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Simplified evaluation of the vibration period

and seismic response of gravity dam-water systems
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ABSTRACT

This paper proposes a practical procedure for a simplified evaluation of the fundamental vibration period of dam-

water systems, and corresponding added damping, force and mass, all key parameters to assess the seismic behavior.

The proposed technique includes the effects of dam geometryand flexibility, dam-reservoir interaction, water com-

pressibility and varying reservoir level. The mathematical derivations of the method are provided considering both

incompressible and compressible water assumptions. In theformer case, we propose a closed-form expression for

the fundamental vibration period of a dam-reservoir system. When water compressibility is included, we show that

the fundamental vibration period can be obtained by simply solving a cubic equation. The proposed procedure is

validated against classical Westergaard added mass formulation as well as other more advanced analytical and fi-

nite element techniques. Gravity dam monoliths with various geometries and rigidities impounding reservoirs with

different heights are investigated. The new approach yields results in excellent agreement with those obtained when

the reservoir is modeled analytically, or numerically using potential-based finite elements. The analytical expres-

sions developed and the procedure steps are presented in a manner so that calculations can be easily implemented

in a spreadsheet or program for simplified and practical seismic analysis of gravity dams.
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Nomenclature

Abbreviations

ESDOF Equivalent single degree of freedom

FRF Frequency response function

Roman symbols

A1, A2, A3, A4 coefficients given by Eqs. (59) to (63)

a1,a2,a3 coefficients used for cubic approximation of structural mode shapes

B0,B1 hydrodynamic parameters given by Eqs. (22) and (23), respectively

B0n,B1n hydrodynamic parameters given by Eqs. (24) and (25), respectively

B̂0n, B̂1n hydrodynamic parameters given by Eqs. (32) and (33), respectively

Cn, C̃n nth generalized damping of the dam and dam-reservoir system, respectively

Cr velocity of pressure waves in the reservoir

D1,D2 coefficients given by Eq. (65)

Es modulus of elasticity of the dam

Fst total hydrostatic force exerted on dam upstream face

Fn,Gn functions given by Eq. (34)

f1 equivalent lateral force given by Eq. (80)

fsc equivalent lateral force including higher mode effects as given by Eq. (83)

Hr,Hs reservoir and dam heights, respectively

Ijn integral given by Eq. (8)

K1 generalized stiffness of the dam at fundamental vibration mode

Ln, L̃n nth generalized forces of the dam and dam-reservoir system, respectively

M mass matrix of the dam monolith

Ms total mass of the dam monolith
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mi Westergaard added mass at nodei of the dam finite element mesh

Mn,M̃n nth generalized masses of the dam and dam-reservoir system, respectively

Nr,Ns number of considered reservoir and structural modes, respectively

Q̄, Q̄n vector in Eq. (11) and its elements given by Eq. (13), respectively

p, p̄ hydrodynamic pressure and corresponding FRF, respectively

p̄0, p̄j hydrodynamic pressure FRFs given by Eq. (3)

p̄0n, p̄jn hydrodynamic pressure FRFs given by Eqs. (4) and (5), respectively

̂̄p0 real-valued hydrodynamic pressure given by Eq. (84)

R1,Rr frequency ratios given byω1/ω0 andωr/ω0, respectively

S̄, S̄nj matrix in Eq. (11) and its elements given by Eq. (12), respectively

Sa pseudo-acceleration ordinate of the earthquake design spectrum

t time

T1,Tr fundamental periods of the dam and dam-reservoir system, respectively

U coefficient given by Eq. (67)

ū, ¯̈u FRFs for horizontal displacement and acceleration, respectively

V coefficient given by Eq. (67)

Vi volume of water tributary to nodei of the dam finite element mesh

v̄, ¯̈v FRFs for vertical displacement and acceleration, respectively

ẍg, ẍ(max)
g ground acceleration time history and peak ground acceleration, respectively

yi height of nodei of the dam finite element mesh

Z̄, Z̄j vector of generalized coordinates andj th generalized coordinate, respectively

Greek symbols

γi, γ̂i coefficients given in Table 1 fori = 1 . . . 6

Γ variable given by Eq. (65)
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Γ1,Γ2,Γ3,Γ4 analytical solutions of Eq. (64) as given by Eq. (66)

Γ∗ real solution of Eq. (64)

∆ discriminant of Eq. (64)

δnj Kronecker symbol

ε error estimator

ζi, ζ̂i coefficients given in Table 2 fori = 1 . . . 3

η ratio of reservoir level to dam height, i.e.Hr/Hs

θ, θ̂,Θ parameters given by Eqs. (76), (43) and (42), respectively

κn function given by Eq. (7)

λn nth reservoir eigenvalue

µs mass of the dam per unit height

ν Poisson’s ratio of dam concrete

ξn nth fraction of critical damping of the dam

ξ̃r equivalent damping ratio of the dam-reservoir ESDOF system

ρr,ρs mass densities of water and dam concrete, respectively

τ coefficient given by Eq. (67)

ϕ, ϕ̂,Φ parameters given by Eqs. (57), (39) and (38), respectively

χ frequency parameter defined byR2
r

ψn,ψ(x)
j nth structural mode shape andx–component of thej th structural mode shape

ω exciting frequency

ω0 fundamental vibration frequency of the full reservoir

ωn nth vibration frequency of the dam

ωr fundamental vibration frequency of the dam-reservoir system
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1 Introduction

Considering the effects of fluid-structure dynamic interactions is important for the design and safety

evaluation of earthquake-excited gravity dams. Significant research has been devoted to this subject

since the pioneering work of Westergaard [1] who modeled hydrodynamic loads as an added-mass at-

tached to the dam upstream face. Although Wesregaard’s analytical formulation was developed assum-

ing a rigid dam impounding incompressible water, it has beenwidely used for many decades to design

earthquake-resistant concrete dams because of its simplicity. During the last four decades, several re-

searchers developed advanced analytical and numerical approaches to account for dam deformability

and water compressibility in the seismic response of concrete dams [2–12]. Most of these methods are

based on a coupled field solution through sub-structuring ofthe dam-reservoir system, making use of

analytical formulations, finite elements, boundary elements or a mix of these techniques. In the approach

proposed by Chopra and collaborators [2–4,7], the reservoir is modeled analytically as a continuum fluid

region extending towards infinity in the upstream direction. When finite or boundary elements are used,

the reservoir has to be truncated at a finite distance and appropriate transmitting boundary conditions

have to be applied at the cutting boundaries to prevent reflection of spurious waves as discussed by the

authors in a previous work [13]. Some procedures were implemented in numerical codes specialized in

two- and three-dimensional analyses of concrete dams [9, 14], and some were validated against experi-

mental findings from in-situ forced-vibration tests [15–18]. Although such sophisticated techniques were

proven to efficiently handle many aspects of dam-reservoir interactions, their use requires appropriate

expertise and specialized software. For practical engineering applications, simplified procedures are still

needed to globally evaluate the seismic response of gravitydams, namely for preliminary design or safety

evaluation purposes [19–21].

The fundamental vibration period of dam-reservoir systemsis a key factor in the assessment of their

dynamic or seismic behavior. Most seismic provisions and simplified procedures use the fundamen-

tal vibration period as an input parameter to determine seismic design accelerations and forces from

a site-specific earthquake response spectrum. It is therefore crucial to dispose of accurate and yet prac-

tical expressions to evaluate the fundamental period of gravity dams dynamically interacting with their

impounded reservoirs. Hatanaka [22] developed simplified expressions to estimate the fundamental vi-

bration period of dams with empty reservoirs. He approximated the dam geometry as a symmetrical

triangle and distinguished the cases where bending or sheareffects are predominant in the dynamic re-

sponse of the dam. Considering analogy with beam theory, Okamoto [23] proposed simplified formulas

to estimate the fundamental vibration periods of dams with empty and full reservoirs. Chopra [2, 4] an-

alyzed several idealized triangular dam cross-sections toobtain an approximate fundamental vibration

period and corresponding mode shape of typical gravity damswith an empty reservoir. These standard

dynamic properties and related quantities were implemented in simplified earthquake response analyses

of gravity dams [19, 20]. To determine the fundamental vibration period of a dam including impounded

water effects, Chopra and collaborators [2–4, 7, 15] first obtained the frequency response curves char-
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acterizing dam-reservoir vibrations, and then identified the fundamental vibration frequency as the one

corresponding to the first resonance on the curves. The authors found that hydrodynamic effects lengthen

the fundamental vibration period of gravity dams and the results obtained for standard dam cross-sections

were presented in figures and tables [19].

As mentioned above, although significant work has been devoted to investigate the effects of dam-water

interaction on the dynamic response of gravity dams, there is no available practical closed-form technique

to accurately estimate the fundamental vibration period ofa gravity dam including hydrodynamic effects.

In this work, we propose simplified analytical expressions and a systematic procedure to rigourously

determine the fundamental period of vibrating dam-reservoir systems and corresponding added damping,

force and mass. The method includes the effects of dam geometry and flexibility, water compressibility

and varying reservoir level. Formulations assuming eitherincompressible or compressible impounded

water are developed. To assess the efficiency and accuracy ofthe proposed procedure, we validate it

against classical Westergaard added mass formulation as well as other advanced analytical and finite

element techniques. We finally illustrate how the proposed technique can be efficiently implemented in a

simplified and practical earthquake analysis of dam-reservoir systems.

2 Analytical formulation for vibrating dam-reservoir syst ems

2.1 Basic assumptions

The formulation described in this section was originally developed by Fenves and Chopra [7] to in-

vestigate earthquake excited gravity dams impounding semi-infinite rectangular-shape reservoirs. The

approach is based on a sub-structuring technique, where thedam is modeled using finite elements and

reservoir effects are accounted for analytically through hydrodynamic loads applied at dam upstream face.

The hydrodynamic pressures are obtained by first determining mode shapes of the dam with an empty

reservoir and then applying these mode shapes as boundary conditions to the solution of Helmholtz

equation that governs reservoir motion in the frequency domain. Bouaanani and Lu [24] showed that

this procedure to include dam-reservoir interaction yields excellent results when compared to techniques

where the reservoir is modeled numerically using potential-based fluid finite elements. The basic equa-

tions of the formulation are reviewed in this section considering compressible and incompressible water

assumptions.

To illustrate the dynamics of dam-reservoir systems, we consider a 2D gravity dam cross-section shown

in Fig. 1. The dam has a total heightHs and it impounds a semi-infinite reservoir of constant depthHr.

A Cartesian coordinate system with axesx andy with origin at the heel of the structure is adopted and

the following main assumptions are made : (i) the dam and water are assumed to have a linear elastic

behavior; (ii) the dam foundation is assumed rigid; (iii) the water in the reservoir is assumed inviscid,

with its motion irrotational and limited to small amplitudes; and (iv) gravity surface waves are neglected.
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Figure 1. Dam-reservoir system.

2.2 Coupling hydrodynamic pressure and dam structural resp onse

Considering a unit horizontal and harmonic exciting free-field ground motion̈xg(t)=eiωt, the hydrody-

namic pressure in the reservoir can be expressed in the frequency domain asp(x, y, t) = p̄(x, y, ω) eiωt,

whereω denotes the exciting frequency, andp̄(x, y, ω) a complex-valued frequency response function

(FRF) obeying the classical Helmholtz equation

∂2p̄

∂x2
+
∂2p̄

∂y2
+
ω2

C2
r

p̄ = 0 (1)

whereCr is the velocity of pressure waves in water. Fenves and Chopra[7] showed that hydrodynamic

pressure FRF̄p can be decomposed as

p̄(x, y, ω) = p̄0(x, y, ω)− ω2
Ns∑

j=1

Z̄j(ω) p̄j(x, y, ω) (2)

in which p̄0 is the FRF for hydrodynamic pressure at rigid dam upstream face due to ground accelera-

tion, p̄j the FRF for hydrodynamic pressure due to horizontal accelerationψ(x)
j (0, y) of the dam upstream

face whereψ(x)
j is thex–components of thej th structural mode shapeψj , Z̄j the corresponding general-

ized coordinate andNs the total number of mode shapes included in the analysis.

The complex FRFs̄p0 andp̄j can be expressed as the summation ofNr FRFsp̄0n andp̄jn corresponding
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each to a reservoir moden

p̄0(x, y, ω) =
Nr∑

n=1

p̄0n(x, y, ω) ; p̄j(x, y, ω) =
Nr∑

n=1

p̄jn(x, y, ω) (3)

FRFsp̄0n andp̄jn are given by

p̄0n(x, y, ω) =
4ρr

π

(−1)n

(2n− 1)

eκn(ω)x

κn(ω)
cos (λn y) (4)

p̄jn(x, y, ω) = −2ρr Ijn
eκn(ω)x

κn(ω)
cos (λn y) (5)

whereρr denotes water mass density and where the frequency-independent eigenvaluesλn and termsκn
andIjn are given by

λn =
(2n− 1)π

2Hr
(6)

κn(ω) =

√√√√λ2n(ω)−
ω2

C2
r

(7)

Ijn =
1

Hr

∫ Hr

0
ψ

(x)
j (0, y) cos (λn y) dy (8)

When water compressibility is neglected, i.e.Cr → +∞, Eq. (7) yields the frequency-independent

termκn=λn. Eqs. (4) and (5) simplify then to

p̄0n(x, y) =
8ρrHr

π2

(−1)n

(2n− 1)2
eλnx cos (λn y) (9)

p̄jn(x, y) = −
4ρrHr

π

Ijn
(2n− 1)

eλnx cos (λn y) (10)

Using modal superposition and mode shapes orthogonality, we show that the vector̄Z of frequency-

dependent generalized coordinatesZ̄j, j = 1 . . . Ns , can be obtained by solving the system of equations

S̄ Z̄ = Q̄ (11)

in which, forn = 1 . . .Ns andj = 1 . . . Ns

S̄nj(ω) =
(
ω2
n − ω2 + 2 i ω ωn ξn

)
Mn δnj + ω2

∫ Hr

0
p̄j(0, y, ω)ψ

(x)
n (0, y) dy (12)

Q̄n(ω) = −Ln +
∫ Hr

0
p̄0(0, y, ω)ψ

(x)
n (0, y) dy (13)

with

Mn = ψT
nMψn ; Ln = ψT

nM1 (14)
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and whereδnj is the Kronecker symbol,1 is a column vector with ones when a horizontal translational

degree of freedom corresponds to the direction of earthquake excitation, and zero otherwise,M is the

dam mass matrix,ωn is the vibration frequency along mode shapeψn, andξn, Mn andLn are the cor-

responding modal damping ratio, generalized mass and force, respectively. When mode shapes are also

mass-normalized, the generalized masses have unit valuesMn =1 for n = 1 . . . Ns. Eq. (2) can then be

applied to find FRFs for hydrodynamic pressure, and those fordam displacements and accelerations can

be expressed as

ū(x, y, ω) =
Ns∑

j=1

ψ
(x)
j (x, y) Z̄j(ω) ; ¯̈u(x, y, ω) = −ω2

Ns∑

j=1

ψ
(x)
j (x, y) Z̄j(ω) (15)

v̄(x, y, ω) =
Ns∑

j=1

ψ
(y)
j (x, y) Z̄j(ω) ; ¯̈v(x, y, ω) = −ω2

Ns∑

j=1

ψ
(y)
j (x, y) Z̄j(ω) (16)

whereū andv̄ denote the horizontal and vertical displacements, respectively, ¯̈u and ¯̈v the horizontal and

vertical accelerations, respectively,ψ(x)
j andψ(y)

j thex– andy–components of structural mode shapeψj ,

andNs the number of structural mode shapes included in the analysis.

3 Simplified formulation

3.1 Fundamental mode response analysis

As described in the previous section, a rigorous analysis ofa dam-reservoir system requires the deter-

mination of several structural mode shapes of the dam with anempty reservoir. To investigate most

significant factors influencing dam seismic behavior, simplified procedures using only fundamental vi-

bration mode response have been developed and proven efficient for preliminary dam design and safety

evaluation [20]. Considering only the fundamental mode response, Eqs. (11) to (13) simplify to

Z̄1(ω) =
−L1 −B0(ω)

−ω2

(
M1 + Re

[
B1(ω)

])
+ iω

(
C1 − ω Im

[
B1(ω)

])
+K1

(17)

where the generalized earthquake force coefficientL1, generalized massM1, generalized dampingC1,

and generalized stiffnessK1 of the Equivalent Single Degree of Freedom (ESDOF) system ofthe dam

with an empty reservoir are given by

L1 = ψ
T
1 M1 ; M1 = ψ

T
1 Mψ1 ; C1 = 2ξ1ω1M1 ; K1 = ω2

1M1 (18)

in which ξ1 is the fraction of critical damping at the fundamental vibration modeψ1 of the dam with an

empty reservoir, andω1 its fundamental vibration frequency. A finite element analysis can be conducted

to obtain the generalized forceL1 and generalized massM1 from their discretized forms according to
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Eq. (18). The following analytical expressions can also be used

L1 =
∫ ∫

ρs(x, y)ψ
(x)
1 (x, y) dxdy (19)

M1 =
∫ ∫

ρs(x, y)
[
ψ

(x)
1 (x, y)

]2
dxdy +

∫ ∫
ρs(x, y)

[
ψ

(y)
1 (x, y)

]2
dxdy (20)

in whichρs is the mass density of the dam concrete. These equations can be simplified by approximating

the integration over the area of the dam by integration over its height [20] as

L1 =
∫ Hs

0
µs(y)ψ

(x)
1 (0, y) dy ; M1 =

∫ Hs

0
µs(y)

[
ψ

(x)
1 (0, y)

]2
dy (21)

whereµs is the mass of the dam per unit height.

The complex-valued hydrodynamic termsB0 andB1 in Eq. (17) can be expressed as

B0(ω) = −
∫ Hr

0
p̄0(0, y, ω)ψ

(x)
1 (0, y) dy =

Nr∑

n=1

B0n(ω) (22)

B1(ω) = −
∫ Hr

0
p̄1(0, y, ω)ψ

(x)
1 (0, y) dy =

Nr∑

n=1

B1n(ω) (23)

in which

B0n(ω) = −
∫ Hr

0
p̄0n(0, y, ω)ψ

(x)
1 (0, y) dy (24)

B1n(ω) = −
∫ Hr

0
p̄1n(0, y, ω)ψ

(x)
1 (0, y) dy (25)

These parameters account for the effects of dam-reservoir interaction. As can be seen from Eq. (17), the

termB0 can be interpreted as an added force, the real part ofB1 as an added mass and the imaginary part

of B1 as an added damping. Accordingly, Fenves and Chopra [7] showed that the seismic response of

a dam-reservoir system can be approximated by evaluating the generalized coordinatēZ1 at the natural

vibration frequencyωr of the dam-reservoir system. At this frequency, hydrodynamic pressures̄p0, p̄1 and

consequently hydrodynamic termsB0 andB1 are real, yielding from Eq. (17)

Z̄1(ωr) =
−L̃1

−ω2
r M̃1 + i ωrC̃1 + ω2

1M1

(26)

where the generalized forcẽL1, generalized mass̃M1 and generalized damping̃C1 of the dam-reservoir

ESDOF system are obtained by modifying the parameters of theESDOF system of the dam with an

empty reservoir as follows

L̃1 = L1 +B0(ωr) (27)

M̃1 =M1 + Re
[
B1(ωr)

]
=M1 +B1(ωr) (28)

C̃1 = C1 − ωr Im
[
B1(ωr)

]
= C1 (29)
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From Eq. (29), we may deduce the equivalent damping ratioξ̃r of the dam-reservoir ESDOF system as

ξ̃r =
C̃1

2ωrM̃1

(30)

To develop analytical expressions for determining the fundamental vibration period of the dam including

the effects of impounded water, we assume that thex–component of the dam fundamental mode shapeψ1

can be approximated as a cubic polynomial function

ψ
(x)
1 (0, y) = a1

y

Hs
+ a2

(
y

Hs

)2
+ a3

(
y

Hs

)3
(31)

wherey is a coordinate varying along the height of the structure measured from its base. The coeffi-

cientsa1, a2 anda3 can be determined based on a finite element analysis of the dammonolith as illus-

trated in Fig. 2, or using the fundamental mode shape of a standard gravity dam section proposed by

Fenves and Chopra [19] as will be shown later.

Figure 2. Approximation of the fundamental mode shape of a gravity dam.
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3.2 Simplified formulation of dam-reservoir interaction as suming incompressible water

Introducing Eqs. (6), (9), (10) and (31) into Eqs. (22) and (23), we show that hydrodynamic termsB0n

andB1n are real-valued and frequency-independent. They can be expressed as

B̂0n = 8ρrη
2H2

s

(−1)n
[
2×(−1)nFn(η)− (2n− 1) πGn(η)

]

(2n− 1)3 π3
(32)

B̂1n = 4ρrη
2H2

s

[
2×(−1)nFn(η)− (2n− 1)πGn(η)

]2

(2n− 1)3 π3
(33)

where the hat sign indicates quantities corresponding to the incompressible water case,η=Hr/Hs denotes

the ratio of reservoir level to dam height, and where functionsFn andGn are given by

Fn(η) = ηa1 +

[
1−

8

(2n− 1)2 π2

]
η2a2 +

[
1−

24

(2n− 1)2 π2

]
η3a3

Gn(η) = −
4η

(2n− 1)2 π2

[
a1 −

24η2

(2n− 1)2 π2
a3

] (34)

Eq. (17) simplifies then to

Z̄1(ω) =
−L1 − B̂0

−ω2
(
M1 + B̂1

)
+ iωC1 +K1

(35)

It can be shown numerically that the generalized dampingC1 has little effect on the fundamental vibra-

tion frequencyωr of the dam-reservoir system. Consequently,ωr can be approximated as the excitation

frequency corresponding to the resonance of the generalized coordinateZ̄1 in Eq. (35) withC1 = 0,

yielding

ω2
r

(
M1 + B̂1

)
−K1 = 0 (36)

where

B̂1 =
Nr∑

n=1

B̂1n = 4ρrH
2
s Φ(η,Nr) (37)

in which the functionΦ(η,Nr) is defined by

Φ(η,Nr) = η2
Nr∑

n=1

[
2×(−1)nFn(η)− (2n− 1)π Gn(η)

]2

(2n− 1)3 π3
(38)

A sufficient numberNr of reservoir modes should be included to determine the sumΦ in Eq. (38). Figure 3

illustrates the variation ofΦ as a function of reservoir height ratioη and number of included reservoir

modesNr. We show numerically that the sumΦ converges towards a function̂ϕ depending only on

reservoir height ratioη

lim
Nr→+∞

Φ(η,Nr) = η4
[
γ̂1a

2
1 + γ̂2a1a2η +

(
γ̂3a

2
2 + γ̂4a1a3

)
η2 + γ̂5a2a3η

3 + γ̂6a
2
3 η

4
]

= ϕ̂(η)

(39)
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where coefficientŝγ1 to γ̂6 are given in Table 1.

Figure 3. Variation ofΦ andϕ̂ as a function of reservoir height ratioη and number of included reservoir
modesNr: (a) η = 0.50 and (b)η = 1.00.

The limit ϕ̂ is also shown in Fig. 3. Replacing into Eq. (36) yields the fundamental resonant frequency

and period of a dam-reservoir system with water compressibility neglected

ωr =
ω1√

1 +
4ρrH

2
s ϕ̂(η)

M1

; Tr = T1

√

1 +
4ρrH

2
s ϕ̂(η)

M1

(40)

whereT1 denotes the fundamental vibration period of the dam with an empty reservoir.

To obtain a simplified expression of the generalized coordinateZ̄1 of the dam-reservoir system at reso-

nant frequencyωr, a simplified expression of the hydrodynamic term̂B0 has to be found. When water
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Table 1. Coefficientŝγi andγi, i = 1, . . . , 6.

Incompressible water Compressible water

γ̂1 = 25.769× 10−3 γ1 = 8.735× 10−3

γ̂2 = 31.820× 10−3 γ2 = 14.059× 10−3

γ̂3 = 10.405× 10−3 γ3 = 5.776× 10−3

γ̂4 = 22.082× 10−3 γ4 = 11.172× 10−3

γ̂5 = 15.031× 10−3 γ5 = 9.343× 10−3

γ̂6 = 5.587× 10−3 γ6 = 3.840× 10−3

compressibility is neglected, we have according to Eq. (32)

B̂0 =
Nr∑

n=1

B̂0n = 8ρrH
2
s Θ(η,Nr) (41)

where the functionΘ(η,Nr) is given by

Θ(η,Nr) = η2
Nr∑

n=1

(−1)n−1
[
2×(−1)n−1Fn(η) + (2n− 1) πGn(η)

]

(2n− 1)3 π3
(42)

As for the functionΦ, we show numerically that the sumΘ converges towards a function̂θ depending

only on reservoir height ratioη

lim
Nr→+∞

Θ(η,Nr) = η3
(
ζ̂1a1 + ζ̂2a2η + ζ̂3a3η

2
)
= θ̂(η) (43)

where the coefficientŝζ1 to ζ̂3 are given in Table 2. The hydrodynamic term̂B0 can then be approximated

as

B̂0 = 8ρrH
2
s θ̂(η) (44)

Table 2. Coefficientŝζi andζi, i = 1, 2, 3.

Incompressible water Compressible water

ζ̂1 = 27.234× 10−3 ζ1 = 3.795× 10−3

ζ̂2 = 15.323× 10−3 ζ2 = 3.105× 10−3

ζ̂3 = 10.006× 10−3 ζ3 = 2.500× 10−3

Neglecting the influence of damping on the fundamental vibration frequencyωr of the dam-reservoir

system and using the analytical expressions developed above, the properties given in Eqs. (27), (28)
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and (30) to characterize the dam-reservoir ESDOF system cannow be obtained as

L̃1 = L1 + 8ρrH
2
s θ̂(η) (45)

M̃1 =M1 + 4ρrH
2
s ϕ̂(η) =

ω2
1

ω2
r

M1 (46)

ξ̃1 =
C1

2ωrM̃1

=
ωr

ω1

ξ1 (47)

3.3 Simplified formulation of dam-reservoir interaction co nsidering water compressibil-

ity

Introducing Eqs. (4) to (6) and Eq. (31) into Eqs. (22) and (23), we show that the hydrodynamic termsB0n

andB1n are now complex-valued and frequency-dependent, and that they can be expressed as

B0n(ω) = 4ρrηHs

(−1)n
[
2×(−1)nFn(η)− (2n− 1)π Gn(η)

]

(2n− 1)2 π2

√
(2n− 1)2π2

4η2H2
s

−
ω2

C2
r

(48)

B1n(ω) = 2ρrηHs

[
2×(−1)nFn(η)− (2n− 1) πGn(η)

]2

(2n− 1)2 π2

√
(2n− 1)2π2

4η2H2
s

−
ω2

C2
r

(49)

As mentioned previously, the fundamental vibration frequencyωr of the dam-reservoir system can be ap-

proximated as the frequency corresponding to the resonanceof the generalized coordinatēZ1 in Eq. (17)

with C1=0, yielding in this case

ω2
r

[
M1 +B1(ωr)

]
−K1 = 0 (50)

Eq. (50) is more difficult to solve than Eq. (36) obtained assuming incompressible water, since the termB1

is now frequency-dependent. To circumvent this difficulty,we show that we can approximate the value

of hydrodynamic termB1 at the resonant frequencyωr as

B1(ωr) = B1,1(ωr) +
Nr∑

n=2

B1n(0) (51)

whereB1,1(ωr) is given by

B1,1(ωr) = 4ρrη
2H2

s

[
2F1(η) + πG1(η)

]2

π3

√
1−

ω2
r

ω2
0

(52)
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in whichω0=πCr/(2Hr) denotes the fundamental vibration frequency of the full reservoir, and whereF1

andG1 can be obtained from Eq. (34) withn=1

F1(η) = ηa1 +

(
1−

8

π2

)
η2a2 +

(
1−

24

π2

)
η3a3

G1(η) = −
4η

π2

(
a1 −

24η2

π2
a3

) (53)

The value ofB1n atω=0 is given by Eq. (49)

B1n(0) = 4ρrη
2H2

s

[
2×(−1)nFn(η)− (2n− 1)π Gn(η)

]2

(2n− 1)3 π3
(54)

Eq. (51) can then be rewritten as

B1(ωr) = B1,1(ωr) + 4ρrH
2
s

{
Φ(η,Nr)−

η2

π3

[
2F1(η) + πG1(η)

]2}
(55)

whereΦ(η,Nr) is given by Eq. (38). Considering the limit asNr → +∞, we find that

B1(ωr) = B1,1(ωr) + 4ρrH
2
s ϕ(η) (56)

in which

ϕ(η) = lim
Nr→+∞

Φ(η,Nr)−
η2

π3

[
2F1(η) + πG1(η)

]2

= ϕ̂(η)−
η2

π3

[
2F1(η) + πG1(η)

]2

= η4
[
γ1a

2
1 + γ2a1a2η +

(
γ3a

2
2 + γ4a1a3

)
η2 + γ5a2a3η

3 + γ6a
2
3η

4
]

(57)

We note thatϕ(η) has the same expression asϕ̂(η) in Eq. (39), but with coefficientsγ1 to γ6 cor-

responding to the compressible water case as indicated in Table 1. To validate Eq. (56), Fig. 4 com-

pares the term4ρrH
2
s ϕ(η) to the real and imaginary parts of the hydrodynamic term(B1 − B1,1) deter-

mined at frequency ratiosω/ω0 varying from 0 to 4. As can be seen, the approximation in Eq. (56) is

valid for frequency ratiosω/ω0 up to 1, and a fortiori for the dam-reservoir fundamental frequencyωr,

sinceωr/ω0 < 1. Substituting Eq. (56) into Eq. (50) and introducing the frequency ratiosRr = ωr/ω0

andR1=ω1/ω0, we show that Eq. (50) can be rewritten under the form of a cubic equation to be solved

for χ=R2
r

A1 χ
3 + A2 χ

2 + A3 χ+ A4 = 0 (58)
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where

A0 = 1 +
4ρrH

2
s ϕ(η)

M1

(59)

A1 = A2
0 (60)

A2 = −A0

(
A0 + 2R2

1

)
+

{
4ρrη

2H2
s

M1π3

[
2F1(η) + π G1(η)

]2}2
(61)

A3 = R2
1

(
2A0 +R2

1

)
(62)

A4 = −R4
1 (63)

Figure 4. Variation of the terms4ρrH
2
s ϕ(η) and(B1 − B1,1) as a function of frequency ratioω/ω0 and

reservoir height ratioη: (a) η = 0.50 and (b)η = 1.00.

The fundamental vibration frequencyωr =ω0Rr and periodTr =2π/ωr of the dam-reservoir system can

then be obtained by solving Eq. (58) numerically or analytically using Cardano’s formula. In the latter

case, Eq. (58) can be first reduced to

Γ3 +D1 Γ +D2 = 0 (64)
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where

Γ = χ+
1

3

A2

A1

; D1 =
A3

A1

−
1

3

(
A2

A1

)2
; D2 =

2

27

(
A2

A1

)3
−
A2A3

3A2
1

+
A4

A1

(65)

Eq. (64) has three solutionsΓ1, Γ2 andΓ3 that can be expressed as [25]

Γ1 = U + V ; Γ2 = τ U + τ 2 V ; Γ3 = τ 2 U + τ V (66)

where

U =
(
−
D2

2
+
√
∆
)1/3

; V = −
1

3

D1

U
; τ = −

1

2
+ i

√
3

2
(67)

and where∆ denotes the discriminant

∆ =
(
D1

3

)3
+
(
D2

2

)2
(68)

We denote asΓ∗ the only real solution amongΓ1, Γ2 andΓ3 that satisfies

A2

3A1
6 Γ∗

6 R2
1 +

A2

3A1
(69)

The frequency ratioRr and fundamental vibration periodTr of the dam-reservoir system are then given

by

Rr =
ωr

ω0
=

√

Γ∗ −
A2

3A1
; Tr =

2π

ω0

√
Γ∗ −

A2

3A1

(70)

Once the vibration frequencyωr is known, we can determine the properties of the dam-reservoir ESDOF

system as described in the previous section for the case of incompressible water. When water compress-

ibility is included, we show that the hydrodynamic termB0(ωr) can be expressed as

B0(ωr) = B0,1(ωr) +
Nr∑

n=2

B0n(0) (71)

whereB0,1(ωr) is given by

B0,1(ωr) = 8ρrη
2H2

s

[
2F1(η) + πG1(η)

]

π3
√
1− R2

r

(72)

and where the value ofB0n atω=0 is obtained from Eq. (48)

B0n(0) = 8ρrη
2H2

s

[
2×(−1)n−1Fn(η) + (2n− 1)π Gn(η)

]

(2n− 1)3 π3
(73)

Eq. (71) can then be rewritten as

B0(ωr) = B0,1(ωr) + 8ρrH
2
s

{
Θ(η,Nr)−

η2

π3

[
2F1(η) + π G1(η)

]}
(74)
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whereΘ(η,Nr) is given by Eq. (42). Considering the limit asNr → +∞, we find that

B0(ωr) = B0,1(ωr) + 8ρrH
2
s θ(η) (75)

in which

θ(η) = lim
Nr→+∞

Θ(η,Nr)−
η2

π3

[
2F1(η) + πG1(η)

]

= θ̂(η)−
η2

π3

[
2F1(η) + πG1(η)

]

= η3
(
ζ1a1 + ζ2a2η + ζ3a3η

2
)

(76)

where coefficientsζ1 to ζ3 are given in Table 2. Neglecting the influence of damping on the fundamental

vibration frequency of the dam-reservoir system and using the analytical expressions developed above,

Eqs. (27), (28) and (30) become when water compressibility is included

L̃1 = L1 + 8ρrH
2
s



θ(η) + η2

[
2F1(η) + πG1(η)

]

π3
√
1− R2

r



 (77)

M̃1 =M1 + 4ρrH
2
s




ϕ(η) + η2

[
2F1(η) + π G1(η)

]2

π3
√
1−R2

r





=
ω2
1

ω2
r

M1 (78)

ξ̃1 =
ωr

ω1
ξ1 (79)

3.4 Application to the simplified earthquake analysis of gra vity dams

The maximum response of a dam-reservoir ESDOF system to a horizontal earthquake ground motion can

be approximated by its static response under the effect of equivalent lateral forcesf1 applied at the dam

upstream face and expressed per unit dam height as [20,26]

f1(y) =
L̃1

M̃1

Sa

(
Tr, ξ̃1

) {
µs(y)ψ

(x)
1 (0, y)− p̄1(0, y, ωr)

}

=
L̃1

M̃1

Sa

(
Tr, ξ̃1

) [
µs(y)

(
a1

y

Hs
+ a2

y2

H2
s

+ a3
y3

H3
s

)
− p̄1(0, y, ωr)

] (80)

whereSa

(
Tr, ξ̃1

)
is the pseudo-acceleration ordinate of the earthquake design spectrum at vibration pe-

riodTr and for damping ratiõξ1 of the dam-reservoir ESDOF system described previously, and where the
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hydrodynamic pressurēp1(0, y, ωr) can be expressed using a cubic mode shape approximation as

p̄1(0, y, ωr) = 2ρr

Nr∑

n=1

2× (−1)n Fn(η)− (2n− 1)π Gn(η)

(2n− 1) π

√√√√(2n− 1)2 π2

4η2H2
s

−
ω2

r

C2
r

cos

[
(2n− 1)π

2Hr
y

]
(81)

in whichFn andGn are given by Eq. (34), and the ratio of generalized forceL̃1 to generalized mass̃M1

is obtained from Eqs. (77) and (78). If water compressibility is neglected, Eq. (81) simplifies to

p̄1(0, y, ωr) = 4ρrηHs

Nr∑

n=1

2× (−1)n Fn(η)− (2n− 1) πGn(η)

(2n− 1)2 π2
cos

[
(2n− 1)π

2Hr
y

]
(82)

with L̃1 and M̃1 to be determined using Eqs. (45) and (46). We note that the minus sign in Eq. (80)

corresponds to the orientation of the system of axes shown inFig. 5. We also assume that the fundamental

mode shape componentψ(x)
1 is positive as indicated on the same Figure.

Fenves and Chopra [19,20] discussed the effects of higher vibration modes on dam earthquake response.

Using a static correction technique, this effect can be accounted for approximately by evaluating the static

response of the dam-reservoir ESDOF subjected to the lateral forcesfsc applied at the dam upstream face

and expressed per unit dam height as

fsc(y) = ẍ(max)
g



µs(y)

[
1−

L1

M1
ψ

(x)
1 (0, y)

]

−

[
̂̄p0(0, y) +

µs(y)

M1

ψ
(x)
1 (0, y)

∫ Hr

0

̂̄p0(0, y)ψ
(x)
1 (0, y) dy

]


(83)

whereẍ(max)
g denotes the maximum ground acceleration, and̂̄p0(0, y) the real-valued, frequency-independent

hydrodynamic pressure applied on a rigid dam subjected to a unit ground acceleration and impounding

an incompressible water reservoir given by

̂̄p0(0, y) =
8ρrηHs

π2

Nr∑

n=1

(−1)n

(2n− 1)2
cos

[
(2n− 1)π

2ηHs
y

]
(84)

Assuming a cubic mode approximation, we show that Eq.(83) can be rewritten as

fsc(y) = ẍ(max)
g



µs(y)

(
1−

[
L1

M1

+ 8ρrH
2
s
θ̂(η)

M1

][
a1

y

Hs
+ a2

y2

H2
s

+ a3
y3

H3
s

])
− ̂̄p0(0, y)



 (85)

The total earthquake response of the dam can then be determined by applying the SRSS rule to combine

response quantities associated with the fundamental and higher vibration modes [19,20].
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4 Dam models, analyses and results

4.1 Analyses conducted

In this section, we assess the effectiveness of the equations developed above in determining the funda-

mental mode response of gravity dams. To illustrate the analysis types conducted, we consider a dam

section with dimensions inspired from the tallest non-overflow monolith of Pine Flat dam [15]. The dam

cross-section is shown in Fig. 5 (a).

Figure 5. (a) Dam-reservoir system geometry; (b) Analysis type I: Finite element model; (c) Analysis
type II: analytical solution; (d) Analysis type III: Westergaard added mass formulation.

The following six types of analysis are conducted to determine the fundamental vibration frequency of

the dam-reservoir system:

– Analysis type I: a finite element analysis where both the dam and the reservoir are modeled using finite

elements. The software ADINA [27] is used to discretize the dam monolith into 9-node plane stress

finite elements. The reservoir is truncated at a large distance of 20Hr from the dam upstream face

to eliminate reflection of waves at the far reservoir upstream end. The 9-node potential-based finite
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elements programmed in ADINA [27] are used to model the reservoir. Fluid-structure interaction is

accounted for through special interface elements also included in the software. A finite element model

of the dam-reservoir system is shown in Fig. 5 (d). The performance of the potential-based formula-

tion and the fluid-structure interface elements was assessed in a previous work [24]. The method can

accurately account for fluid-structure interaction in dam-reservoir systems with a general geometry,

including when the dam upstream face is not vertical, which is for example the case of the slightly

inclined upstream face of the Pine Flat dam section. The results of this analysis will serve as our refer-

ence solution in the rest of the paper.

– Analysis type II: the analytical solution originally developed by Fenves and Chopra [7] and reviewed

in section 2. The same 9-node plane stress finite element model built for Type I analysis is used as

illustrated in Fig. 5 (c). The structural frequency response of the dam including hydrodynamic effects

is then determined using Eqs. (2) to (16). The fundamental frequency is identified next as that corre-

sponding to the first resonant structural response.

– Analysis type III: a finite element analysis of the Pine Flat dam where the reservoir hydrodynamic

loading is modeled approximately using Westergaard added mass formulation, assuming a rigid dam

with a vertical upstream face, impounding incompressible water [1]. The effect of the reservoir is

equivalent in this case to inertia forces generated by a bodyof water of parabolic shape moving back

and forth with the vibrating dam. The finite element model of the dam and the body of water are shown

in Fig. 5 (d). The added massemi to be attached to a nodei belonging to dam-reservoir interface can

be written as

mi =
7

8
ρr Vi

√
Hr(Hr − yi) (86)

whereyi denotes the height of nodei above the dam base andVi the volume of water tributary to

nodei. As previously, the software ADINA [27] is used to discretize the dam monolith into 9-node

plane stress finite elements.

– Analysis type IV: the new procedure proposed in this paper isapplied using approximate parameters

L1, M1, ω1 andψ(x)
1 proposed by Fenves and Chopra [19, 20]. The authors analyzedseveral standard

dam cross-sections and obtained the following conservative approximations for preliminary design

purposes:L1 =0.13Ms andM1 =0.043Ms, whereMs is the total mass of the dam monolith. Fenves

and Chopra [19, 20] also proposed to estimate the fundamental vibration frequencyω1 and periodT1
of the dam with an empty reservoir as

ω1 =
2π

√
Es

0.38Hs
; T1 =

0.38Hs√
Es

(87)

where the dam concrete modulus of elasticityEs is expressed in MPa andHs in meters to yieldω1

in rad/s andT1 in seconds. To develop a simplified earthquake analysis procedure, Fenves and Chopra [19,

20] used the standard fundamental mode shape given in Table 3. Applying the procedure illustrated in
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Fig. 2, this standard mode shape can be approximated using three points at elevationsy1=Hs/3, y2=

2Hs/3 andy3 = Hs, yielding the coefficientsa1 = 0.3535, a2 = −0.5455 anda3 = 1.1920. Eq. (31)

becomes then

ψ
(x)
1 (0, y) = 0.3535

y

Hs
− 0.5455

(
y

Hs

)2
+ 1.1920

(
y

Hs

)3
(88)

The resulting cubic interpolation is shown in Table 3. When water compressibility is neglected, Eq. (39)

simplifies to

ϕ̂(η) = η4
[
7.938 η4 − 9.774 η3 + 12.400 η2 − 6.136 η + 3.220

]
× 10−3 (89)

after replacing the coefficientsa1 to a3 by their values. IntroducingM1 = 0.043Ms and substituting

Eqs. (87) and (89) into Eq. (40) yields the dam-reservoir fundamental vibration frequencyωr and pe-

riod Tr when water compressibility is neglected. For example, considering a full reservoir, i.e.η = 1,

we obtain

ωr =
ω1√

1 +
711.6H2

s

Ms

; Tr = T1

√

1 +
711.6H2

s

Ms
(90)

When water compressibility is included, replacing the coefficientsa1 toa3 by their values into Eqs. (53)

and (57) yields

ϕ(η) = η4
[
5.456 η4 − 6.075 η3 + 6.426 η2 − 2.711 η + 1.091

]
× 10−3 (91)

F1(η) = 0.3535 η − 0.1033 η2 − 1.7065 η3 (92)

G1(η) = −0.1433 η + 1.1748 η3 (93)

The frequency ratioR1 can be approximated as

R1 =
ω1

ω0
=

4η
√
Es

0.38Cr
(94)

CoefficientsA0 to A4 can be obtained usingM1 = 0.043Ms and substituting Eqs. (91) to (94) into

Eqs. (59) to (63). Eq. (58) is then solved forχ=R2
r to obtain the fundamental vibration frequencyωr=

ω0Rr and periodTr=2π/ωr of the dam-reservoir system.

– Analysis type V: the new procedure proposed in this paper is applied using the approximate param-

etersL1, M1 andψ(x)
1 proposed by Fenves and Chopra [19, 20], but with the natural frequencyω1

obtained from a finite element analysis. All the equations described in the previous analysis Type IV

apply except for the frequency ratioR1 which now results from finite element analysis.

– Analysis type VI: the new procedure proposed in this paper isapplied using parametersL1, M1, ψ
(x)
1

andω1 obtained from a finite element analysis of the dam section with an empty reservoir. A funda-

mental mode shape normalized with respect to the mass of the dam can be used, yielding a generalized
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massM1 = 1. Applying the procedure illustrated in Fig. 2, the fundamental mode shape evaluated at

dam upstream face is interpolated using three points at elevationsy1=Hs/3, y2=2Hs/3 andy3=Hs

to find the coefficientsa1 to a3 in Eq. (31). Table 3 contains the original mode shape resulting from

finite element analysis of Pine Flat dam section as well as thecubic interpolation used. When water

compressibility is neglected, the resulting coefficients are introduced into Eq. (39) to obtain̂ϕ(η) and

then the dam-reservoir vibration frequencyωr using the generalized massM1 and the fundamental vi-

bration frequencyω1 obtained from finite element analysis of the dam with an emptyreservoir. When

water compressibility is included, coefficientsa1 to a3 are introduced into Eqs. (57) and (53) to ob-

tain the parametersϕ(η), F1(η) andG1(η). CoefficientsA0 toA4 are determined next and Eq. (58) is

then solved forχ=R2
r to obtain the vibration frequency of the dam-reservoir system as described in

section 3.

4.2 Validation of the proposed simplified formulation

The six analysis types described in the previous section arecarried out to assess the effectiveness of the

method proposed in this paper. The Pine Flat dam section described previously is studied first. A mass

densityρs = 2400 kg/m3 and a Poisson’s ratioν = 0.2 are assumed as concrete material properties.

To examine the influence of dam stiffness, two moduli of elasticity Es = 25GPa andEs = 35GPa are

considered. A water mass densityρr = 1000 kg/m3 is adopted. Both compressible and incompressible

water assumptions are investigated, with a pressure wave velocity of Cr = 1440m/s in the former case.

We compute the period ratiosTr/T1 whereTr is the fundamental vibration period of the dam-reservoir

system obtained using any of the six analysis types described previously, andT1 is the reference funda-

mental vibration period determined using a finite element analysis of the dam with an empty reservoir.

Figures 6 and 7 illustrate the period ratiosTr/T1 obtained considering incompressible and compressible

water assumptions, respectively. Results for reservoir height ratios fromη=0.5 to 1.0 and two moduli of

elasticityEs=25GPa andEs=35GPa are given. Figures 6 and 7 also show bar charts representing the

following error estimator

ε =
Tr − T (FE)

r

T
(FE)
r

(95)

whereT (FE)
r denotes the reference fundamental vibration period obtained using a finite element analysis

of the dam-reservoir system, i.e. analysis type I.

First, it is apparent from the curves that the fundamental period predicted using finite elements, i.e.

analysis type I, and the analytical formulation proposed byFenves and Chopra [7], i.e. analysis type II,

are very close for all height ratios and regardless of whether water is considered compressible or not.

This observation confirms the effectiveness of the analytical formulation even for dams with a slightly

inclined upstream face.
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Table 3. Pine Flat dam fundamental mode shapes used.

Normalized mode shapeψ(x)
1 (0, y)/ψ

(x)
1 (0, Hs)

Fenves and Chopra [19] Finite element analysis

Original Cubic Original Cubic

y/Hs mode shape interpolation mode shape interpolation

1.00 1.000 1.000 1.000 1.000

0.95 0.866 0.866 0.875 0.871

0.90 0.735 0.745 0.752 0.755

0.85 0.619 0.638 0.640 0.650

0.80 0.530 0.544 0.543 0.556

0.75 0.455 0.461 0.461 0.472

0.70 0.389 0.389 0.391 0.398

0.65 0.334 0.327 0.331 0.333

0.60 0.284 0.273 0.279 0.277

0.55 0.240 0.228 0.233 0.228

0.50 0.200 0.189 0.194 0.186

0.45 0.165 0.157 0.159 0.150

0.40 0.135 0.130 0.129 0.120

0.35 0.108 0.108 0.102 0.094

0.30 0.084 0.089 0.080 0.073

0.25 0.065 0.073 0.060 0.056

0.20 0.047 0.058 0.044 0.042

0.15 0.034 0.045 0.030 0.030

0.10 0.021 0.031 0.019 0.019

0.05 0.010 0.016 0.010 0.009

0.00 0.000 0.000 0.000 0.000

25



Figure 6. Variation of period ratioTr/T1 as a function of reservoir height ratioη assuming incompressible
water.

When water compressibility is neglected, Eq. (40) shows that the elasticity modulus of the dam has no

effet on the ratioTr/T1, a result that we confirmed numerically and analytically, i.e. using analysis types

I and II. Therefore, period ratiosTr/T1 for incompressible water are illustrated independently ofthe dam

elasticity modulus. Fig. 6 shows that analysis type III using Westergaard added mass predicts the funda-

mental frequency of the dam-reservoir system with a an errorof about12 per cent for a full reservoir in

the case of Pine Flat dam. Figs. 6 and 7 also clearly indicate that our simplified procedure, i.e. analysis

type VI, yields excellent results regardless of dam stiffness and compressible or incompressible water

assumptions. The results of the new simplified procedure remain in very good agreement when approx-

imate parameters are used instead of those obtained from finite element analysis of the dam section, i.e.

analysis types IV and V.

To investigate the influence of gravity dam cross-section geometry and dam stiffness on the accuracy of

the simplified procedure proposed in this paper, we analyse three typical gravity dam cross-sections with

heights varying from90m to35m as illustrated in Fig. 8. The three dams are denoted D1 to D3 from the

highest to the lowest. Finite element models of the dam sections and corresponding dam-reservoir systems

are built using the software ADINA [27]. The new simplified method is then applied using approximate

parameters, i.e. analysis types IV to V, as well as parameters resulting from finite element analyses of

each of the dam sections with an empty reservoir, i.e. analysis type VI. The period ratiosTr/T1 obtained

are illustrated in Fig. 9 considering reservoir height ratios fromη = 0.5 to 1.0 and two moduli of elas-

ticity Es=25GPa andEs=35GPa. The different analyses are summarized in Table 4 for clarity purposes.
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Figure 7. Variation of period ratioTr/T1 as a function of reservoir height ratioη considering water com-
pressibility: (a)Es=25GPa and (b)Es=35GPa.
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Figure 8. Geometry and finite element models of gravity dam cross-sections D1, D2 and D3.

Table 4. Summary of analysis types conducted.

Gravity dam

Es=25GPa Es=35GPa

Water assumption Analysis Pine Flat D1 D2 D3 Pine Flat D1 D2 D3

Incompressible Type I x x x x x x x x

Type II x - - - x - - -

Type III x - - - x - - -

Type IV x x x x x x x x

Type V x x x x x x x x

Type VI x x x x x x x x

Compressible Type I x x x x x x x x

Type II x - - - x - - -

Type III - - - - - - - -

Type IV x x x x x x x x

Type V x x x x x x x x

Type VI x x x x x x x x
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We first observe that the results of analysis types I and VI arealmost identical for all the studied dam

sections independently of water compressibility or incompressibility assumptions, dam geometry and

stiffness. Analysis types IV and V yield satisfactory results for the 90-m high dam section D1. They are

less accurate however when applied to smaller dam sections D2 and D3. Analysis type IV introduces

large discrepancies because it uses approximate fundamental generalized force, generalized mass, mode

shape and vibration period that were mainly calibrated using higher standard dam sections [19, 20]. We

note that the fundamental period predictions are improved when an input fundamental vibration period

obtained from a finite element analysis of the dam with empty reservoir is used instead of Eq. (87), i.e.

analysis type V.

Based on the previous findings, we recommend to use the proposed simplified method according to

scheme of analysis type VI. The other schemes would provide appropriate results for high gravity dams,

while an increasing error is introduced for smaller dams. Toasses the accuracy of the proposed method

in determining the damping ratiõξ1 of the dam-reservoir system ESDOF, Fig. 10 illustrates the variation

of this parameter as a function of reservoir height ratioη > 0.5 considering water compressibility, two

moduli of elasticityEs = 25GPa andEs = 35GPa and the four gravity dam cross-sections described

previously. In this figure, the results determined by applying the proposed method following the scheme

of analysis type VI are compared to those obtained using the classical method developed by Fenves

and Chopra [7] and reviewed in section 2. The curves clearly show that both techniques yield identical

damping ratios for the four dam monoliths.

Finally, denotingFst= ρrgH2
r /2 the total hydrostatic force exerted on dam upstream face, wedetermine

the normalized equivalent lateral forcesHsf1(y)/Fst considering a unit ordinate of pseudo-acceleration

spectrum, water compressibility, a full reservoir, i.e.η = 1, two moduli of elasticity and the four dams

cross-sections as before. Again, the resulting force distributions obtained using the classical and proposed

methods are practically coincident for the four dam monoliths studied as illustrated in Fig. 11.

5 Concluding remarks

This paper proposed an original practical method to evaluate the seismic response of gravity dams. We

first developed a simplified but yet a rigorous and practical formulation to determine the fundamen-

tal period of vibrating dam-reservoir systems and corresponding added damping, force and mass. The

new formulation includes the effects of dam geometry and flexibility, water compressibility and varying

reservoir level. The mathematical derivations of the method were provided considering both incompress-

ible and compressible water assumptions. In the former case, we proposed a closed-form expression to

determine the fundamental vibration period of a dam-reservoir system. When water compressibility is

considered, we showed that the fundamental vibration period of a dam-reservoir system can be obtained

by simply solving a cubic equation. Simplified expressions to compute the equivalent lateral earthquake

forces and the static correction forces are proposed. Theseforces are to be applied at the dam upstream

29



face to determine response quantities of interest, such as the stresses throughout the dam cross-section.

To assess the efficiency and accuracy of the proposed technique, several analysis types were applied to

dam cross-sections with various geometries and rigiditiesimpounding reservoirs with different levels.

The following conclusions could be drawn from the comparison of the period predictions obtained from

the different analyses: (i) the analytical formulation of hydrodynamic effects yields accurate predictions

when compared to numerical results obtained by modeling thereservoir using potential-based finite el-

ements, (ii) the proposed simplified procedure gives excellent results when the fundamental generalized

earthquake force coefficient, generalized mass, mode shapeand vibration period are directly obtained

from a finite element analysis of the dam with an empty reservoir, and (iii) the fundamental period pre-

dictions of the simplified procedure remain satisfactory for large dams while larger discrepancies are

observed for smaller ones when approximate parameters are used instead of those obtained from finite

element analysis. We also showed that the new procedure yields an excellent estimation of the equivalent

damping ratio and equivalent earthquake lateral forces. The proposed technique presents a significant

advantage over conventional Westergaard added-mass formulation, namely because it can directly ac-

count for dam flexibility and water compressibility, while Westergaard’s solution assumes that the dam

is rigid and water is incompressible. The analytical expressions developed and the procedure steps were

presented in a manner such that calculations could be easilyimplemented in a spreadsheet or program

for practical dynamic analysis of gravity dams. We clearly showed that the proposed procedure can be

used effectively for simplified evaluation of the vibrationperiod and seismic response of gravity dams

irrespective of their geometry and stiffness.
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Figure 9. Variation of period ratioTr/T1 as a function of reservoir height ratioη considering water com-
pressibility: (a) to (c) Dam D1; (d) to (f) Dam D2; and (g) to (i) Dam D3.
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Figure 10. Variation of the damping ratiõξ1 as a function of reservoir height ratioη consider-
ing water compressibility: (a) and (b) Pine Flat dam; (c) and(d) Dam D1; (e) and (f) Dam D2;
and (g) and (h) Dam D3.
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Figure 11. Normalized equivalent lateral earthquake forces corresponding to dam fundamental mode
response considering water compressibility: (a) and (b) Pine Flat dam; (c) and (d) Dam D1;
(e) and (f) Dam D2; and (g) and (h) Dam D3.
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