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Simplified evaluation of the vibration period
and seismic response of gravity dam-water systems

Benjamin Miquel and Najib Bouaanani

ABSTRACT

This paper proposes a practical procedure for a simplifi@atliation of the fundamental vibration period of dam-
water systems, and corresponding added damping, force assl ail key parameters to assess the seismic behavior.
The proposed technique includes the effects of dam georaettylexibility, dam-reservoir interaction, water com-
pressibility and varying reservoir level. The mathematitsgivations of the method are provided considering both
incompressible and compressible water assumptions. Ilfotheer case, we propose a closed-form expression for
the fundamental vibration period of a dam-reservoir sysiéfinen water compressibility is included, we show that
the fundamental vibration period can be obtained by simplyiisg a cubic equation. The proposed procedure is
validated against classical Westergaard added mass fatiorubas well as other more advanced analytical and fi-
nite element techniques. Gravity dam monoliths with vesigaometries and rigidities impounding reservoirs with
different heights are investigated. The new approach yieddults in excellent agreement with those obtained when
the reservoir is modeled analytically, or numerically gspotential-based finite elements. The analytical expres-
sions developed and the procedure steps are presented imna&msa that calculations can be easily implemented
in a spreadsheet or program for simplified and practicahseianalysis of gravity dams.
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Nomenclature

Abbreviations
ESDOF

FRF

Roman symbols
Ay, Ay, Az, Ay
ar, az, as

By, By

Bons Bin

Bon, Bin

C,,Cy

S
Jsc

Hr; HS

Equivalent single degree of freedom

Frequency response function

coefficients given by Egs. (59) to (63)

coefficients used for cubic approximation of structural emstapes
hydrodynamic parameters given by Egs. (22) and (23), réispéc
hydrodynamic parameters given by Eqgs. (24) and (25), réispéc
hydrodynamic parameters given by Eqs. (32) and (33), réispéc

n" generalized damping of the dam and dam-reservoir systemectvely
velocity of pressure waves in the reservoir

coefficients given by Eq. (65)

modulus of elasticity of the dam

total hydrostatic force exerted on dam upstream face

functions given by Eq. (34)

equivalent lateral force given by Eq. (80)

equivalent lateral force including higher mode effectsiasmyby Eq. (83)
reservoir and dam heights, respectively

integral given by Eq. (8)

generalized stiffness of the dam at fundamental vibratioden

n™ generalized forces of the dam and dam-reservoir systepectsgely
mass matrix of the dam monolith

total mass of the dam monolith



m; Westergaard added mass at nodéthe dam finite element mesh

M,, M, n'" generalized masses of the dam and dam-reservoir systgrectisly
Ny, N number of considered reservoir and structural modes, casply

Q, Q. vector in Eq. (11) and its elements given by Eq. (13), resyelgt

D, D hydrodynamic pressure and corresponding FRF, respactivel

D0, Dj hydrodynamic pressure FRFs given by Eq. (3)

Dons Din hydrodynamic pressure FRFs given by Egs. (4) and (5), réispBc

Do real-valued hydrodynamic pressure given by Eq. (84)

Ry, R, frequency ratios given by, /wy, andw,/wy, respectively

S, Syj matrix in Eq. (11) and its elements given by Eq. (12), redpelst

Sa pseudo-acceleration ordinate of the earthquake desigirape

t time

T, T; fundamental periods of the dam and dam-reservoir systeapectively
U coefficient given by Eq. (67)

U, i FRFs for horizontal displacement and acceleration, résede

Vv coefficient given by Eq. (67)

V: volume of water tributary to nodeof the dam finite element mesh

7,0 FRFs for vertical displacement and acceleration, respsgti

Zg, a’ég“ax) ground acceleration time history and peak ground acceberaespectively
Ui height of node of the dam finite element mesh

Z,7; vector of generalized coordinates ajitigeneralized coordinate, respectively
Greek symbols

Yir Vi coefficients givenin Table 1 far=1...6

r variable given by Eq. (65)



Fl’FQ’F3aF4

F*

analytical solutions of EqQ. (64) as given by Eq. (66)

real solution of Eq. (64)

discriminant of Eq. (64)

Kronecker symbol

error estimator

coefficients givenin Table 2 far=1...3

ratio of reservoir level to dam height, i.8,/H

parameters given by Egs. (76), (43) and (42), respectively
function given by Eq. (7)

n'" reservoir eigenvalue

mass of the dam per unit height

Poisson’s ratio of dam concrete

n fraction of critical damping of the dam

equivalent damping ratio of the dam-reservoir ESDOF system
mass densities of water and dam concrete, respectively
coefficient given by Eq. (67)

parameters given by Egs. (57), (39) and (38), respectively
frequency parameter defined By

n™ structural mode shape andcomponent of thg™" structural mode shape
exciting frequency

fundamental vibration frequency of the full reservoir

n'" vibration frequency of the dam

fundamental vibration frequency of the dam-reservoiresyst



1 Introduction

Considering the effects of fluid-structure dynamic intéats is important for the design and safety
evaluation of earthquake-excited gravity dams. Signiticasearch has been devoted to this subject
since the pioneering work of Westergaard [1] who modeleddgyghamic loads as an added-mass at-
tached to the dam upstream face. Although Wesregaard'gtar@fformulation was developed assum-
ing a rigid dam impounding incompressible water, it has bslely used for many decades to design
earthquake-resistant concrete dams because of its sitppbaring the last four decades, several re-
searchers developed advanced analytical and numericebages to account for dam deformability
and water compressibility in the seismic response of caaaams [2—12]. Most of these methods are
based on a coupled field solution through sub-structuringp@fdam-reservoir system, making use of
analytical formulations, finite elements, boundary elets@n a mix of these techniques. In the approach
proposed by Chopra and collaborators [2—4, 7], the reseis/oodeled analytically as a continuum fluid
region extending towards infinity in the upstream directdfhen finite or boundary elements are used,
the reservoir has to be truncated at a finite distance andppate transmitting boundary conditions
have to be applied at the cutting boundaries to prevent tefteof spurious waves as discussed by the
authors in a previous work [13]. Some procedures were impleead in numerical codes specialized in
two- and three-dimensional analyses of concrete dams [9ahd some were validated against experi-
mental findings from in-situ forced-vibration tests [15}+1&though such sophisticated techniques were
proven to efficiently handle many aspects of dam-reserwbaractions, their use requires appropriate
expertise and specialized software. For practical engimgapplications, simplified procedures are still
needed to globally evaluate the seismic response of grdaitys, namely for preliminary design or safety
evaluation purposes [19-21].

The fundamental vibration period of dam-reservoir systé&rs key factor in the assessment of their
dynamic or seismic behavior. Most seismic provisions amgpsfied procedures use the fundamen-
tal vibration period as an input parameter to determinengeislesign accelerations and forces from
a site-specific earthquake response spectrum. It is threrefacial to dispose of accurate and yet prac-
tical expressions to evaluate the fundamental period ofigrdams dynamically interacting with their
impounded reservoirs. Hatanaka [22] developed simplifigitessions to estimate the fundamental vi-
bration period of dams with empty reservoirs. He approxadahe dam geometry as a symmetrical
triangle and distinguished the cases where bending or gffieats are predominant in the dynamic re-
sponse of the dam. Considering analogy with beam theoryy@t@[23] proposed simplified formulas
to estimate the fundamental vibration periods of dams witpty and full reservoirs. Chopra [2, 4] an-
alyzed several idealized triangular dam cross-sectiormbtain an approximate fundamental vibration
period and corresponding mode shape of typical gravity daittsan empty reservoir. These standard
dynamic properties and related quantities were implengentsimplified earthquake response analyses
of gravity dams [19, 20]. To determine the fundamental vtibraperiod of a dam including impounded
water effects, Chopra and collaborators [2—4, 7, 15] firdaioled the frequency response curves char-



acterizing dam-reservoir vibrations, and then identifieel fundamental vibration frequency as the one
corresponding to the first resonance on the curves. Themutimnd that hydrodynamic effects lengthen
the fundamental vibration period of gravity dams and thalte®btained for standard dam cross-sections
were presented in figures and tables [19].

As mentioned above, although significant work has been ddvotinvestigate the effects of dam-water
interaction on the dynamic response of gravity dams, ttsame available practical closed-form technique
to accurately estimate the fundamental vibration perica@favity dam including hydrodynamic effects.
In this work, we propose simplified analytical expressiond a systematic procedure to rigourously
determine the fundamental period of vibrating dam-resesystems and corresponding added damping,
force and mass. The method includes the effects of dam gepara flexibility, water compressibility
and varying reservoir level. Formulations assuming eitheompressible or compressible impounded
water are developed. To assess the efficiency and accuratge @roposed procedure, we validate it
against classical Westergaard added mass formulation th&svether advanced analytical and finite
element techniques. We finally illustrate how the proposetnique can be efficiently implemented in a
simplified and practical earthquake analysis of dam-resesystems.

2 Analytical formulation for vibrating dam-reservoir syst ems

2.1 Basic assumptions

The formulation described in this section was originallweleped by Fenves and Chopra [7] to in-
vestigate earthquake excited gravity dams impounding -&&finite rectangular-shape reservoirs. The
approach is based on a sub-structuring technique, whergatines modeled using finite elements and
reservoir effects are accounted for analytically througdirbdynamic loads applied at dam upstream face.
The hydrodynamic pressures are obtained by first detersmimiode shapes of the dam with an empty
reservoir and then applying these mode shapes as boundadjtiocns to the solution of Helmholtz
eqguation that governs reservoir motion in the frequency alomBouaanani and Lu [24] showed that
this procedure to include dam-reservoir interaction \gedglcellent results when compared to techniques
where the reservoir is modeled numerically using potesizaed fluid finite elements. The basic equa-
tions of the formulation are reviewed in this section coasialy compressible and incompressible water
assumptions.

To illustrate the dynamics of dam-reservoir systems, wesiciam a 2D gravity dam cross-section shown
in Fig. 1. The dam has a total height and it impounds a semi-infinite reservoir of constant defjth

A Cartesian coordinate system with axeandy with origin at the heel of the structure is adopted and
the following main assumptions are made : (i) the dam andmaate assumed to have a linear elastic
behavior; (ii) the dam foundation is assumed rigid; (iiig twater in the reservoir is assumed inviscid,
with its motion irrotational and limited to small amplitugleand (iv) gravity surface waves are neglected.
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Figure 1. Dam-reservoir system.

2.2 Coupling hydrodynamic pressure and dam structural resp onse

Considering a unit horizontal and harmonic exciting fredefiground motiorii4(¢) = €, the hydrody-
namic pressure in the reservoir can be expressed in theeinegulomain ag(xz, y,t) = p(z, y, w) €+,
wherew denotes the exciting frequency, apdr, y,w) a complex-valued frequency response function
(FRF) obeying the classical Helmholtz equation

P?p  Pp WP

Pp . Pp W 1
022 "o T 2P 7Y 1)

where(; is the velocity of pressure waves in water. Fenves and CHa@jpshowed that hydrodynamic
pressure FRIp can be decomposed as

Ns B
ﬁ(xvyuw) :ﬁo(x,y,w)—w2ZZj(w)f)j(x,y,w) (2)
j=1
in which py is the FRF for hydrodynamic pressure at rigid dam upstrea® flue to ground accelera-
tion, p; the FRF for hydrodynamic pressure due to horizontal aoa:tiadnw](-x)(o, y) of the dam upstream
face wherepj(-x) is thez—components of thg™ structural mode shapg;, Z; the corresponding general-
ized coordinate and/s the total number of mode shapes included in the analysis.

The complex FRFg, andp; can be expressed as the summatioWpFRFsp,, andp;, corresponding



each to a reservoir mode

(z,y,w Zp(m (z,y,w); (z,y,w ijn (z,y,w (3)

FRFsp,,, andp;,, are given by

dp (-1) el

pOn(x Yy, w ) T (271— 1) /in(LU) COS ()\n y) (4)
n(w)z
Pin(@,y,w) = —=2p Ljn () (Any) ()

wherep, denotes water mass density and where the frequency-indepeeigenvalues,, and termss,,
and/;, are given by

_(@2n-1)7
e (6)
F() = || B() - 5 ™)
= [ 07 (0.) cos ) (8)

When water compressibility is neglected, i@ — +oo, EQq.(7) yields the frequency-independent
terms, =M\,. EQs. (4) and (5) simplify then to
SpcHy  (=1)"
™ (2n—1)°
dpcH, Iy

T (2n—1)

Pon(x,y) = e cos (A, y) (9)

e cos (A, y) (10)

ﬁjn(x> y) - -

Using modal superposition and mode shapes orthogonalidysivow that the vectdZ of frequency-
dependent generalized coordinafgs; = 1... N5, can be obtained by solving the system of equations

SZ=Q (11)
inwhich, forn=1... Ngandj =1... Ng
_ ) H;
Snj(w) = (w2 — w? + 2iwwy &) My 0y + w2/ 70,5, @) (0, y) dy (12)
0
_ H,
with
M, =) M1p,,; Ly, =1, M1 (14)



and wherej,; is the Kronecker symboll, is a column vector with ones when a horizontal translational
degree of freedom corresponds to the direction of eartheeakitation, and zero otherwisk] is the
dam mass matrixy,, is the vibration frequency along mode shapge, and¢,,, M, and L,, are the cor-
responding modal damping ratio, generalized mass and, farspectively. When mode shapes are also
mass-normalized, the generalized masses have unit valyesl forn = 1... Ns. Eq. (2) can then be
applied to find FRFs for hydrodynamic pressure, and thosddor displacements and accelerations can
be expressed as

a(z,y,w Zw%y Zj(w); iz, y,w QZw(%y (W) (15)
— _ NS —
oz, y,w zw 2,y) Z;(w); Bz, y,w) = —w2;w§y><x7y> Zjw)  (16)

whereu andv denote the horizontal and vertical displacements, resedgti andi the horizontal and
vertical accelerations, respectivezhgf”) andwj(-y) the z— andy—components of structural mode shapg
and Ng the number of structural mode shapes included in the asalysi

3 Simplified formulation

3.1 Fundamental mode response analysis

As described in the previous section, a rigorous analysa @dm-reservoir system requires the deter-
mination of several structural mode shapes of the dam witlerapty reservoir. To investigate most
significant factors influencing dam seismic behavior, sifigal procedures using only fundamental vi-
bration mode response have been developed and provenrgffmigoreliminary dam design and safety
evaluation [20]. Considering only the fundamental modeoese, Eqgs. (11) to (13) simplify to

Z(w) = — L1 — By(w)
2 (M1 1 Re[Bl(w)D + iw(01 —w |m[Bl(w)D + K,

(17)

where the generalized earthquake force coefficigntgeneralized masa/;, generalized damping’,
and generalized stiffneds; of the Equivalent Single Degree of Freedom (ESDOF) systetheoflam
with an empty reservoir are given by

— ] M1; M, =] M1, ; Cy = 26w My ; K, =wiM, (18)

in which &, is the fraction of critical damping at the fundamental vilma mode), of the dam with an
empty reservoir, and; its fundamental vibration frequency. A finite element asaycan be conducted
to obtain the generalized forde and generalized masd; from their discretized forms according to



Eq. (18). The following analytical expressions can also $edu

Ly = // ps(z,y) w%gﬂ)(x,y) dxzdy (19)
My = // ps(z.y) [¢§x)(x>y)]2 dx dy + // ps(z,y) [%y)(x,y)r dz dy (20)

in which pg is the mass density of the dam concrete. These equationemplified by approximating
the integration over the area of the dam by integration dgdreight [20] as

Hs z HS T 2
L= [ nsly) i (0,) dy: = [y [P0 dy @D
0 0
whereys is the mass of the dam per unit height.

The complex-valued hydrodynamic termBs and B, in Eq. (17) can be expressed as

Hy Ny
BO(W) - = A 130(07 Y, w) ¢§I)(07 y) dy - Z: BOn(W> (22)

Hy Ny
Biw) = = [ pu(0.3,0) 6{70.9) dy = 3 Buu(w) (23)

in which
Bon(w) = _/()HrﬁOn(Ovyv("}) (0, y) dy (24)
M (2)

Bun(@) = = [ p1a(09,0) ¥17(0,9) dy (25)

These parameters account for the effects of dam-resentenaiction. As can be seen from Eq. (17), the
term B, can be interpreted as an added force, the real pdst @ an added mass and the imaginary part
of By as an added damping. Accordingly, Fenves and Chopra [7] esthdiaat the seismic response of
a dam-reservoir system can be approximated by evaluatengeheralized coordinaté, at the natural
vibration frequency, of the dam-reservoir system. At this frequency, hydrodyicgressureg,, p; and
consequently hydrodynamic terma and B, are real, yielding from Eq. (17)

Zi(w) = ———— (26)

—w?M; + 1w Cy + wi M

where the generalized fordg, generalized mass/; and generalized dampin@, of the dam-reservoir
ESDOF system are obtained by modifying the parameters oE8ROF system of the dam with an
empty reservoir as follows

Ly = Ly + Bo(w) (27)
Ml =M, + Re{Bl(wr)] =M, + Bl(wr) (28)
Cy = Cy — wIm|By(wy)] = Cy (29)

10



From Eq. (29), we may deduce the equivalent damping gatibthe dam-reservoir ESDOF system as

_ G
=1 30
& 2ol (30)

To develop analytical expressions for determining the &mental vibration period of the dam including
the effects of impounded water, we assume thatttemponent of the dam fundamental mode shape

can be approximated as a cubic polynomial function

2 3
x Yy ) Yy
1% )(07 y) = alﬁs + as <E> + as (Es) (31)

wherey is a coordinate varying along the height of the structuresuesl from its base. The coeffi-
cientsay, a; andaz can be determined based on a finite element analysis of therdarolith as illus-
trated in Fig. 2, or using the fundamental mode shape of alatdrgravity dam section proposed by

Fenves and Chopra [19] as will be shown later.

vA

ﬁ_,_ Reservoir free surface

N

wlx)(O, y) = Mode shape from finite —|
element analysis

3 k
~ 2
~> (%)
k=1

Figure 2. Approximation of the fundamental mode shape obaityr dam.
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3.2 Simplified formulation of dam-reservoir interaction as suming incompressible water

Introducing Egs. (6), (9), (10) and (31) into Egs. (22) and)(&ve show that hydrodynamic ternis,,
and By, are real-valued and frequency-independent. They can ressgd as

(=1)" [2X(=1)"Fu(n) = (2n — 1) 7 Gu(n)]
(2n — 1) 73

[2x (~1)"Fu(n) — (2n — 1) 7 Gu(n)]”
(2n —1)° 73

By, = 8pm*Hz (32)

ém = 4pr772H32 (33)

where the hat sign indicates quantities correspondingetontompressible water casges H,/ Hs denotes
the ratio of reservoir level to dam height, and where fundib, andG,, are given by

R e A Ut e i
4n 24n> ey
0 =G G
Eq. (17) simplifies then to R
Zy(w) = b B (35)

~w?(My + By) +iwC + K,
It can be shown numerically that the generalized dampgingas little effect on the fundamental vibra-
tion frequencyw, of the dam-reservoir system. Consequentlycan be approximated as the excitation
frequency corresponding to the resonance of the genedatiaerdinateZ; in Eq. (35) withC; = 0,
yielding
wWi(My + By) — Ky =0 (36)
where
N
él = Z éln = 4PrH52 (n, Ny) (37)

n=1

in which the function®(n, NN;) is defined by

(2 (~1)" Fu(n) — (2n — 1) 7 Goaln)]

(2n —1)° 73 (38)

Ne
O(n, N)=n>>
n=1

A sufficient numberV, of reservoir modes should be included to determine the®&umiq. (38). Figure 3
illustrates the variation op as a function of reservoir height ratipand number of included reservoir
modesN,. We show numerically that the suf converges towards a functiap depending only on
reservoir height ratig

ngﬂ ®(n, Ny) = n*|F1a] + Fea1a2n + (7?@3 + %Cha:a) 0 + Asazazn® + Jeaz n’ (39)
e 39
= (n)

12



where coefficient§; to 75 are given in Table 1.

(@)

(b)

M

Figure 3. Variation ofb andg as a function of reservoir height raticand number of included reservoir
modesN;: (a)n = 0.50 and (b)y = 1.00.

The limit ¢ is also shown in Fig. 3. Replacing into Eq. (36) yields thedamental resonant frequency
and period of a dam-reservoir system with water comprdggibeglected

4p.H2 5
Wr = w1 _ : Tr:Tl\/l‘i‘w (40)
L decHs o) M,
M,

whereT; denotes the fundamental vibration period of the dam withraptg reservoir.

To obtain a simplified expression of the generalized coatéiZd; of the dam-reservoir system at reso-
nant frequency.;, a simplified expression of the hydrodynamic tefin has to be found. When water

13



Table 1. Coefficients; and~;, i =1,...,6.

Incompressible water Compressible water
A = 25.769 x 1073 v = 8.735x 1073
Ay = 31.820 x 1073 7o = 14.059 x 1073
A3 = 10.405 x 1073 v3 = H5.776 x 1073
Ay = 22.082 x 1073 4 =11.172 x 1073
As = 15.031 x 1073 s = 9.343 x 1073
Y = 5.587 x 107° 76 = 3.840 x 1073

compressibility is neglected, we have according to Eq. (32)

Ny N
By =" Bon = 8p:H2 ©(n, Ny) (41)

n=1

where the functio® (7, N;) is given by

—1)" 25 (=1)" L F, () + (20— 1) 7 G (n)]

N (-1
O, No) =" 3 ( n 1 (42)

As for the function®, we show numerically that the suéh converges towards a functishdepending
only on reservoir height ratig

lim  O(n, Ny) = n*(Crax + Gaaan + Gaz?) = 0(y) (43)

Nr*)JrOO

where the coefficients, to (; are given in Table 2. The hydrodynamic tefy can then be approximated
as

By = 8p:H 0(n) (44)
Table 2. Coefficients; and¢;, i = 1,2, 3.
Incompressible water Compressible water
£ = 27234 x 1073 ¢l = 3.795 x 1073
(, =15.323 x 1073 = 3.105 x 1073
(3 = 10.006 x 1073 (3 = 2.500 x 1073

Neglecting the influence of damping on the fundamental vitnafrequencyw, of the dam-reservoir
system and using the analytical expressions developedealtios properties given in Egs. (27), (28)

14



and (30) to characterize the dam-reservoir ESDOF systemaarbe obtained as

Ly = Ly + 8p:HZ 6(n) (45)
7 2 ~ wi
M1 = M1 + 4ers QO(’T]) = E M1 (46)
r
g Ol Wr
= — = — 47
W A (47)
3.3 Simplified formulation of dam-reservoir interaction co nsidering water compressibil-

ity

Introducing Egs. (4) to (6) and Eg. (31) into Egs. (22) and (2@ show that the hydrodynamic terg,
and B;,, are now complex-valued and frequency-dependent, andhiéacan be expressed as

(=)™ [2x (=1)"Fu(n) — (2n — 1) 7 G ()]

Bon(w) = 4pmHs 48

(w) Pr o — 1)2 S \/(2n — 1) B w_2 (48)
An?H2 C?

By (6) = 2, 22X (=1)"Fa(n) = (20— 1) 7 Gu(n)] 49)

2n — 1)*7?  W?
I — 1)% 72 (7__
2 )”V WPz C?

As mentioned previously, the fundamental vibration fraguyeo, of the dam-reservoir system can be ap-
proximated as the frequency corresponding to the resorrihe generalized coordinaf§ in Eq. (17)
with C'; =0, yielding in this case

wp [ My + Bi(wy)] — K1 =0 (50)
Eq. (50) is more difficult to solve than Eq. (36) obtained asisig incompressible water, since the tebn

is now frequency-dependent. To circumvent this difficulg show that we can approximate the value
of hydrodynamic ternB; at the resonant frequency as

Nr

Bl(u},—) = Blyl(u)r) + Z: Bln(O) (51)

n=2

whereB; ;1 (wr) is given by

(52)
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in whichwy, =7C\/(2H,) denotes the fundamental vibration frequency of the fukresir, and wheréd";

andG, can be obtained from Eq. (34) with=1
8 24
Fi(n) =nay, + (1 — P)n%g + (1 — P)n?’ag

4an 24>
Gi(n) = —p<@1 R a3>

The value ofB;,, atw =0 is given by Eq. (49)

[2 (1) Fu(n) — (20 — 1) 7 Gum)]”

Bln(0> = 4pr772Hs2 (2n o 1)3 7T3

Eqg. (51) can then be rewritten as

B = Buale) + 412 {00,y = L 270 + w6 |

where®(n, N;) is given by Eq. (38). Considering the limit & — +oo, we find that

Bl(Wr) = Bl,l(wr) + 4erS2 90(77)
in which

e = Jim_ @, 5) ~ Lam ) + i)

=" [%a? + Yaa1aan + (1303 + ya0aas ) n* + Ysazasn’ + Yeadn'

(53)

(54)

(55)

(56)

(57)

We note thatp(n) has the same expression @&)) in Eqg. (39), but with coefficients; to -4 cor-
responding to the compressible water case as indicatedble Ta To validate Eq. (56), Fig.4 com-
pares the termp, HZ ¢(n) to the real and imaginary parts of the hydrodynamic téBn— B; ;) deter-
mined at frequency ratias/w, varying from 0 to 4. As can be seen, the approximation in E). ($
valid for frequency ratios)/wy up to 1, and a fortiori for the dam-reservoir fundamentafjfrencycwr,
sincew,/wy < 1. Substituting Eq. (56) into Eq. (50) and introducing thegfrency ratiosR, = w;/wq
and R; = w1 /wg, we show that Eq. (50) can be rewritten under the form of acauation to be solved

for y=R?
A1X3+A2X2+A3X+A4:0

16
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where

4pcHg (1)
Ag = 1+ s w1 59
0 + M, (59)
Ay = A2 (60)
Apm? H2 2)2
2
Ay = Ay (Ao +2B) ¢ { AL R ) + 7 Gl (61)
As = R} (240 + R3) (62)
Ay = R} (63)
0.01 : :
(a)
& 0.005)
|
)
s 0
=
S-
T 0005 |
<f
-0.01 : :
1 T T
(b)
] os|
|
)
s 0 i
=
S-
T05)
<f
—1 1 | | | |
0 0.5 1 1.5 2 2.5

w/wo

Figure 4. Variation of the term&p, HZ o(n) and (B, — By 1) as a function of frequency ratio/w, and
reservoir height ratig: (a) » = 0.50 and (b) = 1.00.

The fundamental vibration frequency = wy R, and periodl; = 27 /w, of the dam-reservoir system can
then be obtained by solving Eq. (58) numerically or anafllycusing Cardano’s formula. In the latter
case, Eq. (58) can be first reduced to

[+ DT+ Dy =0 (64)
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where

1 A, A; 1 <A2 )2 2 <A2 )3 Ay As Ay
I'= - Di=——-—-(—"); Dy=—(—=) — — 65
Xt3g, T, T3\ ) =7 \a,) "3 T4 (65)
Eq. (64) has three solutiony, I'; andl'; that can be expressed as [25]
N =U+V; Py =7U+7*V; Py =72U+7V (66)
where s /3
B Dy . 1D 1 V3
U_( 2+\/Z) : v=—22h r=—s+i¥ 67)
and where\ denotes the discriminant
DN /Dy
A= (=2 —_= 68
() + (%) (69
We denote a$™* the only real solution amonig,, I'; andI’'; that satisfies
A, 5 A
— <I"<R{+— 69
34, rt 34, (69)

The frequency ratid?, and fundamental vibration peridg of the dam-reservoir system are then given

by

A 2
Ro=2 = peo 22 N (70)

[T A2
Wy F—S—AAl

Once the vibration frequency; is known, we can determine the properties of the dam-resdf&DOF
system as described in the previous section for the caseaipressible water. When water compress-
ibility is included, we show that the hydrodynamic tefsp(w,) can be expressed as

Ny
BQ(W,—) = Boyl(u}r) + Z Bon(O) (71)
n=2
whereBj 1 (wr) iS given by

, [2F1(n) +7 G ()]

_ 2

BO,l(wl') - 8[),—77 Hs 3 \/ﬁ (72)

and where the value d8,, atw =0 is obtained from Eg. (48)

2 (=1)"LE,(n) + (20 — 1) 7 Gu(n)]
By, (0) = 8pn* H? [ 73
0 ( ) pﬂ] S (277, . 1)3 7T3 ( )
Eqg. (71) can then be rewritten as

2

Bo(wr) = Bo1(wr) + 8p Hj {@(7]7 Ny) — % 2Fy(n) + WGl(U)]} (74)
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whereO(n, N;) is given by Eq. (42). Considering the limit 8 — +oo, we find that
By(wr) = Bo1(wr) + 8pcHZ 6(n) (75)
in which

0(n) = lim @(n,Nr)—Z—ZPFl(n)MGl(n)]

=0(n) — Z— [2F1(77) + 7 Gl(n)] (76)

=7’ (leh + Coagn + C3a3772)

where coefficientg; to (3 are given in Table 2. Neglecting the influence of damping eftimdamental
vibration frequency of the dam-reservoir system and udnegainalytical expressions developed above,
Egs. (27), (28) and (30) become when water compressibdlityaluded

_ [2Fy(n) + 7 G1(n)]
Ly = Ly + 8p H {‘9(77) + 17’ 5 \/7 } (77)
/1 — R?
2F1(n) + WGl(n)r w?
M, = M, + ApHZ {90(77) + n? ; \/7 } ; M, (78)
m4/1 — R? Wy
f=—r6 (79)

3.4 Application to the simplified earthquake analysis of gra vity dams

The maximum response of a dam-reservoir ESDOF system tazhtal earthquake ground motion can
be approximated by its static response under the effectvalgnt lateral forceg; applied at the dam
upstream face and expressed per unit dam height as [20, 26]

ily) = 2= 51,6 {1s) ¥170,9) = 110,00}

1 (80)

2 3

L
1 (Thgl) [MS( ) < ;_J[ _'_&2% +a35—{[3> _p1(07?/>wr)]

1

WhereSa(Tr, 51) is the pseudo-acceleration ordinate of the earthquakgmlegectrum at vibration pe-
riod 7, and for damping rati@; of the dam-reservoir ESDOF system described previoustiyarere the
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hydrodynamic pressurg (0, y, wy) can be expressed using a cubic mode shape approximation as

51(0.90) = 2pr§r: 2 % (—1)" Fy(n) — (2”; D7 Gnm) [(2712;[1)%1 (61)
n=1 (2n —1)" 72 wr r
2n—1)m \l 747721_]2 c2

in which £, andG,, are given by Eq. (34), and the ratio of generalized fat¢éo generalized mas¥/;
is obtained from Eqs. (77) and (78). If water compressipbiitneglected, Eq. (81) simplifies to
N 1\ _ _ _

2x (=1)"F,(n)—(2n—1)7G,(n) o [(Qn 1)7Ty1 (82)

51(0, y,wr) = dpenH.
p1(0,y, wr) = 4prn sn; 2n 1) o,

with L, and M, to be determined using Egs. (45) and (46). We note that theisrsign in Eq. (80)
corresponds to the orientation of the system of axes showigirb. We also assume that the fundamental
mode shape compone@f) is positive as indicated on the same Figure.

Fenves and Chopra [19, 20] discussed the effects of higheatiwon modes on dam earthquake response.
Using a static correction technique, this effect can beatisal for approximately by evaluating the static
response of the dam-reservoir ESDOF subjected to the l&becas fs; applied at the dam upstream face
and expressed per unit dam height as

fsely) = (max’{us(y)ll—]@—ll ﬁw)(O,y)]
(83)

- [50(07 y) + %ﬁ) §$)(07 y) /OHr 50(07 y) ¢§I)(07 y) dy‘| }

Whereig“ax)denotes the maximum ground acceleration,ad, ;) the real-valued, frequency-independent
hydrodynamic pressure applied on a rigid dam subjected tutagtound acceleration and impounding
an incompressible water reservoir given by

~ _ 8pmHs &L (—1)" 2n—1)=w
p0(07y) - 7T2 nz::l (2n — 1)2 COS [W y] (84)

Assuming a cubic mode approximation, we show that Eq.(83)earewritten as

2 3
fuly) = <max>{us<y>(1— L e e ) —50<o,y>} )

The total earthquake response of the dam can then be degshioyrapplying the SRSS rule to combine
response quantities associated with the fundamental ghehvibration modes [19, 20].
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4 Dam models, analyses and results
4.1 Analyses conducted

In this section, we assess the effectiveness of the eqsatieveloped above in determining the funda-
mental mode response of gravity dams. To illustrate theyaisatypes conducted, we consider a dam

section with dimensions inspired from the tallest non-ti@er monolith of Pine Flat dam [15]. The dam
cross-section is shown in Fig. 5 (a).
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00 f A 00
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_ TN
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Figure 5. (a) Dam-reservoir system geometry; (b) Analygietl: Finite element model; (c) Analysis
type II: analytical solution; (d) Analysis type Ill: Wesggard added mass formulation.

The following six types of analysis are conducted to deteenthe fundamental vibration frequency of
the dam-reservoir system:

— Analysis type I: a finite element analysis where both the dadthe reservoir are modeled using finite
elements. The software ADINA [27] is used to discretize thendnonolith into 9-node plane stress
finite elements. The reservoir is truncated at a large distanfi20H, from the dam upstream face
to eliminate reflection of waves at the far reservoir upstreand. The 9-node potential-based finite
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elements programmed in ADINA [27] are used to model the k@serFluid-structure interaction is
accounted for through special interface elements alsadiecl in the software. A finite element model
of the dam-reservoir system is shown in Fig.5 (d). The perforce of the potential-based formula-
tion and the fluid-structure interface elements was asdesse previous work [24]. The method can
accurately account for fluid-structure interaction in deeservoir systems with a general geometry,
including when the dam upstream face is not vertical, whicfor example the case of the slightly
inclined upstream face of the Pine Flat dam section. Thdtsesithis analysis will serve as our refer-
ence solution in the rest of the paper.

Analysis type II: the analytical solution originally dewegled by Fenves and Chopra [7] and reviewed
in section 2. The same 9-node plane stress finite elementlrbadiefor Type | analysis is used as
illustrated in Fig. 5 (c). The structural frequency respookthe dam including hydrodynamic effects
is then determined using Egs. (2) to (16). The fundamenrgagjuiency is identified next as that corre-
sponding to the first resonant structural response.

Analysis type llI: a finite element analysis of the Pine Flabdwhere the reservoir hydrodynamic
loading is modeled approximately using Westergaard addess formulation, assuming a rigid dam
with a vertical upstream face, impounding incompressibdgew[1]. The effect of the reservoir is

equivalent in this case to inertia forces generated by a lbbayater of parabolic shape moving back
and forth with the vibrating dam. The finite element modehaf iam and the body of water are shown
in Fig.5(d). The added masse, to be attached to a nodéelonging to dam-reservoir interface can

be written as .
m; = ger\/Hr(Hr_?/i) (86)

wherey; denotes the height of nodeabove the dam base and the volume of water tributary to
nodei. As previously, the software ADINA [27] is used to discretithe dam monolith into 9-node
plane stress finite elements.

Analysis type IV: the new procedure proposed in this papapdied using approximate parameters
Ly, My, w andwf”) proposed by Fenves and Chopra [19, 20]. The authors anadgzxeslal standard
dam cross-sections and obtained the following conseevapproximations for preliminary design
purposes’; = 0.13 Mg and M; = 0.043 M, whereMs is the total mass of the dam monolith. Fenves
and Chopra [19, 20] also proposed to estimate the fundamehtation frequencyv; and periodr;

of the dam with an empty reservoir as

2\ E. 0.38 H.
w1 = T > 3 T1 = S (87)
0.38 Hg vV Es

where the dam concrete modulus of elastidityis expressed in MPa anbg in meters to yieldo,
inrad/s and’} in seconds. To develop a simplified earthquake analysieptoe, Fenves and Chopra [19,
20] used the standard fundamental mode shape given in TaBlgp8/ing the procedure illustrated in
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Fig. 2, this standard mode shape can be approximated usewypoints at elevationg = Hs/3, y, =
2Hs/3 andys = H,, yielding the coefficients; = 0.3535, ay = —0.5455 andaz = 1.1920. Eq. (31)
becomes then

S S S

2 3
07(0,) = 0.3535 - — 0.5455 <%> +1.1920 <Hi> (88)

The resulting cubic interpolation is shown in Table 3. Whexter compressibility is neglected, Eq. (39)
simplifies to

P(n) = n* [7.938n" = 9.774n* + 12.400n” — 6.136 1 + 3.220] x 10~ (89)

after replacing the coefficients to a3 by their values. Introducing/; = 0.043 Ms and substituting
Egs. (87) and (89) into Eq. (40) yields the dam-reservoidamental vibration frequency, and pe-
riod 7T, when water compressibility is neglected. For example, icemsg a full reservoir, i.en =1,

we obtain
711.6H?2
d T, =Ty (/1 + s

T11.6H2 ' Ms
J1+
Ms

When water compressibility is included, replacing the Gioeitsa, to a3 by their values into Egs. (53)
and (57) yields

(90)

Wy =

o(n) =n* [5.456 n* —6.0751° 4 6.4261* — 2.711 1 + 1.091} x 1073 (91)
Fi(n) = 0.353571 — 0.1033 > — 1.7065 (92)
Gi(n) = —0.1433 7 + 1.1748 * (93)

The frequency ratid?, can be approximated as

w1 4’)7\/ ES
= — = 4
Fa wo  0.38C, (94)

CoefficientsA, to A, can be obtained using/; = 0.043 Ms and substituting Egs. (91) to (94) into
Egs. (59) to (63). Eq. (58) is then solved fpe= R? to obtain the fundamental vibration frequengy=
wo Ry and periodl; =27 /w, of the dam-reservoir system.

Analysis type V: the new procedure proposed in this papepied using the approximate param-
etersL,, M; and wf”) proposed by Fenves and Chopra [19, 20], but with the natuegluencyw,
obtained from a finite element analysis. All the equatiorscdbed in the previous analysis Type IV
apply except for the frequency rati®, which now results from finite element analysis.

Analysis type VI: the new procedure proposed in this papapied using parameters, M, wf”)

andw; obtained from a finite element analysis of the dam sectioh aft empty reservoir. A funda-
mental mode shape normalized with respect to the mass o&thecdn be used, yielding a generalized
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massM; = 1. Applying the procedure illustrated in Fig. 2, the fundatamode shape evaluated at
dam upstream face is interpolated using three points aa@b®sy, = Hs/3, y, =2Hs/3 andy; = Hs

to find the coefficients; to a3 in EQ.(31). Table 3 contains the original mode shape resuftiom
finite element analysis of Pine Flat dam section as well astlhéc interpolation used. When water
compressibility is neglected, the resulting coefficiemtsiatroduced into Eqg. (39) to obtai®(n) and
then the dam-reservoir vibration frequengyusing the generalized mas$, and the fundamental vi-
bration frequency; obtained from finite element analysis of the dam with an emgs$grvoir. When
water compressibility is included, coefficients to a3 are introduced into Egs. (57) and (53) to ob-
tain the parameters(n), F(n) andG,(n). CoefficientsA, to A, are determined next and Eq. (58) is
then solved fory = R? to obtain the vibration frequency of the dam-reservoir aysas described in
section 3.

4.2 Validation of the proposed simplified formulation

The six analysis types described in the previous sectiosaréed out to assess the effectiveness of the
method proposed in this paper. The Pine Flat dam sectionmidedgreviously is studied first. A mass
density ps = 2400 kg/n? and a Poisson’s ratio = 0.2 are assumed as concrete material properties.
To examine the influence of dam stiffness, two moduli of &égt £s = 25 GPa andEs = 35 GPa are
considered. A water mass densjty= 1000 kg/m’ is adopted. Both compressible and incompressible
water assumptions are investigated, with a pressure wdweeityeof C = 1440 m/s in the former case.
We compute the period ratidg /7, whereT; is the fundamental vibration period of the dam-reservoir
system obtained using any of the six analysis types descpbeviously, and’; is the reference funda-
mental vibration period determined using a finite elemesatyasis of the dam with an empty reservoir.
Figures 6 and 7 illustrate the period ratifig7; obtained considering incompressible and compressible
water assumptions, respectively. Results for reservaghiieatios fromn=0.5 to 1.0 and two moduli of
elasticity F's= 25 GPa andEs = 35 GPa are given. Figures 6 and 7 also show bar charts repregéné

following error estimator
T, — Tr(FE)
G
whereTF® denotes the reference fundamental vibration period obthirsing a finite element analysis

of the dam-reservoir system, i.e. analysis type I.

(95)

First, it is apparent from the curves that the fundamentabgepredicted using finite elements, i.e.
analysis type |, and the analytical formulation proposedregves and Chopra [7], i.e. analysis type II,
are very close for all height ratios and regardless of whetlaer is considered compressible or not.
This observation confirms the effectiveness of the analfmmulation even for dams with a slightly

inclined upstream face.
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Table 3. Pine Flat dam fundamental mode shapes used.
Normalized mode shapel™ (0, y) /¢ (0, H)

Fenves and Chopra [19] Finite element analysis
Original Cubic Original Cubic

y/Hs mode shape interpolation mode shape interpolation
1.00 1.000 1.000 1.000 1.000
0.95 0.866 0.866 0.875 0.871
0.90 0.735 0.745 0.752 0.755
0.85 0.619 0.638 0.640 0.650
0.80 0.530 0.544 0.543 0.556
0.75 0.455 0.461 0.461 0.472
0.70 0.389 0.389 0.391 0.398
0.65 0.334 0.327 0.331 0.333
0.60 0.284 0.273 0.279 0.277
0.55 0.240 0.228 0.233 0.228
0.50 0.200 0.189 0.194 0.186
0.45 0.165 0.157 0.159 0.150
0.40 0.135 0.130 0.129 0.120
0.35 0.108 0.108 0.102 0.094
0.30 0.084 0.089 0.080 0.073
0.25 0.065 0.073 0.060 0.056
0.20 0.047 0.058 0.044 0.042
0.15 0.034 0.045 0.030 0.030
0.10 0.021 0.031 0.019 0.019
0.05 0.010 0.016 0.010 0.009
0.00 0.000 0.000 0.000 0.000
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— — Empty reservoir Analyses: — Typel — Type Il — Type Il
— Type IV — Type V —— Type VI
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Figure 6. Variation of period rati®; /77 as a function of reservoir height raticassuming incompressible
water.

When water compressibility is neglected, Eq. (40) showsttia elasticity modulus of the dam has no
effet on the ratidl;/7}, a result that we confirmed numerically and analyticalby, uising analysis types

| and II. Therefore, period ratidg /77 for incompressible water are illustrated independentithefdam
elasticity modulus. Fig. 6 shows that analysis type Il gsidlestergaard added mass predicts the funda-
mental frequency of the dam-reservoir system with a an efrabout12 per cent for a full reservoir in
the case of Pine Flat dam. Figs. 6 and 7 also clearly inditateaur simplified procedure, i.e. analysis
type VI, yields excellent results regardless of dam stgghand compressible or incompressible water
assumptions. The results of the new simplified procedurairem very good agreement when approx-
imate parameters are used instead of those obtained fras dleiment analysis of the dam section, i.e.
analysis types IV and V.

To investigate the influence of gravity dam cross-sectiamggtry and dam stiffness on the accuracy of
the simplified procedure proposed in this paper, we analyse ttypical gravity dam cross-sections with
heights varying fron®0 m to 35 m as illustrated in Fig. 8. The three dams are denoted D1 tad@f the
highest to the lowest. Finite element models of the dam@esand corresponding dam-reservoir systems
are built using the software ADINA [27]. The new simplified thed is then applied using approximate
parameters, i.e. analysis types IV to V, as well as parasmegsulting from finite element analyses of
each of the dam sections with an empty reservoir, i.e. aisaiyge VI. The period ratio%; /7 obtained

are illustrated in Fig. 9 considering reservoir heightaatirom»n = 0.5 to 1.0 and two moduli of elas-
ticity Fs=25 GPa andts= 35 GPa. The different analyses are summarized in Table 4 fotycpurposes.
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— — Empty reservoir Analyses: — Typel — Type 11
— Type IV — Type V —— Type VI
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Figure 7. Variation of period rati@; /7 as a function of reservoir height ratioconsidering water com-
pressibility: (a)Fs=25 GPa and (b)ys=35 GPa.
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Figure 8. Geometry and finite element models of gravity damssisections D1, D2 and D3.

|« 455 m—»]

Table 4. Summary of analysis types conducted.

l<27.5 m>]

Gravity dam
Es=25GPa Es=35GPa
Water assumption Analysis PineFlat D1 D2 D3 PineFlat D1 D2 D3
Incompressible Type | X X X X X X X X
Type Il X - X - -
Type llI X - X - -
Type IV X X X X X
Type V X X X X X
Type VI X X X X X
Compressible Type | X X X X X X X X
Type X - X - -
Type llI - - - - -
Type IV X X X X X
Type V X X X X X
Type VI X X X X X
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We first observe that the results of analysis types | and Viaar®st identical for all the studied dam
sections independently of water compressibility or incogspibility assumptions, dam geometry and
stiffness. Analysis types IV and V yield satisfactory résdibr the 90-m high dam section D1. They are
less accurate however when applied to smaller dam secti@rasnd D3. Analysis type IV introduces
large discrepancies because it uses approximate fundahgemeralized force, generalized mass, mode
shape and vibration period that were mainly calibratedgibigher standard dam sections [19, 20]. We
note that the fundamental period predictions are improvieenaan input fundamental vibration period
obtained from a finite element analysis of the dam with emeservoir is used instead of Eq. (87), i.e.
analysis type V.

Based on the previous findings, we recommend to use the prdpomplified method according to
scheme of analysis type VI. The other schemes would proypgeopriate results for high gravity dams,
while an increasing error is introduced for smaller damsa3ges the accuracy of the proposed method
in determining the damping ratig of the dam-reservoir system ESDOF, Fig. 10 illustrates #r&@tion

of this parameter as a function of reservoir height ratia 0.5 considering water compressibility, two
moduli of elasticity s = 25 GPa andFEs = 35 GPa and the four gravity dam cross-sections described
previously. In this figure, the results determined by apmiythe proposed method following the scheme
of analysis type VI are compared to those obtained using leesical method developed by Fenves
and Chopra [7] and reviewed in section 2. The curves cled&dyvshat both techniques yield identical
damping ratios for the four dam monoliths.

Finally, denotingFs= p,gH? /2 the total hydrostatic force exerted on dam upstream faceletermine
the normalized equivalent lateral forc&sf, (y)/Fs considering a unit ordinate of pseudo-acceleration
spectrum, water compressibility, a full reservoir, iye= 1, two moduli of elasticity and the four dams
cross-sections as before. Again, the resulting forceibdigtons obtained using the classical and proposed
methods are practically coincident for the four dam mohslgtudied as illustrated in Fig. 11.

5 Concluding remarks

This paper proposed an original practical method to evaltre seismic response of gravity dams. We
first developed a simplified but yet a rigorous and practicamulation to determine the fundamen-
tal period of vibrating dam-reservoir systems and corredpw added damping, force and mass. The
new formulation includes the effects of dam geometry andtibty, water compressibility and varying
reservoir level. The mathematical derivations of the methere provided considering both incompress-
ible and compressible water assumptions. In the former, eas@roposed a closed-form expression to
determine the fundamental vibration period of a dam-resesystem. When water compressibility is
considered, we showed that the fundamental vibration geri@ dam-reservoir system can be obtained
by simply solving a cubic equation. Simplified expressiansdmpute the equivalent lateral earthquake
forces and the static correction forces are proposed. Tioeses are to be applied at the dam upstream
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face to determine response quantities of interest, sudeastiesses throughout the dam cross-section.

To assess the efficiency and accuracy of the proposed teshrsgveral analysis types were applied to
dam cross-sections with various geometries and rigiditlgmunding reservoirs with different levels.
The following conclusions could be drawn from the compariebthe period predictions obtained from
the different analyses: (i) the analytical formulation gilhodynamic effects yields accurate predictions
when compared to numerical results obtained by modelingdabervoir using potential-based finite el-
ements, (ii) the proposed simplified procedure gives egnelesults when the fundamental generalized
earthquake force coefficient, generalized mass, mode sirapeibration period are directly obtained
from a finite element analysis of the dam with an empty reseraad (iii) the fundamental period pre-
dictions of the simplified procedure remain satisfactonyléwge dams while larger discrepancies are
observed for smaller ones when approximate parameterssackinstead of those obtained from finite
element analysis. We also showed that the new procedudsyael excellent estimation of the equivalent
damping ratio and equivalent earthquake lateral forces. grioposed technique presents a significant
advantage over conventional Westergaard added-mass l&drom) namely because it can directly ac-
count for dam flexibility and water compressibility, whileedtergaard’s solution assumes that the dam
is rigid and water is incompressible. The analytical exgi@s developed and the procedure steps were
presented in a manner such that calculations could be eagillgmented in a spreadsheet or program
for practical dynamic analysis of gravity dams. We cleatipwed that the proposed procedure can be
used effectively for simplified evaluation of the vibratipariod and seismic response of gravity dams
irrespective of their geometry and stiffness.
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Figure 10. Variation of the damping rati§, as a function of reservoir height ratip consider-
ing water compressibility: (a) and (b) Pine Flat dam; (c) gdyl Dam D1; (e) and (f) Dam D2;
and (g) and (h) Dam D3.
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