisymmetric structure can be made of one or more mate(iglte cross section of the structure
can be solid or hollow, and its internal radius may vary asnation of height; (iii) all constitutive
materials have a linear elastic behavior during seismidtaxen and convective effects in water
are neglected; (iv) water is inviscid but can be compressilolincompressible, with its motion
irrotational and small in amplitudes; (v) surface gravitguwes are neglected. We note that this last
assumption is adopted first for practical purposes, it vélldaived later in Section 2.5.

2.2 Coupling between hydrodynamic pressure and structural response

The time-history response for radial hydrodynamic pressxerted at a point of cylindrical coor-
dinates(r, 0, z) is denoted hereafter agr, 0, z,t). It is governed by the classical wave equation



expressed in cylindrical coordinates as (Lamb 1932)
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whereC,, is the velocity of sound in water. Hydrodynamic pressure alseys the following bound-
ary conditions (Liaw and Chopra 1974)

— No surface gravity waves at the free surface H,,
p(ra 67 HW7 t) - 0 (2)

— No vertical motion at the bottom of the surrounding water dom =0

Jp

&(T,@,O,t) =0 (3)
— Compatibility of displacements and pressure at the watactire interface = R
%(RS, 0, 2,t) = —pwthi(2) cos(8) €t (4)
"

in which p,, denotes water density.
— A condition of symmetry about the— z plane, i.ef =0

dp _Op
@(T,O, z,t) = %(T,ﬂ',z,t) (5)

Considering a unit harmonic exciting ground acceleratigit) = ¢'“* along thez-axis, with forc-
ing frequencyw, the frequency response function for hydrodynamic pressan be expressed
asp(r, 0, z,w)=p(r, 0, z,t) e~ The frequency response function for radial hydrodynamésp
sure exerted at a point P of coordinates- Rs, =0, z) at the outer surface of the immersed struc-
ture including higher vibration mode effects can be decaedas (Liaw and Chopra 1974, Fenves
and Chopra 1984)

Ns

P(Rs, 0, z,w) = po(Rs, 0, 2, w) — w? Z Z;(w) pj(Rs, 0, 2, w) (6)
j=1

in which pg is the frequency response function for hydrodynamic presgue to rigid body motion
of the structurep; is the frequency response function corresponding to hyaachic pressure
due to horizontal acceleratiap;(z) of the structure, where); denotes the th structural mode
shape along—direction including the effect of a massless soil foundatiden considered in the
analysis,Z; is the corresponding generalized coordinate alyds the total number of structural
mode shapes along the-direction which are included in the analysis. The time- aedjfiency-
domain responses of radial hydrodynamic pressure at a pbadordinatesr = Rs, 0, z) of the
outer surface of the immersed structure can be obtainedrdral hydrodynamic pressure at point
P using the following transformations as

p(Rs, 0, 2z,t) = p(Rs, 0, 2, t) cos(f) ; P(Rs, 0, z,w) = p(Rs, 0, z,w) cos(6) (7)



Analytical solutions for hydrodynamic pressure frequeresponse functiong, andp; were pro-
posed by Liaw and Chopra (1974) and are briefly reviewed anddted according to this paper’s
notation in Appendix A.

Using modal superposition and mode shapes orthogonaktyghew that the vector of frequency
dependent generalized coordinatés j = 1...Ns, can be obtained by solving the system of
equations

SZ=Q (8)
in which, forj=1... Nsandm=1... Ns
Sim(w) = ( — W’ + Wi+ 2iww; fj)]\/[j Omj — W Bjm(w) 9)
Qm(w) = =Ly — By (w) (10)
where
Hy 2
By m(w) = Rs/ / Po(Rs, 0, z,w) cos(0) ¥, (z) d dz (11)
o Jo
Hy 2
Bjm(w) = Re /0 /0 5;(Rs, 0, 2,0) cos(0) ¥y () dO dz (12)

and,, ; denotes the Kronecker symbal; the vibration frequency along thih mode of vibra-
tion ¢; of the dry axisymmetric structuré€; the corresponding modal damping, ahf and L,,
are the associated generalized mass and force given by

My = [ ) [95()]” o Lo [ () () 0 (13

where us is the line density of the axisymmetric structure along hei§vhen mode shapes are
mass-normalized, the generalized masses have unit vilyed , j=1... Ns.

Substituting Egs. (A1) and (A2) of Appendix A into Eqgs. (11)d12), respectively, and consider-
ing Eq. (A4), we obtainfoi=1... Nyandm=1... Ng

4 R [ n—1 Dn nR ) Nw gn /R B
w n=1 n - n |

4 R I n—1 Dn nR ) Nw gn /R ~
w n=1 n p—s ”

where N,, is the number of considered acoustical water modes, andafzengters:, \,, x,, .,

Ion, Iin, Dy, &, andr, are given in Appendix A. The following practical expressasf the last
three parameters are proposed in this work to further sfynaid expedite the computation of the



parameterss, ,, and B, ,, for j=1... Ngandm=1... N

0.5 (knRs)® — 0.038 (kpRs)? + 0.249 5, Rs

D, (ki Rs) = 16
ton B ) = e = 0.013 (s, Re)? £ 0.019 5, Re £ 0.473 (16)
0.5 (K, Rs)? + 0.345 1/ Rq
&, (K. Rs) = n n 17
(n B) = (R +1.202 (s, o) + 0.670 (17
3,06 (10 Rs)2 + 0.14 5, Rs — 0.
et [ 7306 (5 Fe)? + 0,14k Rs — 0,006 1)

knls+ 1.46

The accuracy of these approximations is illustrated in Fighich compares the results of Egs. (16)
to (18) to those of the exact expressions Eqs. (A5) to (ABpeetively.

We note that the effects of water compressibility have beedied previously by several re-
searchers such as Liaw and Chopra (1974) and Tanaka andéia@$888). These studies showed
that the effects of water compressibility on dynamic suat response should generally be in-
cluded for flexible water-surrounded structures with lognslerness ratioBs/ H,, of about0.25 or

less. It was namely found that water compressibility reduesponse amplitudes at higher modes
of vibration of such squat structures manly because of ad@@aping. If water is assumed in-
compressible, the parametdss,,, and B, ,, become frequency-independent as Egs. (14) and (15)
simplify to

Ampw R R
BO,m pW : [Z [On mn (/QT/L S)] (19)

B,,, — pults lz LinLm (’}RS)] (20)

W

To solve the system of Egs. (8), the frequencies and modesladphe dry axisymmetric structure
are to be determined first. For this purpose, two proceduassdon an analytical formulation of
mode shapes and a finite element solution, respectivelpraposed hereafter.

2.3 Solution based on analytical formulation of mode shapes

The analytical formulation described here applies only yindrical cantilever structures with
a uniform cross-section. Assuming an Euler-Bernoulli beshavior, the mode shapg, j =
1...Ns, of the dry structure can be expressed as (Clough and Peh283)

Yi(z) = AP cos(fB; z) + AP sin(f; z) + AP cosh(B; z) + AP sinh(g; z) (21)

whereg; is an eigenvalue related to thi¢h frequencyw; of the dry structure by

2
s o | Esls
pr=2. w; = [ 22
/ Bl ! / Hs ( )
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andAY), AV AY) and AY are unknown real constants to be determined using the fisitpfour
boundary conditions (Michaltsos and Ermopoulos 2001, WilGinen 2005)

Esls W'(O) = — Kt w(U) (23)
EsIs"(0) = Kr'(0) (24)
Esls)"(Hs) = mg ew? (Hs) + (Jo + mg €*) w? ¢/ (Hs) (25)
Esls" (Hs) = —mqw? ¢(Hs) — mg ew? ' (Hs) (26)

in which Esls is the flexural rigidity,m, is the rigid tip mass lumped at a distancef the top of
the structure,/, is the corresponding rotary moment of inertia, dtgdand K are the translational
and rotational stiffness coefficients at the base of thesira, respectively.

Substituting Eq. (21) into Egs. (23) to (26), we obtain aeysbf equations (Auciello 1996)

off o) off off| [40

of) o) o) o] |49

. . . . =0 (27)
of) o) off off| 4P
o9 o) o) ofl] |49
in which
i) = afl) = K7 o) = —al)) = —E1, 63 (28)
0451) =~ = — L, [s ; Oé%) =y = — KR f; (29)
; 2 >+ Jo) sin(p; H 4 cos(3; H.
Hs Hs
. 5 247 T Lo esin(B H
o) = — 2 sin(p, Hy) — 20+ ) oSG H) _ fymo esin(By Hy (31)
Hs s
2 2 4+ Jo) sinh(B; H 4 h(B; H.
Hs Hs



37 (mg e* + Jo) cosh(f; Hs) B 33 mg e sinh(f3; Hs)

a34 62 sinh(5; Hs) — ” - (33)
4 . 5 3 .
NO 5 sin(8, Hy) + B; mq cos(; Hs) B me esin(f; Hs) (34)
Hs Hs

4, (3 5 .

olf =~ con(y Ho + LT O mocnlfy B (@)
4 < . 5 = )

a43 _ 53 sinh(8, Hy) + B; mo co;h(ﬁj Hy) N B;mge b;nh(ﬁj Hy) (36)
4 : , 5 (A

Oé44 _ 63 COSh(BJ HS) Bj mo Slzh(ﬁj HS) + Bj mo eczbh(ﬁj HS) (37)

The system of equations (27) admits a non trivial soluticanidl only if

o) off o) off

e o e ) -

of) o o) of

off o) o} off

Expansion of Eq. (38) leads to a transcendental equationhais an infinite number of roots.
It can be solved for frequency coefficiertts s, . . ., 3;, . .. usingRegula falsi method (Mathews
1992, MATLAB 2011). Usingﬁlgj) as a normalization factor of the shape functions, the aeiatiip
between the ratiosts” /4%, 4 /A7 and A /AY) can be obtained by solving the system of
equations

F o [AYT
o ot o] 55| [-a
o 0w ol |A ()
gy sy asy A0 = |—as (39)
)
. AU .
off) off of) 5 ~af)
L . _Al ] L .

The mode shapes; can then be determined by introducing the values;ofA’, A%, AY) and
Aff) into Eq. (21). Introducing Eq. (21) into the expression of thtegral/;, given in Eq. (A4)
yields

b [ A e AY e Aff) 4) 40



where

Xﬁ) = /OHW cos(Ay, 2) cos(f; z) dz = An COS(Bj)\g]VV_) ;}H(An Hw) (41)
Xﬁ) = /OHW cos(\, z) sin(B; 2) dz = An sin(f; HK;Z S_mﬁ(;" Hu) = B (42)
Xﬁ) = /OHW cos(\, z) cosh(f; z) dz = A COSh(B;%Hi)ﬁ?n(An M) (43)
Xg'i) = /OHW cos(A, z) sinh(B; 2) dz = An sinh(5 H)\W%) ii%;)\n ) = i (44)

2.4 Solution based on finite element determination of mode sh apes

The analytical formulation described in the previous sgcassumes that the structure studied is
a cylindrical cantilever with a uniform cross-section. Maeneral axisymmetric structures such
as the one illustrated in Fig. 1 (c) require recourse to 30dirlement modeling since they can
be made of one or more materials and have non-uniform hollossesections. Such finite ele-
ment analysis can be conducted using standard finite elesoéatare that includes only classical
solid finite elements and not necessarily fluid-structuteraction capabilities. The obtained lateral
structural mode shape's along the axis of axisymmetry of the studied structure, caafproxi-
mated by a polynomial function of ordé¥,,, j=1... Ns

Ny, 2\ k
Vi(z) = kgoaj,k (ﬁj (45)

in which the coefficients, ;, can be determined using a classical fitting technique. Tine dg, =
1;(0) takes account of translations due to soil flexibility assthated in Fig. 3.

It is important to note that 3D finite element modal analysisuo axisymmetric structure yields
pairs of lateral mode shapes along two orthogonal direstiBach pair corresponds to one natural
frequency. In the present work, the numbérof mode shapes includes only those modes which
are along ther—direction corresponding to that of the applied ground motig. We also note
that the values of the mode shapes can be taken along thef axisypmmetry or along the line of
intersection of planez and the structure as indicated in Fig. 3.

On substituting Eq. (45) into the integral given by Eq. (A4 Appendix A, we obtain

N, a;p [Hw
Ln=3 /0 cos(Anz) 2 dz (46)
k=0

Bouaanani and Perrault (2010) (Bouaanani and Perrault)2¥dwved that/;, can also be ex-
pressed as



where

=> { [E G %1 ajok + [; (=) %1 %%H} (48)

k =0
1 (—1)* ]
Gy =———r — 7 _la; 49
" N o { [AW(A” Hy) | 2 “9
with the functionA,,, defined as .
A(z) = = (50)

m!
wherez andm are real and integer numbers, respectively. Substitutmd4) into Egs. (14) and

(15) respectively, yields the following expressions forgmetersB, ,, and B, ,,, for j =1... Ng
andm=1... N

B — 471—pWRS _ ﬁz_l [an + (_]‘>n+1 )\n Gmn:| Dn(lin RS) ei TnRs
o Hy, = A2 Ky,
N [Py + (=1)" 1 Ay Gon | £, Ro)
+ Zj 5 (51)
By = 47TPWRS i {Fm” + (_1)n+1 An Gmn} Dn(’in RS) el Tnfts
" Hy, n=1 )‘721 kn
T A G (=)™ Frn 4 A G| D1 Ro) s
n=1 )‘721 Kn
N Fi | Fyn 4 (1) Xy G| En(i), Ro)
+ Z; )\2 k!
Nu Xy G [(=1)"™1 Fun + Ay Ginn| En(1, R)
- Z P (52)

where the parameters,, ~,, «., D,, £, andr, are given by Eqgs. (A3) and (A5) to (A7) of Ap-
pendix A.
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When water compressibility is neglected, Egs. (51) and $&8plify to

5 _ dmpuls g: [Fon + (=)™ X G| En(s, Rs) (53)
o HW n=1 )\721 'Li;z
5, _ A [ 3% B[Pt ()70 G| E4(, o)
P Hy, = A2 Kk
Nu Ay G [(—=1)"*1 Fri + An Ginn| En (1, Rs)
+ 2_:1 T (54)

in which all the parameters are given by the same equatiompseasously, excepk!, which is
obtained from Eq. (A12) of Appendix A.

2.5 Effects of surface gravity waves

The effects of surface gravity waves on the seismic respohseter-surrounded structures are
known to be generally small and limited to the low frequeranyge (Liaw and Chopra 1974; Goyal
and Chopra 1989). For comprehensiveness however, we prthedollowing equations to account
for the effects of surface gravity waves when required. Is ttase, the boundary condition in
Eq. (2) of the manuscript has to be changed to

0p

0
25 (16, 1) = =g 52 (r, 0, Ho ) (55)

where g denotes gravity acceleration. Considering this beuwndary condition and solving the
wave equation (1) for hydrodynamic pressure frequencyorespfunctiong, andp,, j=1... N,
Liaw and Chopra (1974) showed that Egs. (A1) and (A2) of Aglbe® have to be replaced by
Egs. (A13) and (A14) of the same appendix, respectively.foh@ving remarks can then be made
to evaluate the main additional calculations involved whrface gravity waves are to be included
in the analysis:

— Contrary to obtaining the values of eigenvalyghrough the closed-form expressionsin Eq. (A3),
these parameters can be determined only numerically byngdiq. (A16) when surface gravity
waves are included.

— Additional parameters, andx, have to be determined numerically by solving Eq. (A15).

— The first sums in each of Eqgs. (A13) and (A14) have to be detsdhio obtain hydrodynamic
pressurego andp;, j = 1... Ns.

Substituting Egs. (A13) and (A14) into Egs. (11) and (123pesxtively, we obtain new expressions

11



for the quantitiesB, ,, and B, ,,,, j=1... N5, m=1... Ns, and Eqs. (14) and (14) transform to

Ao Loo Iimo Do(ffo Rs)
0|20 Hy + sinh(2X0 Hiy)|

e| T0 Rs

! )\n IOn Imn Dn(ﬂn RS) e
2\, Hy + sin(2\, Hy)

i Tn Rs

(56)

3
Il
—
&

3

_l’_
g

)\n [On Imn gn('%;l RS)
' 12X\, Hy + sin(2X, Hy)|

3
Il
3
=N

Ao IjO Ipno Do(/‘éo Rs)
o |20 Hu + sinh(20 Hiy)|

e| T()Rs

721 Fin | 2An Hu + sin (2, H,)|

e| Tn Rs

(57)

%vf )\n Ijn [mn gn(K/H Rs)
i K [ 200 Hyy + sin(2),, Hy)|

whereN,, is the number of considered acoustical water modes and taengters:/,, 1;,, D,, &,
andr, are given by the same equations as previously, whjland \,, are numerical solutions of
Egs. (A15) and (A16) of Appendix A ankl, x,,, I, lo,, andI;, are given by Egs. (Al7) to . As
previously, the integern in the second sums of Eqs. (58) and (59) denotes the smadiest of
integern such that\,, > Bl Following the same approach described previously, newpl#ied

C
expressions for paramete%vﬁm andB;,,,j=1...Ns, m=1...Ns, are proposed

Ao Loo [[00 Foo(iXo) + GmO(i)\O)} Dy (ko Rs)
Ko [2)\0HW + SlIlh(Q)\()HW>]

ei To0Rs

BO,m(w) = 8mpw s {—

-1 >\n -[On |:-[0n an(An) + Gmn(An)] Dn(’in RS)
= Fin |20 Huy + S0 (2, Hu)|

el T fis (58)

_|_
nz::ﬁ K |20 Ha + sin (2, Ho)|

N o Ton [ Ton Frnn(An) + G (An)] Ea(1, Rs) }
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No|Too Fyo(ida) + Go(iXo)] [Too Frmo(iXe) + Gimo(iXo)| Do(ro Rs)
0|20 H + sinh (20 ) |

e| T()Rs

A Ton Fju () + G| [Zon Frn(An) + Gonn(An) | D (i R)

_ ei TnRs
= Fin |20 Huy + $in (2, Hu)|
= Kl (200 Hy + sin (2, Hy)|
(59)

It can be seen from Eqgs. (55), (A13) and (Al14) that the effetsurface gravity waves are con-
centrated in the very low frequency range and that they hamaigidly as frequencies increase. In
the limiting casev — +o0o0, we can easily show that including or neglecting the effectsur-
face gravity waves yield the same results, since: (i) thetgwois of Eq. (55) are the same as those
given by Eq. (A3) when surface gravity waves are neglected,(a) the first sums in Egs. (A13)
and (Al14) vanish. Therefore, surface gravity waves coutecastructural seismic response only if:
() the vibration frequencies of the water-surroundeddtrte are very low, and (ii) the earthquake
ground motion is rich of low frequency content in the sameeaas the structure.

2.6 Hydrodynamic pressure and structural response due to se ismic loading

The vectorZ of complex-valued frequency response functions is firstmeined from Eq. (8) for
frequencies in the range of interest. Eq. (6) is then appbezbtain frequency response functions
for hydrodynamic pressure, and those for structural latBsplacements and accelerations can be
expressed as

i(z,w) = > 1(2) Z;(w) iz, w) = —w? zflwxz) Z(w)  (60)

wherew andi denote the lateral displacement and acceleration alongngrmotion directionr,
respectively.

The time-history response of the real part of hydrodynamesgure along the directianof appli-
cation of ground acceleratiaiy(t) can be obtained as

1 oo _ .
Re [p(RS, 0.z, t)} =5 /_ P*(Rs, 0, 2, w) iig(w) € dw (61)

wherep* denotes the complex conjugate of hydrodynamic pressugedrecy response functign
given by Eq.(6).

The structural displacement and acceleration time-hjisesponse to a ground acceleratiyit)

13



applied along the direction can be obtained as

Nes Ns ..
u(z,t) =D 15(2) Z;(t); ii(z,t) = > 1;(2) Z;(t) (62)
j=1 j=1
where the time-domain generalized coordingigs) are given by the Fourier integrals
1 > 5 - iw 7 1 > 7 5 iw
Zi(t) = o /_Oo Zj(w) tig(w) €' dw; Z(t) = 5 /_oo w?Zj(w) tig(w) €“ dw  (63)

in which ig(w) is the Fourier transform of the ground acceleratig(t)

lig(w) = /0 - iig(t) e~ dt (64)

in whicht, is the time duration of the applied accelerogram.

3 lllustrative examples

The dynamic responses of simple and complex axisymmetuictstes are investigated in this
section to verify and illustrate the applicability of theposed methods. The description as well as
the frequency- and time-domain analyses of the studie@sysare presented next.

The developed formulations were programmed using MATLAB\[MAB 2011) according to the
flowcharts in Fig. 4 and 5. The flowchart in Fig. 4 shows the psmal procedure to determine the
dynamic response based on the analytical formulation ofrtbde shapes of the stydied axisym-
metric structure as presented in Section 2.3. This methafasred to as analysis type | hereafter.
Fig. 5 illustrates the flowchart to be applied when finite edabdetermination of mode shapes and
their interpolation are used instead of the analytical idation as described in Section 2.4. This
method is referred to as analysis type Il hereafter. Fortgldooth flowcharts in Figs. 4 and 5 refer
to equation numbers from the previous sections. We alsothatefor brevity, the flowcharts are
presented only for the most common cases where effectsceugfavity waves can be neglected.
The flowcharts can be adapted easily considering the eaqsagiven in Section 2.5.

In this section, we assess the effectiveness of these fation$ in determining the seismic re-
sponse of 3D axisymmetric towers surrounded by water. Feameles are proposed next to il-
lustrate the application of the proposed methods and a#sasability to account for various pa-
rameters including composite construction, non-unifotimciure’s cross-section, higher vibration
modes, soil flexibility and surface gravity waves.

3.1 Example 1: Seismic response of a tower with a uniform soli d cross-section

In this example, we investigate the dynamic response ¢ m high axisymmetric cylindrical
tower illustrated in Fig. 6 (a). The tower hasian diameter uniform solid cross-section and is
surrounded by and infinite water domain as indicated in Hig).6lt is made of a material with
an elastic modulug’s = 25 GPa, a mass densipy = 2500 kg/m? and a Poisson’s ratio = 0.2.
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Water is considered compressible, with a velocity of presswavesC,, = 1440 m/s and a mass
densityp,, = 1000 kg/m’. Both cases of rigid and flexible soil foundations undeudytihe tower are
considered while the effects of surface gravity waves agéected.

The seismic analysis of the cylindrical tower subjectedhi horizontal N-S component of the
1940 Imperial Valley earthquake recorded on rock site at &t (PEER 2011) is conducted
using analysis types | and Il. Fig. 7 shows the corresponaatglerogram and displacement time-
history nondimensionalized by the peak ground accelerdfRGA) |ig|max = 0.313 g and peak
ground displacemefPGD) |ug|max=0.133 m, respectively. The ground motion is applied along the
x—direction and computations are conducted neglecting sxilility at first. A constant modal
damping ratia = 5 % is assigned to all the modes included in the analysis. Fig). Bl(strates
the first four modes of vibration;, 7 = 1...4, and corresponding vibration frequencies of the
cylindrical structure obtained and used in analysis typ&nialysis type Il is also conducted for
comparison purposes. In this case, the software ADINA (2@1dsed to discretize the tower into
20-node solid 3D finite elements according to the mesh deitissgtrated in Fig. 9 (a). The resulting
four mode shapes included in the analysis are shown in F. 8 (

A coupled 3D finite element analysis of the tower-water systecarried out to validate the results
of analysis types | and Il. The tower and surrounding watertben modeled using 3D 20-node
solid and potential-based finite elements from ADINA assillated in Fig. 9 (b). A fixed rigid
wall boundary condition is applied at a far end located atdusaof 2H,, = 60 m around the
structure. Fluid-structure interaction is accountedfiootigh special interface elements included in
ADINA. The bulk modulus of the potential-based fluid elenssgstdetermined as, C2 =2.07 GPa.
The performance of the potential-based formulation andltié-structure interface elements was
assessed in a previous work (Bouaanani and Lu 2009). Théseduhe coupled finite element
model are denoted as the reference solution in what follows.

The obtained time-histories of hydrodynamic pressurfemaiabove the heel of the tower, i.e. Point
Ain Fig. 9, and horizontal acceleration and displacemesn@t—direction at the top of the tower,
l.e. Point B in Fig. 9, are nondimensionalized with respecthie maximum hydrostatic pressure
pwQH,, at the heel of the tower, the PGA and PGD of the applied grouatiom, respectively.
Fig. 10 compares the results obtained using the coupled &fetnent model, i.e. reference solution,
to those of proposed analysis types | and Il. It can be seéththgeismic responses predicted using
the proposed methods are in close agreement with the firibeesit solutions.

Soil flexibility is included next using spring elements oduced between the bottom of the tower
and the underlying ground. A stiffnegsr = 1.0 x 10® N/m along the horizontal direction and
Ky =5.0 x 10 N/m along the vertical direction are adopted for the finienaént model without
water to calculate the mode shapes for analysis type Il. dtaional stiffnessir required in
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analysis type | is related to the vertical stiffngsg using the following equation

Ky
Kr=—-1 65
R As S ( )

in which A and s denote the area and moment of inertia of the bottom crogsseaiaf the tower,
respectively. Equivalent distributed soil stiffness is@aduced in the coupled finite element model
to obtain the reference solution. Fig. 11 shows the modeeshapd corresponding vibration fre-
quencies obtained using the analytical formulation andefieiements including soil flexibility. A
very good agreement is observed in Fig. 12 which comparesitiehistories of hydrodynamic
pressure at Point A and horizontal acceleration and disptant along:—direction at Point B ob-
tained from analysis types | and Il to reference solutiorss Example shows that both analysis
types | and Il yield almost identical results for axisymnetowers with a uniform solid sections
laying on whether rigid or flexible soil foundations.

3.2 Example 2: Hollow-section axisymmetric tower with a tip mass

In this example, we investigate the seismic responsel@fra high axisymmetric tower illustrated

in Fig. 13 (a). Thet2 m-high lower part of the tower has a hollow cross-sectiomwitn and8 m
interior and exterior diameters, respectively. The togheftower is made of a solid cylindrical part
with a diameter ofl2 m. The structure is surrounded by an infinite water domaimdgated in

Fig. 13 (b). The lower hollow part of the tower is made of a matevith an elastic modulugs =

25 GPa, a mass densip¢= 2500 kg/m?* and a Poisson’s ratie=0.2. The constitutive material of

the top part has an elastic modultis= 30 GPa, a Poisson’s ratio= 0.2 and a mass densip =

884 kg/m' yielding to a total mass @00 t. Water is assumed compressible, with the same properties
as in Example 1. The effects of surface gravity waves areccts.

The earthquake input is the same as in Example 1. A constadélndamping raticc = 5% is
assigned to all the modes included in the analysis and bgith aind flexible soil assumptions are
considered as previously. Fig. 14 shows the finite elemerdemof the tower without water as
well as the coupled 3D finite element model of the tower-waystem constructed to obtain the
reference solution. Four mode shapes and correspondiragioib frequencies of the tower without
water are considered in analysis types | and Il and are giv&ings. 15. Soil flexibility is included
using the same stiffness coefficients as in Example 1, yiglth the first four mode shapes and
corresponding vibration frequencies presented in Fig. 16.

Analysis types | and Il as well as the reference solution aeglio compute hydrodynamic pres-
sure at Point A and the horizontal acceleration and dispiace alongr—direction at Point B as
illustrated in Fig. 14. The obtained time-histories arediorensionalized using the same factors as
in Example 1. Figs. 17 and 18 show the obtained results faid and flexible soil foundation, re-
spectively. Although the agreement between analysis tyellthe reference solution is still very
satisfactory, there is a slight difference which origisateainly from the dissimilarity between
higher mode frequencies predicted by the Euler-Bernoebimh-based analytical formulation pre-
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sented in Section 2.3 and those from 3D solid finite elemex#sllustrated in Figs. 15 and 16.
Figs. 17 and 18 also reveal that analysis type Il gives eswcetksults when compared to the refer-
ence solution for both rigid and flexible soil conditions.

3.3 Example 3: Composite axisymmetric structure with a mass on top

In this example, we investigate the dynamic response of tiinetare illustrated in Fig. 19 (a): a
composite axisymmetric tower, i.e. several constitutiaterals, with a non-uniform cross-section,
I.e. irregular interior wall. The inhomogeneous and irlageharacters of the structure prevent the
application of analysis type |, therefore only results odlgiis type 1l and the reference solution
are described next. The tower has the same exterior dintena®in Example 2 while having an
irregular interior wall as indicated in Fig. 19 (a). It is neadf five materials, with the mechanical
properties presented in Table 1.

The structure is surrounded by an infinite water domain asateld in Fig. 19 (b). Water is assumed
compressible, with the same properties as in the previoaisipbes. The effects of surface gravity
waves are neglected. The same earthquake input as in theysesxamples is applied. Fig. 21
shows the finite element model of the tower without water, el & the coupled 3D finite element
model of the tower-water system constructed to obtain tlererce solution. A constant modal
damping ratio¢ = 5% is assigned to all the modes included in the analysis and ttgith and
flexible soil assumptions are considered as previouslyflégibility is considered using the same
properties as in Example 1. The first four modes of the tow#rout water are included in analysis
type Il. They are illustrated as well as the correspondifgation frequencies for both rigid and
flexible soil foundation in Figs. 20 (a) and (b), respectvel

Hydrodynamic pressure at Point A and the horizontal acagtar and displacement along-direction
at Point B illustrated in Fig. 21 are computed and nondin@redized as described in the previous
examples. Figs. 22 and 23 compare the reference solutighe tesults of proposed analysis type
Il for rigid and flexible underlying soil foundations, regpeely. It is seen that both types of re-

sults are almost identical, which confirms the high perfaorosaof the proposed analysis type |l

in determining the seismic response of towers with compknngetrical and material configura-

tions, while enhancing the efficiency of the analysis predsswaiving the need for coupled finite

element solutions and associated discretization of thegnding water domain.

3.4 Example 4: Frequency response functions and vibration p eriods of the studied
tower-water systems

The results shown in the previous examples focused on thehistory responses of tower-water

systems subjected to an earthquake. In this example, wiy tleei ability of the procedures devel-

oped to evaluate the frequency response and vibrationgseoicthe tower-water systems described

in the previous examples. For each case, analysis typeppigea to determine frequency response

functions for horizontal acceleration at point B through (8). A frequency range fromto 10 Hz
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is considered. Fig. 24 compares the acceleration frequesppnse functions obtained using the
proposed technique under the effect of a unit harmoniciegcground acceleratioiiy(t) =e'“! to
those from coupled finite element models of the tower-watstesns described in Examples 1 to 3.
The very good agreement between both methods confirms tidétyalf the proposed procedure in
predicting dynamic response in the frequency domain. Theesualso illustrate the shift towards
lower frequencies due to soil flexibility. The assessmentafpled vibration periods is also an
important step for structural seismic analysis and safesjuation. These vibration periods can
be determined as the resonances on the frequency respawues.dtig. 25 compares the first three
vibration periods obtained for each of the three axisymim&twers to those given by the coupled
finite element models. We can clearly observe the exceltmement with finite element solutions
independently of the case studied.

3.5 Example 5: Effects of surface gravity waves on the dynami c response of the
studied tower-water systems

The equations presented Section 2.5 are applied next sirdke the effects of surface gravity
waves on the dynamic response of the six tower-water systardged previously. Fig. 26 presents
the nondimensionalized hydrodynamic pressure frequezsponse functions/ (pwgH,,) obtained

at three points of the structure-water interface, located-a6 m, z = 26 m andz = 28 m above
the heel of each tower. A low frequency range fromo 3 Hz is considered for better visualization
of the response curves. Comparison of the results with atitbui surface gravity waves reveals
that the effects on hydrodynamic pressure are: (i) mainhceatrated at the low frequency range,
I.e. frequencies less than5Hz, and (ii) are more important closer to water surface. it also
be seen that hydrodynamic pressures in flexible foundateertwater systems, i.e. lower cou-
pled vibration frequencies, are more sensitive to surfaaeity waves than those with rigid foun-
dations. Fig. 27 shows the nondimensionalized hydrodyodonce frequency response functions
f/(pwgH2) obtained for the six tower-water systems studied, wifégedetermined by integrating
hydrodynamic pressuigover water depth. These results confirm that the effectsrédseigravity
waves on hydrodynamic loads are limited to the low frequaaoge. The same conclusion applies
to the influence on dynamic structural response as can bdreaefrigure28 illustrating frequency
response functions for horizontal accelerationbtained at point B of each of the towers.

4 Conclusions

In this paper, we developed original and efficient analysse@dures to determine the dynamic re-
sponse of axisymmetric structures vibrating in contachwiaiter. Two types of formulations were
proposed: (i) Type I, where the mode shapes of the dry streicte. without water, are obtained
using analytical expressions based on Euler-Bernoullirbdeeory, and (ii) Type I, where these
modes shapes are extracted from a finite element analystsf@mulations take account of higher
vibration modes, water compressibility, flexibility of uerdlying soil foundation and surface gravity
waves. Formulation type Il further applies to compositesgimetric structures made of different
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materials, i.e. variation of stiffness and mass densitg@kiructure’s height, as well as those with
non-uniform hollow cross-sections due to geometric irtagty of the interior wall. Flowcharts il-
lustrating the application of the proposed procedures wereided to facilitate practical program-
ming. lllustrative examples of homogeneous and compasiterts laying on rigid and flexible soill
foundations were proposed and examined to illustrate tpécapion of the proposed techniques
and assess their efficiency. The results of the proposedaethere successfully validated against
those from coupled tower-water finite element solutiont lbori this purpose. Analysis type Il was
shown to be more efficient in determining the dynamic andsieisesponse of axisymmetric struc-
tures with complex geometrical and material configuratidree effects of surface gravity waves
on the dynamic response of the studied tower-systems wsoedsédcussed. The proposed tech-
niques constitute interesting alternatives to more cotweal methods since they: (i) can be easily
programmed as illustrated by the flowcharts provided,tiicjude several analysis parameters such
as material inhomogeneity, geometrical irregularityHeigmode effects, and soil conditions, (iii)
enhance the efficiency of the analysis process by waivingéegl for coupled finite element or
boundary element solutions and required discretizatiagh@surrounding water domain.
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Appendix A: Expressions for Hydrodyanmic Frequency Respon se Functions

The analytical expressions for hydrodynamic pressureearewed in this appendix. By solving
EqQ. (1) under boundary conditions (2) to (5), Liaw and Chda@v4) proposed the following ex-
pressions for frequency response functipnandp;, j=1... Ns

4 ol .
po(Rs, 0, z,w) = % [— 3" D, (K, Rs) cos(\,z) ¢ T
w
(A1)

£ e (), Ry cos(Anz>] cos(0)

5 4pw iy Ly, -
pj(R87 67 z, W) - F - Dn(K/n RS) COS()\nZ) e Tn Rs
(A2)
L,
> Kj—, En (K., Rs) COS(AHZ)} cos(6)

whereN,, is the number of considered acoustical water modes, andatlaeneters\,,, <., <., lo,,
Lin, Dy, &, andr, are given by

(2n—1)7 w? , :
Ap = ———; Kn = | =5 — A2} K, = —lk, (A3

2H,,(—1)" e
Iy, = —m : L, = /0 wj(- )(z) cos(A,z) dz (A4)
Dy (n Rs) = J bl RS)]; + Yl o) 3 (A5)
[Jo(kn Rs) — J(kn Rs)]” + [Yo(kn Rs) — Ya(ry Rs)]
/ o Kl('%;z RS)
Enlrin Fls) = Ko(r!, Rs) + Ka(k, Ry) (A6)
a1 ] [Yo(#n Bts) = Ya(kn Bs)] Dy (kin Bs) — [o(kn ) — (ki Bs)] Y1 (in Bs)
Tnlts =t { [Jo(kn Rs) — B(kn Rs)| I (Kn Rs) + [Yo(kn Rs) — Ya(kn Rs)] Y1(kn Rs) } (A7)

in which K, is the modified Bessel function of ordénof the second kind and &nd Y, are the
Bessel functions of orderof the first and second kind, respectively. The integer the first sums
of Eqgs. (A1) and (A2) is the smallest value of integesuch that\,, > e note that the first

C
series in Egs. (Al) and (A2) vanishesif=1. "

If water is assumed incompressible, the frequency-indégpenhydrodynamic pressure solutions
Do andp; given by Eq. (Al) and (A2) can be simplified to

Nw
ﬁO(R& Z,Q,M) - ZﬁOH(R&ZaHaw) (A8)

n=1
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Nw
ﬁj(RSa Z>0>w) = Zﬁjn(RSa Z>9>w) (Ag)
n=1

with
_ 4Pw ]On /
Pon(Rs, 2,0, w) = o (K, Rs) cos(A,2) cos(0) (A10)
w R,
_ o 4pW I]n /
Pin(Rs, 2,0,w) = Fi En(K,, Rs) cos(\,z) cos(0) (Al1)
W v

inwhich \,,, I, I;, and&, (k) Rs) are still given by Egs. (A3), (A4) and (A6), while

, (2n—-1)7
= Al2
fin 2H,, (AL12)

When the effects of surface gravity waves are to be includeithe analysis, Liaw and Chopra
(1974) solved the wave equation (1) considering the boyndamndition in Eq. (55) and showed
that hydrodynamic pressure frequency response functigasdp;, j=1... Ns, can be expressed
as

>\0 IOO

Po(Rs, 0, z,w) = 8 - — Dy (kg Rs) cosh(\,z) e ™0Fs
ol Bs ) =S| Ko [2X0Hy + sinh(2X Hu)] ol i o)

s >\n IOn
71 20 Hy 4 sin(20, Hy) |

Dy (rin Rs) cos(Anz) €™ (A13)

+ gvf ﬁ IOn
= K [%gﬁw + sin(QAnHW)]

En(K), Rs) cos()\nz)} cos(0)

Ao I, _
pi(Rs,0,z,w) =8 - — J D, (kn Rs) cosh(\,,z) e Tl
Py ) =8| o [200Hy + sinh(20H)| (i Be) cosh(3n2)

[t W I

- T _D,,(kn Rs) cos(\,z) e ™fs
n=1 Kn |2k, Hy + sin(2X, Hy) ( s) c08(An2) (A14)

Nw by I
- 4 — &, (k! Rs) cos()\nz)} cos(6)
n=n in |2k Hy + sin(2\,, Hy)

where N, is the number of considered acoustical water modes and teengters,,, 1;,, D,
&, andr, are given by the same equations as previously, while thengsas)\, and \,, are now
solutions of the following two equations, respectively

2

o tanh(\o Hy) = % (A15)
UJ2
An tan(\, Hy) = —E o n=1...Ny (A16)
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and the parameters), ., Ioo, Lo,, andl;, are given by

W2
w2
Kp = E_A%; n=1...Ny (A18)

Huw inh(\gH,
oo = / cosh(A\gz) dz = sinh(Ao ) (A19)
0 )\0
Hw
Ljo = /0 %('x)(z) cosh(Npz)dz; j=1...Ns (A20)
Hw sin (A, H,
Iy, = / cos(\,z) dz = 5111()\7\,\,) o on=1...Ny (A21)
0 n

As previously, the integet in the second sums of Egs. (A13) and (A14) denotes the smhatikrse

of integern such that\,, > i.
Cw
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Table 1
Constitutive materials of the axisymmetric tower studieé&Ekample 3.

Mass density Elastic modulus
(kg/m?) (GPa) Poisson’s ratio
Material 1 7850 210 0.3
Material 2 2400 35 0.2
Material 3 2500 25 0.2
Material 4 1900 50 0.2
Material 5 2400 30 0.2
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Fig. 18: Axisymmetric tower studied in Example 3: (a) Geamef the axisymmetric tower; (b) Tower
surrounded by an infinite water domain.

Fig. 19: Finite element mode shapes and correspondingdraxges of the composite axisymmetric
tower studied in Example 3.

Fig. 20: Finite element models of the composite axisymroétnver studied in Example 3.

Fig. 21: Time-histories of the seismic response of the canpaxisymmetric tower studied in Ex-
ample 3.

Fig. 22: Time-histories of the seismic response of the canpaxisymmetric tower studied in Ex-
ample 3 including the effects of solil flexibility.

Fig. 23: Frequency response functions for horizontal @aébn at point B of the tower-water sys-
tems studied.

Fig. 24: Vibration periods obtained using the referencemogosed solutions.

Fig. 25: Nondimensionalized hydrodynamic pressure fragueesponse functions (pwgH,,) ob-
tained at three points of the structure-water interfaceatied atz = 6m, z = 26 m and
z=28 m above the heel of each tower.

Fig. 26: Nondimensionalized hydrodynamic force frequeresponse functiong/(pwgH2).

Fig. 27: Frequency response functions for horizontal &saébni at point B of the tower-water
systems studied.
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Figure 1. Examples of axisymmetric towers studied: (a) i@lrical tower with uniform solid section; (b)
Cylindrical tower with hollow uniform section; (c) Axisymetric tower with non-uniform section and vari-
ous constitutive materials along the height.
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Structural and water properties: Hs, Rs, us, Es, Is, e, mo, Jo, K1, K~v/, Ns, Hw, pw, Cw, Nw
Parameters for frequency- and time-domain analyses: wmin, Wmax, Aw, t, tig(t), ta, z

}

Compute: a; [Eq. (38)] and Agj), Aéj), Aéj) and Aij) [Eq. (39)] for j =1...Ng

!

Compute: 1;(z) [Eq. (21)] and w; [Eq. (22)]

|

Compute: An [Eq. (A3)], Ton [Eq. (A4)], Ijn [Eq. (40)], M; [Eq. (13)]
and L; [Eq.(13)] for j=1...Nsand n=1... Ny

|

Set initial frequency: w = wmin

l w=w+Aw

No Compressibility
of water 7

Compute: 7, kn [Eq. (A3)] forn=1...7—1,
and ), [Eq. (A3)] forn=n... Ny

|

Compute: D, [Eq. (A5) or (16)] forn=1...72 —1,
’ Compute: &, [Eq. (A6) or (17)] forn=1... Ny ‘ Tn [Eq. (A7) or (18)] forn=1...7n —1,
and &, [Eq. (A6) or (17)] for n =7i... Ny

!

Compute: B, [Eq.(19)] and By, [Eq. (20)] Compute: B, [Eq.(14)] and Bj ., [Eq. (15)]
for j, m=1...Ns for j m=1...Ng

!

—»’ Compute: S [Eq. (9)], @m [Eq. (10)] and Z;(w) [Eq. (8)] for j, m =1... N

!

’ Compute: Frequency-domain responses such as #@(z,w) [Eq. (55)] and i(z,w) [Eq. (55)] ‘

!

Compute: iig(w) [Eq. (59)]
|

w < Wmax

[

Compute: Z;(t) [Eq. (58)] and Z;(t) [Eq. (58)]

!

Compute: Time-domain responses such as u(z,t) [Eq. (57)] and (z,t) [Eq. (57)]

Figure 4. Flowchart illustrating the proposed procedurgedaon analytical formulation of mode shapes, i.e.
Analysis type |.

’ Compute: k], [Eq. (A12)] forn =1... Ny ‘




Structural and water properties: Hs, Rs, ps, Fs, Is, K1, Kv, Ns, Hw, pw, Cw, Nw
Parameters for frequency- and time-domain analyses: wmin, Wmax, Aw, t, tig(t), ta, z

!

Obtain: 1;(z), Mj =1 and L; for j = 1... Ng from finite element analysis of the dry structure

|

Compute: aj for j=1...Ns and k = 0...N¢j

!

Compute: An [Eq. (A3)], Ton [Bq. (AD)], Fyn [Eq. (48)] and Gy [Eq. (49)]
forj=1...Nsandn=1...Nyw

}

Set initial frequency: w = wmin

l w=w+Aw

No Compressibility
of water 7

Compute: 7, kn [Eq. (A3)] forn=1...7—1,
and ), [Eq. (A3)] forn=n... Ny

|

Compute: D, [Eq. (A5) or (16)] forn=1...72 —1,
’ Compute: &, [Eq. (A6) or (17)] forn=1... Ny ‘ Tn [Eq. (A7) or (18)] forn=1...7n —1,
and &, [Eq. (A6) or (17)] for n =7i... Ny

!

Compute: Bo,m [Eq.(53)] and Bj ., [Eq. (54)] Compute: B, [Eq. (51)] and Bj ., [Eq. (52)]
for j, m=1...Ns for j m=1...Ng

!

—»’ Compute: S [Eq. (9)], @m [Eq. (10)] and Z;(w) [Eq. (8)] for j, m =1... N

!

’ Compute: Frequency-domain responses such as #@(z,w) [Eq. (55)] and i(z,w) [Eq. (55)] ‘

!

Compute: iig(w) [Eq. (59)]
|

w < Wmax

[

Compute: Z;(t) [Eq. (58)] and Z;(t) [Eq. (58)]

!

Compute: Time-domain responses such as u(z,t) [Eq. (57)] and (z,t) [Eq. (57)]

’ Compute: k], [Eq. (A12)] forn =1... Ny ‘

Figure 5. Flowchart illustrating the proposed procedursebaon finite element determination of mode

shapes, i.e. Analysis type II.



(@)

dmomf =

T

42 m

Tower with
a uniform solid
cross-section

(b)

-7 oy
- ~
- ~
- ~
- ~
- N
e N
< N
. N
. \
’ N
’ N
0 \
/ A
! \
1 \
I \
1
1
- ~ H
‘\ . e 4
8 pr- S al
o _a b I
: \ il SO 7
A ~ /
B i ~L AN
T - N - |
,
| N 0 30m
| ~ - ~ e 1
- o
| ~ 2 4 - H
i i ST |
I i 1 H
[ 1 1 H
I 1 ~ 1 H
1 1 L 4 1 H
_ <
\ 1 - < 1 H
1 L <
1 - < 1 i
\ I -7 S I /
\ - <
1 - ~ 1 /7
A 1 == S 1 /
~ 4
\ I e o | 1 y
N 1 P | 1 4
- 1 -7 ~ 1 3
- N .
N 1 - ~ 1 4
S~ ,ﬁ ﬁ\ V-
\l(’ \’/

Figure 6. Cylindrical tower studied in Example 1: (a) Geametf the cylindrical tower; (b) Tower sur-
rounded by an infinite water domain.
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‘ — Reference solution — Analysis type I — Analysis type 11 ‘
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Figure 10. Time-histories of the seismic response of theyaxmetric tower studied in Example 1: (a) and
(b) hydrodynamic pressure at point A; (c) and (d) horizoaizdeleration at point B; (e) and (f) horizontal
displacement at point B.
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elements.



‘ — Reference solution — Analysis type I — Analysis type II ‘
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Figure 12. Time-histories of the seismic response of thgyaxinetric tower studied in Example 1 including
the effects of soil flexibility: (a) and (b) hydrodynamic pgeire at point A; (c) and (d) horizontal acceleration
at point B; (e) and (f) horizontal displacement at point B.
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‘ — Reference solution — Analysis type I — Analysis type 11 ‘
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Figure 17. Time-histories of the seismic response of theyaxmetric tower studied in Example 2: (a) and
(b) hydrodynamic pressure at point A; (c) and (d) horizoaizdeleration at point B; (e) and (f) horizontal
displacement at point B.



‘ — Reference solution — Analysis type | — Analysis type 11 ‘
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Figure 18. Time-histories of the seismic response of thgyaxinetric tower studied in Example 2 including
the effects of soil flexibility: (a) and (b) hydrodynamic pseire at point A; (c) and (d) horizontal acceleration
at point B; (e) and (f) horizontal displacement at point B.
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Figure 19. Axisymmetric tower studied in Example 3: (a) Getm of the axisymmetric tower; (b) Tower
surrounded by an infinite water domain.
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Figure 20. Finite element mode shapes and correspondiggeneies of the composite axisymmetric tower
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‘ — Reference solution — Analysis type II ‘
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Figure 22. Time-histories of the seismic response of thepomite axisymmetric tower studied in Example
3: (a) and (b) hydrodynamic pressure at point A; (c) and (djzbatal acceleration at point B; (e) and (f)
horizontal displacement at point B.



‘ — Reference solution — Analysis type 11 ‘
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Figure 23. Time-histories of the seismic response of thepomite axisymmetric tower studied in Example
3including the effects of soil flexibility: (a) and (b) hydhgnamic pressure at point A; (c) and (d) horizontal
acceleration at point B; (e) and (f) horizontal displacet&point B.



— Reference solution — Analysis type 11 ‘
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Figure 24. Frequency response functions for horizontatlacation at point B of the tower-water systems
studied: (a) Tower of Example 1 with rigid foundation; (b of Example 1 with flexible foundation; (c)
Tower of Example 2 with rigid foundation; (d) Tower of Exaraf® with flexible foundation; (e) Tower of
Example 3 with rigid foundation; (f) Tower of Example 3 witleXible foundation.
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Figure 25. Vibration periods obtained using the referemumk @oposed solutions: (a) Tower of Example 1
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--- z=6m, no surface gravity waves —— z =6 m, with surface gravity waves
--- z=26m, no surface gravity waves —— z=26 m, with surface gravity waves
--- z=28 m, no surface gravity waves —— 2z =28 m, with surface gravity waves
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Figure 26. Nondimensionalized hydrodynamic pressureuaqy response functions (pwgHy) obtained
at three points of the structure-water interface, located=a6 m, = =26 m andz = 28 m above the heel of
each tower: (a) Tower of Example 1 with rigid foundation; Tlover of Example 1 with flexible foundation;
(c) Tower of Example 2 with rigid foundation; (d) Tower of Exple 2 with flexible foundation; (e) Tower
of Example 3 with rigid foundation; (f) Tower of Example 3 Wilexible foundation.
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Figure 27. Nondimensionalized hydrodynamic force freqyer@sponse functiong/(pwgH2): (a) Tower
of Example 1 with rigid foundation; (b) Tower of Example 1 kvitexible foundation; (c) Tower of Example
2 with rigid foundation; (d) Tower of Example 2 with flexibledndation; (e) Tower of Example 3 with rigid
foundation; (f) Tower of Example 3 with flexible foundation.
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Figure 28. Frequency response functions for horizontatlacationii at point B of the tower-water systems
studied: (a) Tower of Example 1 with rigid foundation; (b)wer of Example 1 with flexible foundation; (c)
Tower of Example 2 with rigid foundation; (d) Tower of Exara® with flexible foundation; (e) Tower of
Example 3 with rigid foundation; (f) Tower of Example 3 witlefible foundation.



