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ABSTRACT

This paper presents a new formulation to investigate the effects of floating ice blocks on seismically-excited

rectangular water-containing structures. The proposed method is based on a sub-structuring approach, where the

flexible containing structure and ice-added mass are modeled using finite elements, while hydrodynamic effects

are modeled analytically through interaction forces at thewater-structure and water-ice interfaces, thus eliminat-

ing the need for reservoir finite element discretization. Inaddition to accounting for the influence of floating ice

blocks and container walls’ flexibility, the developed frequency- and time-domain techniques also include the ef-

fects of container geometrical or material asymmetry as well as the coupling between convective and impulsive

components of hydrodynamic pressure. The proposed formulation is illustrated through a numerical example il-

lustrating the dynamic response of symmetric and asymmetric water-containing structures covered with floating

ice blocks. Obtained time- and frequency-domain responsesare successfully validated against advanced finite

element analyses including fluid-structure interaction capabilities. For the water-containing structures studied,

the results show that the presence of floating ice blocks affects the frequency content and amplitudes of the

dynamic responses corresponding to convective and impulsive modes.
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1 Introduction

The dynamic behavior of water-containing structures has been widely studied in the last five decades

to predict their response to seismic excitations and prevent heavy damage as observed during the 1960

Chilean Earthquakes (Steinbrugge and Flores, 1963), the 1964 Alaska Earthquake (Hanson, 1973), and

more recently the 1994 Northridge Earthquake (Hall, 1995),the 1999 Turkey Earthquake (Steinberg

and Cruz, 2004) and the 2003 Tokachi-oki Earthquake (Koketsu et al., 2005).

In earlier analytical work, the containing structure was assumed rigid and the studies mainly focused on

the dynamic behavior of the contained liquid (Jacobsen, 1949; Werner and Sundquit, 1949; Jacobsen

and Ayre, 1951; Housner, 1957; Housner, 1963). Significant observed post-earthquake damage showed

that the rigid assumption may lead to the underestimation ofthe seismic response of such structures,

and clearly indicated the necessity of including the flexibility and vibrating response of the containing

structure as well as its coupled interaction with the contained liquid.

The work of Chopra (1967, 1968, 1970), Veletsos (1974), Haroun (1980) and many others subse-

quently (Veletsos and Yang, 1976; Veletsos and Yang, 1977; Haroun and Housner, 1981a; Haroun and

Housner, 1981b; Haroun, 1983; Balendra et al., 1982), confirmed that structural flexibility affects con-

siderably the coupled dynamic response of water-containing structures. Another phenomenon which

attracted the attention of many researchers is the effect ofsurface gravity waves and corresponding

sloshing at the surface of the contained liquid during earthquake excitation. Indeed, it has been evi-

denced that liquid sloshing was generally a source of most damage observed in the upper part of liquid

containing structures (Krausmann et al., 2011). In numerical analyses, dynamic fluid pressures are gen-

erally decomposed into (i) a convective component generated by the sloshing of a portion of the fluid

near the surface, and (ii) an impulsive component generatedby a portion of the fluid accelerating with

the containing structure. It has been shown that the coupling between liquid sloshing modes and con-

tainer vibration modes is generally weak (Veletsos, 1974; Haroun, 1980; Haroun and Housner, 1982).

Convective and impulsive pressures can then be first determined separately and their effects combined

later to obtain the total dynamic response (Kana, 1979; Malhotra et al., 2000). Several researchers pro-

posed refined analytical and numerical methods to assess sloshing effects in seismically-excited tanks,

such as Veletsos and Tang (1976), Gupta and Hutchinson (1990), Fisher and Rammerstorfer (1999),

and Ghaemmaghami and Kianoush (2010).

In cold climates, water-containing structures such as dams, tanks or navigation locks are generally

covered with1 to 2m-thick ice sheets for significant periods of time during theyear. Increasing

exploration of natural ressources in northern regions has motivated a variety of research programs

which mainly focused on the dynamic response of ice-surrounded offshore platforms to drifting ice

action as well as to seismic excitation (Cammaert and Muggeridge, 1988; Croteau, 1983; Miura et

al., 1988; Sun, 1993; Kiyokawa and Inada, 1989). Forced vibration tests were carried out on a large

gravity dam in Quebec under both summer and severe winter conditions including the presence of an

ice cover (Paultre et al., 2002). The experimental results and subsequent numerical studies have shown
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that the ice cover affects the dynamic response of gravity dams as well as hydrodynamic pressure dis-

tribution in the reservoir (Bouaanani et al., 2002). In all previous studies, the ice-covered water domain

was assumed infinite, or delimited at a given truncating distance from the structure by a transmitting

boundary condition to account for energy radiation at infinity (Bouaanani and Paultre, 2005). How-

ever, the dynamic or seismic response of ice-covered water reservoirs of limited extent such as water

storages, channels and navigation locks received almost noattention in the literature.

In this paper, we investigate the effect of floating ice blocks on the dynamic characteristics and seismic

response of rectangular water-containing structures suchas the one illustrated in Fig. 1. The dynamic

analysis of such systems, commonly encountered in cold regions, requires the modeling of simulta-

neous dynamic interactions between floating ice blocks, water and the containing structure. The ana-

lytical method developed in this work will address the dynamic and seismic behavior of such systems

using a sub-structuring technique where structural and hydrodynamic responses are coupled through

interface forces. Finite element modeling is then restricted to the containing structure, while hydro-

dynamic effects are accounted for analytically, thus eliminating the need for reservoir finite element

discretization. In addition to accounting for the influenceof floating ice blocks and container walls’

flexibility, the developed frequency- and time-domain techniques will also include the effects of pos-

sible geometrical or material asymmetry of the containing structure as well as the coupling between

convective and impulsive components of hydrodynamic pressure.

2 Mathematical formulation

2.1 General assumptions and governing equations

We consider a rectangular water-containing structure as the one depicted in Fig. 1. We assume that:

(i) the longitudinal dimensions of the structure are sufficiently large so that it can be modeled as a

two-dimensional plane-strain elasticity problem, (ii) the constitutive material of the containing struc-

ture has a linear elastic behavior, (iii) the lateral walls of the containing structure are flexible and have

vertical faces at the interfaces with the reservoir, (iv) water is compressible, inviscid, with its motions

irrotational and limited to small amplitudes, (v) water surface is covered by floating ice blocks, vi-

brating vertically without friction, and (iv) the containing-structure can be geometrically or materially

asymmetrical.

The reservoir has a lengthLr=2br and heightHr as indicated in Fig. 1. We adopt a Cartesian coordinate

system with origin at the reservoir bottom, a horizontal axisx and a vertical axisy coincident with the

axis of symmetry of the reservoir. As mentioned previously,we will apply a sub-structuring approach

as illustrated in Fig. 2, where the flexible containing structure and ice-added mass are modeled using

finite elements, while water effects are modeled analytically through interaction forces at the water-

structure and water-ice interfaces.
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The hydrodynamic pressurep(x, y, t) within the reservoir is governed by the classical wave equation

∇2p =
1

C2
r

∂2p

∂t2
(1)

where∇2 is the Laplace differential operator,t the time variable,ρr the mass density of water andCr

the compression wave velocity. We consider harmonic groundaccelerations̈ug(t) = ag eiωt whereω

denotes the exciting frequency. Hydrodynamic pressure in the reservoir can then be expressed in fre-

quency domain as̄p(x, y, t)= p̄(x, y, ω) eiωt, wherep̄(x, y, ω) is a complex-valued frequency response

function (FRF). Eq. (1) becomes then the classical Helmholtz equation

∇2p̄ +
ω2

C2
r

p̄ = 0 (2)

Using a modal superposition analysis, the FRFs for structural displacements and accelerations can be

expressed as

ū(x, y, ω) =
ms∑

j=1

ψ
(x)
j (x, y)Z̄j(ω) ; v̄(x, y, ω) =

ms∑

j=1

ψ
(y)
j (x, y)Z̄j(ω) (3)

¯̈u(x, y, ω) = −ω2
ms∑

j=1

ψ
(x)
j (x, y)Z̄j(ω) ; ¯̈v(x, y, ω) = −ω2

ms∑

j=1

ψ
(y)
j (x, y)Z̄j(ω) (4)

whereū and v̄ denote the horizontal and vertical displacements, respectively, ¯̈u and ¯̈v the horizontal

and vertical accelerations, respectively,ψ
(x)
j andψ(y)

j thex- andy-components of thej th structural

mode shape, respectively,Z̄j the generalized coordinate, andms the number of structural mode shapes

included in the analysis. The FRF̄p for hydrodynamic pressure can be written as (Fenves and Chopra,

1984; Bouaanani and Lu, 2009)

p̄(x, y, ω) = p̄0(x, y, ω)− ω2
ms∑

j=1

Z̄j(ω) p̄j(x, y, ω) (5)

where p̄0 is the FRF for hydrodynamic pressure due to rigid body motionof the containing struc-

ture subjected to ground acceleration¯̈ug, and wherēpj is the FRF for hydrodynamic pressure due

to horizontal ground accelerationsψ(x)
j (−br, y) andψ(x)

j (br, y) of the lateral walls of the containing

structure vibrating along structural modej. Hydrodynamic pressure FRF̄p can be decomposed into

an impulsive component̄pI and a convective componentp̄C, yielding

p̄(x, y, ω) = p̄I(x, y, ω) + p̄C(x, y, ω)

= p̄I,0(x, y, ω) + p̄C,0(x, y, ω)

− ω2
ms∑

j=1

[
p̄I,j(x, y, ω) + p̄C,j(x, y, ω)

]
Z̄j(ω)

(6)

The boundary conditions to be satisfied by FRFsp̄I,0, p̄C,0, p̄I,j andp̄C,j are as follows
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– At structure-reservoir vertical interfaces

∂p̄I,0

∂x
(±br, y, ω) = −ρr

¯̈ug(ω) ;
∂p̄C,0

∂x
(±br, y, ω) = 0 (7)

∂p̄I,j

∂x
(±br, y, ω) = −ρrψj(±br, y) ;

∂p̄C,j

∂x
(±br, y, ω) = 0 (8)

– At reservoir bottom

∂p̄I,0

∂y
(x, 0, ω) = 0 ;

∂p̄C,0

∂y
(x, 0, ω) = 0 (9)

∂p̄I,j

∂y
(x, 0, ω) = 0 ;

∂p̄C,j

∂y
(x, 0, ω) = 0 (10)

– At reservoir surface

(
ρrg − ρihi ω

2
)∂p̄
∂y

(x,Hr, ω) = ρrω
2p̄(x,Hr, ω) (11)

p̄I,0(x,Hr, ω) = p̄I,j(x,Hr, ω) = 0 (12)

whereρi denotes the mass density of floating ice blocks,hi their average thickness andg the acceler-

ation due to gravity. The boundary condition in Eq. (11) was derived using the kinematic condition

and linearized Bernoulli’s equation at the interface between the floating ice blocks and the reser-

voir (Weitz and Keller, 1950; Sun, 1993; Bouaanani et al., 2002). Adopting the decomposition of

hydrodynamic pressure into a convective and an impulsive pressure as per Eq. (6), and substituting

Eq. (12) into Eq. (11), the surface boundary condition in Eq.(11) yields the two following boundary

conditions expressed in terms of FRFsp̄I,0, p̄C,0, p̄I,j andp̄C,j, j=1 . . .ms

(
ρrg − ρihi ω

2
)∂p̄C,0

∂y
(x,Hr, ω)− ρrω

2p̄C,0(x,Hr, ω) = −
(
ρrg − ρihi ω

2
)∂p̄I,0

∂y
(x,Hr, ω) (13)

(
ρrg − ρihi ω

2
)∂p̄C,j

∂y
(x,Hr, ω)− ρrω

2p̄C,j(x,Hr, ω) = −
(
ρrg − ρihi ω

2
)∂p̄I,j

∂y
(x,Hr, ω) (14)

The FRFp̄ for total hydrodynamic pressure is given by Eq. (6) where thevector Z̄ of generalized

coordinates̄Zj, j=1 . . .ms, is obtained by solving the system of equations

S̄ Z̄ = Q̄ (15)
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in which elements of matrices̄S andQ̄ are obtained forn=1 . . .ms andj=1 . . .ms as

S̄nj(ω) =
[
− ω2 +

(
1 + i ηs

)
ω2
n

]
δnj

+ ω2

{∫ Hr

0

[
p̄I,j(br, y, ω) + p̄C,j(br, y, ω)

]
ψ(x)
n (br, y) dy

−
∫ Hr

0

[
p̄I,j(−br, y, ω) + p̄C,j(−br, y, ω)

]
ψ(x)
n (−br, y) dy

}
(16)

Q̄n(ω) =−ψT
n M1+

∫ Hr

0

[
p̄I,0(br, y, ω) + p̄C,0(br, y, ω)

]
ψ(x)
n (br, y) dy

−
∫ Hr

0

[
p̄I,0(−br, y, ω) + p̄C,0(−br, y, ω)

]
ψ(x)
n (−br, y) dy (17)

whereδ denotes the Kronecker symbol,ωn is the vibration frequency corresponding to structural mode

shapeψn of the empty containing structure combined to ice-added mass,M is the mass matrix of the

ice-container system,ηs is the structural hysteretic damping factor, and1 is a column-vector with the

same dimension as the vector of nodal relative displacements, containing zeros except along horizontal

degrees of freedom which correspond to the direction of earthquake excitation.

2.2 Impulsive hydrodynamic pressure

Solutions for FRFs̄pI,0 and p̄I,j, j = 1 . . .ms, are developed next using Eq. (2), and the associated

boundary conditions described in the previous section. Considering a unit horizontal ground accelera-

tion ¯̈ug(ω)=1, we show in Appendix A that FRF̄pI,0 can be expressed as

p̄I,0(x, y, ω) = ρrHr

mr∑

n=1

λ2n
[
I−0,n(ω)X

−

n (x, ω)− I+0,n(ω)X
+
n (x, ω)

]

βn(ω) κn(ω) sinh[brκn(ω)] cosh[brκn(ω)]
cos[λn(ω) y] (18)

in whichmr is the number of impulsive pressure modes included in the analysis, and the parameters

λn, βn(ω), κn(ω), X−

n (x, ω), X
+
n (x, ω), I

−

0,n(ω) andI+0,n(ω) are given in Appendix A. We also show

in Appendix A that FRFs̄pI,j, j=1 . . .ms, can be written as

p̄I,j(x, y, ω) = ρrHr

mr∑

n=1

λ2n
[
I−j n(ω)X

−

n (x, ω)− I+j n(ω)X
+
n (x, ω)

]

βn(ω) κn(ω) sinh[brκn(ω)] cosh[brκn(ω)]
cos[λn(ω) y] (19)

whereI+j,n(ω) andI−j,n(ω) are given in Appendix A.

2.3 Convective hydrodynamic pressure

In this work, we consider rectangular water-containing structures that can be geometrically or mate-

rially asymmetric, i.e. with different lateral walls. As a consequence, the horizontal accelerations at

wall-water interfaces on each side of the reservoir can be different and thus generate both symmetric

and asymmetric hydrodynamic pressure waves. To account forthis behavior, the FRF for convective

hydrodynamic pressurēpC will be decomposed into a symmetric term̄̂pC and an antisymmetric term
˜̄pC, which correspond to symmetric and antisymmetric modes of sloshing, respectively. FRFs̄pC,0, and
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p̄C,j, j=1 . . .ms, can then be expressed as

p̄C,0(x, y, ω) = ˆ̄pC,0(x, y, ω) + ˜̄pC,0(x, y, ω) (20)

p̄C,j(x, y, ω) = ˆ̄pC,j(x, y, ω) + ˜̄pC,j(x, y, ω) (21)

FRFs p̄C,0 and p̄C,j are solutions of Eq. (2), and satisfy the boundary conditions described in Sec-

tion 2.1, among which Eqs. (13) and (14) which relate the FRFsfor convective hydrodynamic pressure

to those for impulsive hydrodynamic pressure determined inSection 2.2. Accordingly, FRFs for con-

vective hydrodynamic pressure are developed in Appendix B using the decompositions in Eqs. (20)

and (21).

Considering a unit horizontal ground acceleration¯̈ug(ω) = 1, we show in Appendix B that FRF̄pC,0

andp̄C,j can be obtained as

p̄C,ℓ(x, y, ω) =
mc∑

m=1

mr∑

n=1

{
Λ̂ℓ,n,m(ω) cosh[κ̂m(ω) y] cos[λ̂m(ω) x]

+ Λ̃ℓ,n,m(ω) cosh[κ̃m(ω) y] sin[λ̃m(ω) x]
}
; ℓ = 0, j (22)

wheremc is the number of reservoir convective modes and

Λ̂ℓ,n,m(ω) =
2× (−1)m+n ρrgHr λ

3
n(ω)

[
I+ℓ,n(ω)− I−ℓ,n(ω)

]

br βn(ω) χ̂m(ω)
[
κ2n(ω) + λ̂2m(ω)

] [
γ̂2m(ω)− ω2

]
cosh[κ̂m(ω)Hr]

; ℓ = 0, j (23)

Λ̃ℓ,n,m(ω) =
−2 × (−1)m+n ρrgHr λ

3
n(ω)

[
I+ℓ,n(ω) + I−ℓ,n(ω)

]

br βn(ω) χ̃m(ω)
[
κ2n(ω) + λ̃2m(ω)

] [
γ̃2m(ω)− ω2

]
cosh[κ̃m(ω)Hr]

; ℓ = 0, j (24)

in which the frequency-dependent functionsγ̂2m andγ̃2m are given form=1 . . .mc by

γ̂2m(ω) =
g κ̂m(ω)

χ̂m(ω)
tanh[κ̂m(ω)Hr] ; γ̃2m(ω) =

g κ̃m(ω)

χ̃m(ω)
tanh[κ̃m(ω)Hr] (25)

where the parameterŝχm, χ̃m, κ̂m andκ̃m are obtained as

χ̂m(ω) = 1 +
ρihi

ρr
κ̂m(ω) tanh[κ̂m(ω)Hr] ; χ̃m(ω) = 1 +

ρihi

ρr
κ̃m(ω) tanh[κ̃m(ω)Hr] (26)

κ̂m(ω) =

√√√√λ̂2m −
ω2

C2
r

; κ̃m(ω) =

√√√√λ̃2m −
ω2

C2
r

(27)

in which the eigenvalueŝλm andλ̃m corresponding to convective symmetric and antisymmetric modes,

respectively, are given form=1 . . .mc by

λ̂m =
mπ

br
; λ̃m =

(2m− 1) π

2 br
(28)
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The natural convective symmetric and antisymmetric frequencies correspond to the frequenciesω̂m

andω̃m, respectively, that satisfy the equations

γ̂2m(ω̂m)− ω̂2
m = 0 ; γ̃2m(ω̃m)− ω̃2

m = 0 (29)

form=1 . . .mc. If water is assumed incompressible, then the parametersκ̂m andκ̃m become frequency-

independent, and Eq. (27) simplifies to

κ̂m = λ̂m ; κ̃m = λ̃m (30)

The natural convective symmetric and antisymmetric frequenciesω̂m and ω̃m, respectively, become

also frequency-independent, and can be obtained form=1 . . .mc as

ω̂m =

√
g κ̂m
χ̂m

tanh(κ̂mHr); ω̃m =

√
g κ̃m
χ̃m

tanh(κ̃mHr) (31)

2.4 Time responses for a seismic loading

The generalized coordinate vectorZ̄ is computed after substituting the impulsive and convective FRFs

into Eq. (15), then the total pressure in the frequency-domain is computed according to Eq. (6). The

time-history displacements and accelerations of a point ofthe lateral walls subjected to a ground

acceleration̈ug(t) can be obtained as

u(x, y, t) =
Ns∑

j=1

ψ
(x)
j (x, y)Zj(t) ; ü(x, y, t) =

ms∑

j=1

ψ
(x)
j (x, y) Z̈j(t) (32)

v(x, y, t) =
Ns∑

j=1

ψ
(y)
j (x, y)Zj(t) ; v̈(x, y, t) =

ms∑

j=1

ψ
(y)
j (x, y) Z̈j(t) (33)

where the time-domain generalized coordinatesZj are given by the Fourier integrals

Zj(t) =
1

2π

∫
∞

−∞

Z̄j(ω) ¯̈ug(ω) eiωt dω ; Z̈j(t) = −
1

2π

∫
∞

−∞

ω2Z̄j(ω) ¯̈ug(ω) eiωt dω (34)

in which ¯̈ug(ω) is the Fourier transform of the ground accelerationüg(t)

¯̈ug(ω) =
∫ ta

0
ug(t) e−iωt dt (35)

with ta denoting the time duration of the applied accelerogram.

The time-history response for total hydrodynamic pressurep and vertical displacementζ at reservoir

surface under the effect of ground accelerationüg(t) can also be obtained as

p(x, y, t) = p0(x, y, t) +
ms∑

j=1

pj(x, y, t) Z̈j(t) (36)
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ζ(x, t) =
1

ρrg
p(x,Hr, t) (37)

Based on the above relations, other quantities of interest such as shear forces or overturning moments,

can also be determined.

In the coupled systems studied, two types of damping should be accounted for to model the dissipation

of energy in the solid containing structure and in the contained fluid. A viscous damping has to be

applied to represent energy dissipation in the vibrating structure and associated impulsive modes.

A damping for convective modes is introduced to mainly account for energy dissipation within the

contained fluid, and is generally assumed to be less than0.5% for light viscosity liquids without

dissipative devices. Various design codes like the Eurocode 8 (2003) or the ACI 350.3 (2006) specify

0.5% damping for convective modes and5% damping for impulsive modes. These conservative values

are based on several studies such as (Scarsi, 1971; Martel etal., 1998; Ghaemmaghami and Kianoush,

2010). They are used in the numerical models presented next.

In the analytical formulation, damping for impulsive modesis represented by a hysteretic damping

factorηs included in Eq. (16). Damping for convective modes is accounted for through a viscous damp-

ing ξc introduced into Eqs. (38) and (39) to yield

Λ̂ℓ,n,m(ω) =
2× (−1)m+n ρrgHr λ

3
n(ω)

[
I+ℓ,n(ω)− I−ℓ,n(ω)

]

br βn(ω) χ̂m(ω)
[
κ2n(ω) + λ̂2m(ω)

] [
γ̂2m(ω) + 2 i ξcω γ̂m(ω)− ω2

]
cosh[κ̂m(ω)Hr]

(38)

Λ̃ℓ,n,m(ω) =
−2 × (−1)m+n ρrgHr λ

3
n(ω)

[
I+ℓ,n(ω) + I−ℓ,n(ω)

]

br βn(ω) χ̃m(ω)
[
κ2n(ω) + λ̃2m(ω)

] [
γ̃2m(ω) + 2 i ξcω γ̃m(ω)− ω2

]
cosh[κ̃m(ω)Hr]

(39)

for ℓ = 0, j.

The proposed method is validated in the next section througha numerical example illustrating the

dynamic response symmetric and asymmetric water-containing structures covered with floating ice

blocks.

3 Illustrative numerical example

3.1 Properties of the studied system and numerical modeling

We consider the geometrically asymmetric wall-water system illustrated in Fig. 3. It consists of two

lateral walls impounding a reservoir of heightHr=20m and a lengthLr=20m, covered with floating

ice blocks. The following properties are adopted for the constitutive material of the walls: modulus

of elasticityEs = 25GPa, Poisson’s ratioνs = 0.2, and mass densityρs = 2400 kg/m3. The water is

assumed compressible, with a velocity of pressure wavesCr = 1440m/s, and a mass densityρr =

1000 kg/m3. An ice mass densityρi = 917 kg/m3 is adopted (USACE, 2002). Although the thickness
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of the ice blocks may vary from one point to another, an average uniform thicknesshi = 1.0m is

considered for this numerical example.

The application of the proposed method first requires the determination of the mode shapesψj ,

j=1 . . .ms, of the lateral walls without water, i.e. dry structure. Forthis purpose, both walls are dis-

cretized into 4-node plane-strain solid finite elements using the software ADINA (2010) as illustrated

in Fig. 4 (a). Fig. 5 shows the obtained first four mode shapes,i.e.ms=4, given by ADINA (2010) as

well as the corresponding frequencies and horizontal effective modal masses expressed in percentage

of total mass of the walls. Convergence studies showed thatmc = 30 convective modes are required.

A viscous damping ratioξc = 0.5% and a hysteretic damping factorηs=0.1 are applied to damp-out

convective and impulsive modes, respectively.

To validate the proposed formulation, we build a coupled fluid-structure finite element model where

both the walls and the reservoir are modeled using 4-node plane strain and 4-node potential-based

finite elements programmed in ADINA (2010), respectively. Fig. 4 (b) illustrates the finite element

mesh used. In this case, a potential-based formulation of the fluid domain is adopted (Everstine,

1981; Bouaanani and Lu, 2009). Dynamic interaction betweenthe walls and the reservoir is achieved

through fluid-structure interface elements. Beam elementswith negligible stiffness are introduced at

the reservoir surface to account for fluid-structure interaction between the reservoir and the floating

ice blocks. Two modal viscous damping values are assumed to damp-out convective and impulsive

modes, respectively: (i) a0.5% modal damping ratio is applied to the first 30 modes with low frequen-

cies corresponding to convective modes only, and (ii) a5% modal damping ratio is applied to the rest

of the modes up to the210 th.

The frequency- and time-domain dynamic responses of the wall-water system are investigated next

using the previously described analytical and finite element models shown in Figs. 4 (a) and (b).

3.2 Frequency-domain response

Fig. 6 presents the FRFs for nondimensionalized hydrodynamic pressures|p̄/(ρrgHr)| obtained at

points A and A’, nondimensionalized horizontal relative displacements|ū/ust| at points C and C’,

whereust is the lateral static displacement under the effect of hydrostatic pressure, and nondimension-

alized vertical displacementζ/Hr at points B and B’ at reservoir surface. The results are determined

at points A, B and C located on the left wall, and points A’, B’ and C’ belonging to the right wall as

indicated in Fig. 4. The vertical positions of the points areyA = yA’ =1m, yB = yB’ =20m, yC=24m

andyC’ = 28m. The FRFs in Fig. 6 clearly show that the proposed formulation yields excellent re-

sults when compared to those obtained through finite elementmodeling whether with or without the

presence of floating ice blocks. Each frequency curve exhibits: (i) a lower frequency range part, i.e.

f60.5Hz, corresponding to convective modes, and (ii) a higher frequency range part, i.e.f>1.5Hz,

corresponding to impulsive modes. The FRFs of hydrodynamicpressures at reservoir’s bottom and the
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lateral displacements at the top of the walls show that the presence of floating ice blocks affects dy-

namic responses corresponding to convective modes and to a much larger extent those corresponding

to the impulsive ones. As can be seen, the main effect is a decrease of resonant frequencies, a behav-

ior that can be related to the added mass from floating ice blocks. We also observe that the FRFs of

vertical displacements at reservoir surface are the most affected by the presence of ice blocks, which

mainly leads to the appearance of impulsive modes with resonant frequencies larger than1.5Hz.

The techniques described previously are applied next to determine convective and impulsive hydro-

dynamic pressure profiles corresponding to frequencies0.9 ω̃1, 1.1 ω̃1, 0.9 ω̄1 and1.1 ω̄1, whereω̃1

andω̄1 denote the natural frequencies corresponding to the first antisymmetric convective mode and

first impulsive mode, respectively. The resulting hydrodynamic profiles illustrated in Fig. 7 confirm

that the proposed formulation is in excellent agreement with the advanced finite element solution. The

profiles also reveal that the presence of ice blocks: (i) slightly decreases the amplitude of convective

hydrodynamic pressure along the height of the reservoir, and (ii) increases the amplitude of impulsive

hydrodynamic pressure, with maximum amplification observed at reservoir surface.

3.3 Time-domain response

In this section, we investigate the performance of the proposed method in assessing the seismic re-

sponse of the previously described wall-water system. The horizontal acceleration component of Impe-

rial Valley earthquake (1940) at El Centro is selected to conduct the analyses using the proposed and fi-

nite element techniques described above. Fig. 8 illustrates the first20 s of the input ground acceleration.

The obtained time-histories of nondimensionalized horizontal relative displacements|u/ust| at points

C and C’, the nondimensionalized shear forcesV/Fstat at sections A and A’, whereFstat= ρrgH
2
r /2

denotes the hydrostatic force, and the vertical displacementsζ at points B and B’ at reservoir surface

are shown in Figs. 9 and 10 for the reservoir with free surfaceand ice-covered, respectively. These

figures show that the time-history results given by the developed formulation and the finite element

solution are practically coincident.

We observe that the amplitudes of all the quantities studiedincrease with the presence of floating ice

blocks. This effect is maximum for the vertical displacements ζ at reservoir surface, with displace-

ments approximately 5 times larger with an ice-covered reservoir than with a free surface case. We

also note that the frequency content of the response curves is affected by the presence of ice blocks.

This is more pronounced in the response curves of reservoir surface vertical displacements as we com-

pare Figs. 9 (e) and (f) to Figs. 10 (e) and (f). Low convectivefrequencies dominate indeed the free

surface reservoir dynamic response as anticipated from theFRF of reservoir surface vertical displace-

ment shown in Fig. 6 (e), which explains the predominant longperiod oscillations in the time-domaine

response of free surface vertical displacements in Figs. 9 (e) and (f). We also note the obvious oppo-

sition of phase of vertical displacements at points B and B’,which originates from predominant first

antisymmetric sloshing mode. On the other hand, Fig. 6 (f) shows that the FRF of vertical displacement
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of ice-covered reservoir surface also contains low frequency convective modes, but more importantly

impulsive modes with resonant frequencies larger than1.5Hz, similarly to the FRFs of hydrodynamic

pressure or lateral displacements in Figs. 6 (a) to (d). These impulsive modes are predominant in the

time-domain response of ice-covered reservoir surface vertical displacements shown in Figs. 9 (e) and

(f), which explains the approximate resemblance of their time-history signature to that of lateral dis-

placements and base shears in Figs. 9 (a) to (d), also dominated by impulsive modes. We see from the

latter figures that maximum displacements at top of container lateral walls are amplified by about1.5

times due to the presence of floating ice blocks, while the shear force at the base of the walls is not

significantly affected.

Finally, the proposed formulation is used to illustrate theeffect of asymmetry of the previous ice-

covered water-containing structure on its dynamic response. For this purpose, we consider a symmet-

ric rectangular water-containing structure made by replacing the right wall of the asymmetric structure

in Fig. 3 by its3m-thick and24m-high rectangular left wall. The dimensions of the reservoir are the

same as the asymmetric wall-water system. The symmetric water-containing structure is subjected

to the same earthquake as previously. The time-histories ofnondimensionalized horizontal displace-

ments|u/ust| at point C, as well as vertical displacementsζ at points B and B’ at reservoir surface

obtained using the developed method are illustrated in Fig.11 for the symmetric and asymmetric

water-containing structures. The results in Figs. 11 (a) and (b) show that asymmetry has a minor effect

of the structural response of the walls either with or without ice blocks. The vertical displacements of

reservoir surface at point B are also practically insensitive to asymmetry with or without ice blocks as

observed in Figs. 11 (c) and (d). Figs. 11 (e) and (f) reveal however that the vertical displacements of

reservoir surface at point B’ are affected by asymmetry under free surface conditions, and to a much

larger extent when the reservoir is covered by ice blocks. This result emphasizes that, for the particular

water-containing structures studied, the presence of ice blocks increases the impact of asymmetry on

hydrodynamic response indicators such as displacement fluctuations at reservoir surface.

4 Conclusions

This paper presented a new formulation to investigate the effects of floating ice blocks on seismically-

excited rectangular water-containing structures. The proposed method is based on a sub-structuring

approach, where the flexible containing structure and ice-added mass are modeled using finite ele-

ments, while hydrodynamic effects are modeled analytically through interaction forces at the water-

structure and water-ice interfaces, thus eliminating the need for reservoir finite element discretization.

In addition to accounting for the influence of floating ice blocks and container walls’ flexibility, the

developed frequency- and time-domain techniques also include the effects of container asymmetry as

well as the coupling between convective and impulsive components of hydrodynamic pressure. The

application of the proposed formulation is illustrated through a numerical example illustrating the dy-

namic response of an asymmetric water-containing structure covered with floating ice blocks, as well

as that of an equivalent symmetric structure containing a reservoir with the same dimensions. The ob-
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tained time- and frequency-domain responses showed that the proposed formulation yields excellent

results when compared to those from coupled fluid-structurefinite element modeling either with or

without the presence of floating ice blocks. For the water-containing structures studied, we observed

that the presence of floating ice blocks mainly affects dynamic responses corresponding to convective

and impulsive modes as follows: (i) a slight decrease of convective frequencies and a more important

decrease of impulsive ones, mainly due to the added mass fromthe floating ice blocks; (ii) a slight de-

crease of the amplitude of convective hydrodynamic pressure along the height of the reservoir; (iii) an

increase of the amplitude of impulsive hydrodynamic pressure, with maximum amplification observed

at reservoir surface; (iv) an increase of the amplitudes of displacements, shear forces and, in particular,

vertical sloshing displacements at reservoir surface.

List of symbols

Abbreviations

FRF frequency response function

Symbols

An,0,An,j, A′

n,0 andA′

n,j coefficients used for mathematical derivations in AppendixA

Bm,0,Bm,j ,B′

m,0 andB′

m,j coefficients used for mathematical derivations in AppendixB

ag amplitude of harmonic ground acceleration

¯̈ug Fourier transform of ground accelerationüg

br half-length of the reservoir

Cr compression wave velocity within the reservoir

ℓ index referring to rigid body motion effects whenℓ=0 and to lateral vibrations

along structural modej whenℓ=j

Es modulus of elasticity of the containing structure

Fstat hydrostatic force

g acceleration due to gravity

hi average thickness of the floating ice blocks

Hr height of the reservoir
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I−0,n andI+0,n parameters given by Eq. (A11) forn=1 . . . mr

I−j,n andI+j,n parameters given by Eqs. (A12) and (A13) forj=1 . . . ms andn=1 . . . mr

Lr length of the reservoir

M mass matrice of the ice-container system

mc number of reservoir convective modes

mr number of impulsive pressure reservoir modes included in the analysis

ms number of structural mode shapes included in the analysis

p andb̄ hydrodynamic pressure and corresponding FRF, respectively

p̄0 FRF for hydrodynamic pressure due to rigid body motion of thecontaining

structure subjected to ground acceleration¯̈ug

p̄j FRF for hydrodynamic pressure due to horizontal ground accelerations

ψ
(x)
j (−br, y) andψ(x)

j (br, y) of the lateral walls vibrating along structural mode

j

p̄I andp̄C impulsive and convective components of hydrodynamic pressure FRF̄b

p̄I,0 andp̄C,0 impulsive and convective components of hydrodynamic pressure FRF̄b0

p̄I,j andp̄C,j impulsive and convective components of hydrodynamic pressure FRF̄bj

ˆ̄pC and ˜̄pC symmetric and antisymmetric components of convective hydrodynamic pres-

sure FRF̄pC, respectively

ˆ̄pC,0 and ˜̄pC,0 symmetric and antisymmetric components of convective hydrodynamic pres-

sure FRF̄pC,0, respectively

ˆ̄pC,j and ˜̄pC,j symmetric and antisymmetric components of convective hydrodynamic pres-

sure FRF̄pC,j , respectively

Q̄ andQ̄n vector in Eq. (15) and its elements given by Eq. (17) forn=1 . . . ms, respec-

tively

S̄ andS̄nj matrix in Eq. (15) and its elements given by Eq. (16) forn = 1 . . . ms and

j=1 . . . ms, respectively

t time variable

ta time duration of the applied accelerogram
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x andy horizontal and vertical axes of Cartesian coordinate system, respectively

X−

n andX+
n parameters given by Eq. (A14) forn=1 . . . mr

u andv time-history response of horizontal and vertical structural displacements, re-

spectively

ust lateral static displacement under the effect of hydrostatic pressure

ū andv̄ FRFs of horizontal and vertical structural displacements,respectively

üg time-history of ground acceleration

¯̈u and ¯̈v FRFs of horizontal and the vertical structural accelerations, respectively

V shear force

Z̄ andZ̄j vector of generalized coordinates andj th generalized coordinate, respectively

1 column-vector with the same dimension as the vector of nodalrelative dis-

placements, containing zeros except along horizontal degrees of freedom

which correspond to the direction of earthquake excitation

βn parameter given by Eq. (A10) forn=1 . . . mr

γ̂m andγ̃m parameters given by Eq. (25) form=1 . . . mc

δ Kronecker symbol

ζ vertical displacement at reservoir surface

ηs structural hysteretic damping factor

κn parameter given by Eq. (A3) forn=1 . . . mr

κ̂m andκ̃m parameters given by Eq. (27) form=1 . . . mc

λn eigenvalue given by Eq. (A3) forn=1 . . . mr

λ̂m andλ̃m eigenvalues given by Eq. (28) form=1 . . . mc

Λ̂ℓ,n,m andΛ̃ℓ,n,m parameters given by Eqs. (38) and (39), respectively, forℓ=0, j, m=1 . . . mc

andn=1 . . . mr

∇2 Laplace differential operator

νs Poisson’s ratio of the containing structure
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ξc viscous damping associated with convective modes

ρi mass density of floating ice blocks

ρr mass density of water

ρs mass density of the containing structure

ψn n th mode shape of the empty containing structure combined to ice-added mass

χ̂m andχ̃m parameters given by Eq. (26) form=1 . . . mc

ψ
(x)
j andψ(y)

j x- andy-components of thej th structural mode shape, respectively

ω exciting frequency

ωn vibration frequency corresponding to structural mode shapeψn of the empty

containing structure combined to ice-added mass

ω̄m m th impulsive frequency

ω̂m andω̃m m th convective symmetric and antisymmetric frequencies, respectively
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APPENDIX A

Using Eqs.(2), (12) and the boundary conditions in the left column of Eqs. (9) and (10), we show that FRFsp̄I,0

andp̄I,j, j=1 . . . ms, can be expressed as

p̄I,0(x, y, ω) =

mr∑

n=1

[
An,0(ω)e−κn(ω) x +A′

n,0(ω)eκn(ω) x
]
cos(λn y) (A1)

p̄I,j(x, y, ω) =
mr∑

n=1

[
An,j(ω)e−κn(ω) x +A′

n,j(ω)eκn(ω) x
]
cos(λn y) (A2)

wheremr is the number of impulsive pressure modes and frequency-dependent coefficientsAn,0, An,j, A′

n,0

andA′

n,j are to be determined later, and eigenvaluesλn and frequency-dependent parametersκn are given

for n=1 . . . mr by

λn =
(2n− 1)π

2Hr
; κn =

√
λ2n −

ω2

C2
r

(A3)

Substitution of Eqs. (A1) and (A2) into the boundary conditions in the left column of Eqs. (7) and (8) yields

mr∑

n=1

κn(ω)
[
−An,0(ω)e−κn(ω) br +A′

n,0(ω)eκn(ω) br

]
cos(λn y) = −ρr (A4)

mr∑

n=1

κn(ω)
[
−An,0(ω)eκn(ω) br +A′

n,0(ω)e−κn(ω) br

]
cos(λn y) = −ρr (A5)

mr∑

n=1

κn(ω)
[
−An,j(ω)e−κn(ω) br +A′

n,j(ω)eκn(ω) br

]
cos(λn y) = −ρr ψ

(x)
j (br, y) (A6)

mr∑

n=1

κn(ω)
[
−An,j(ω)eκn(ω) br +A′

n,j(ω)e−κn(ω) br

]
cos(λn y) = −ρr ψ

(x)
j (−br, y) (A7)

Multiplying Eqs. (A4) to (A7) bycos(λn y), integrating over reservoir height and using the orthogonality prop-

erties of trigonometric functions yields to a system of4mr linear equations which can be solved for coefficients

An,0,A′

n,0, An,j andA′

n,j, n=1 . . . mr, j=1 . . . ms, as follows

An,ℓ(ω) =
ρrHrλ

2
n

[
I−ℓ,n(ω)ebrκn(ω) − I+ℓ,n(ω)e−brκn(ω)

]

2βn(ω)κn(ω) sinh[brκn(ω)] cosh[brκn(ω)]
; ℓ = 0, j (A8)

A′

n,ℓ(ω) =
ρrHrλ

2
n

[
I−ℓ,n(ω)e−brκn(ω) − I+ℓ,n(ω)ebrκn(ω)

]

2βn(ω)κn(ω) sinh[brκn(ω)] cosh[brκn(ω)]
; ℓ = 0, j (A9)

in which

βn = Hr λ
2
n (A10)
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andI−0,n, I+0,n, I−j,n andI+j,n are given by

I−0,n(ω) = I+0,n(ω) =
1

Hr

∫ Hr

0
cos(λn y)dy =

2× (−1)n+1Hr

2n− 1
(A11)

I−j,n(ω) =
1

Hr

∫ Hr

0
ψ
(x)
j (−br, y) cos(λn y)dy (A12)

I+j,n(ω) =
1

Hr

∫ Hr

0
ψ
(x)
j (br, y) cos(λn y)dy (A13)

Substituting Eqs. (A8) and (A9) into Eqs. (A1) and (A2) yields the expressions of̄pI,0 andp̄I,j given in Eqs. (18)

and (19), respectively, with the coefficientsX−

n andX+
n obtained as

X−

n (x, ω) = cosh
[
(x− br)κn(ω)

]
; X+

n (x, ω) = cosh
[
(x+ br)κn(ω)

]
(A14)
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APPENDIX B

Using Eqs. (2), and the boundary conditions in the right column of Eqs. (7), (8), (9) and (10), we show that FRFs

p̄C,0 andp̄C,j, j=1 . . . ms, can be expressed as

p̄C,0(x, y, ω) =

mc∑

m=1

{
Bm,0(ω) cosh

[
κ̂m(ω) y

]
cos(λ̂m x) +B′

m,0(ω) cosh
[
κ̃m(ω) y

]
sin(λ̃m x)

}
(B1)

p̄C,j(x, y, ω) =

mc∑

m=1

{
Bm,j(ω) cosh

[
κ̂m(ω) y

]
cos(λ̂m x) +B′

m,j(ω) cosh
[
κ̃m(ω) y

]
sin(λ̃m x)

}
(B2)

wheremc is the number of reservoir convective modes and frequency-dependent coefficientsBm,0,Bm,j,B′

m,0

andB′

m,j are to be determined later, and eigenvaluesλ̂m and λ̃m, and frequency-dependent parametersκ̂m

andκ̃m are given form=1 . . . mc by

λ̂m =
mπ

br
; κ̂m(ω) =

√
λ̂2m −

ω2

C2
r

(B3)

λ̃m =
(2m− 1)π

2br
; κ̃m(ω) =

√
λ̃2m −

ω2

C2
r

(B4)

Substitution of Eqs. (B1) and (B2) into the boundary conditions in Eqs. (13) and (14) yields

mc∑

m=1

{
Bm,0(ω) χ̂m(ω) cosh

[
κ̂m(ω)Hr

]
cos(λ̂m x)

[
γ̂2m(ω)− ω2

]

+ B′

m,0(ω) χ̃m(ω) cosh
[
κ̃m(ω)Hr

]
sin(λ̃m x)

[
γ̃2m(ω)− ω2

]}
= −g

∂p̄I,0

∂y
(x,Hr, ω)

(B5)

mc∑

m=1

{
Bm,j(ω) χ̂m(ω) cosh

[
κ̂m(ω)Hr

]
cos(λ̂m x)

[
γ̂2m(ω)− ω2

]

+ B′

m,j(ω) χ̃m(ω) cosh
[
κ̃m(ω)Hr

]
sin(λ̃m x)

[
γ̃2m(ω)− ω2

]}
= −g

∂p̄I,j

∂y
(x,Hr, ω)

(B6)

where the derivatives
∂p̄I,0

∂y
and

∂p̄I,j

∂y
can be determined using Eqs. (18) and (19), respectively, the functions

γ̂m andγ̃m are given by Eq. (25), and the parametersχ̂m andχ̃m are defined by Eq. (26).

Multiplying Eqs.(B5) and (B6) bycos(λ̂m x) and sin(λ̃m x), integrating over reservoir length2br and using

orthogonality properties of trigonometric functions yields the following expression for coefficientsBm,0(ω),

B′

m,0(ω), Bm,j(ω) andB′

m,j(ω),m=1 . . . mr, j=1 . . . ms

Bm,ℓ(ω) =

mr∑

n=1

2× (−1)m+n ρrgHr λ
3
n(ω)[I

+
ℓ,n(ω)− I−ℓ,n(ω)]

br βn(ω) χ̂m(ω)
[
κ2n(ω) + λ̂2m(ω)

] [
γ̂2m(ω)− ω2

]
cosh[κ̂m(ω)Hr]

; ℓ = 0, j (B7)

B′

m,ℓ(ω) =

mr∑

n=1

−2× (−1)m+n ρrgHr λ
3
n(ω)[I

+
ℓ,n(ω) + I−ℓ,n(ω)]

br βn(ω) χ̃m(ω)
[
κ2n(ω) + λ̃2m(ω)

] [
γ̃2m(ω)− ω2

]
cosh[κ̃m(ω)Hr]

; ℓ = 0, j (B8)
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Figure 1. General geometry of the studied ice-water-structure systems.



Figure 2. Sub-structuring approach: (a) Containing structure and ice-added mass; (b) reservoir model.



Figure 3. Geometry of the wall-water system studied in the numerical example.



Figure 4. Numerical models: (a) Analytical model of the fluiddomain and finite element model of the dry
containing structure; (b) Coupled fluid-structure interaction finite element model.



Figure 5. First four mode shapes and corresponding frequencies and effective modal masses of the empty con-
tainer: (a) Walls without ice-added mass effect; (b) Walls with ice-added mass effect.



Figure 6. Frequency response of nondimensionalized hydrodynamic pressures and displacements of the asym-
metric wall-water system: (a) Hydrodynamic pressures without ice cover; (b) Hydrodynamic pressures with ice
cover; (c) Horizontal displacements without ice cover; (d)Horizontal displacements with ice cover; (e) Verti-
cal displacement at reservoir free surface; (f) Vertical displacement at ice-covered reservoir surface.Finite
element solution; Proposed solution.



Figure 7. Nondimensionalized hydrodynamic pressure profiles on the walls of the asymmetric wall-water sys-
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ice cover. Finite element solution; Proposed solution.



Figure 8. First20 s of the horizontal acceleration component of Imperial Valley earthquake (1940) at El Centro.



Figure 9. Time-history response of the asymmetric wall-water system without ice: (a) Nondimensionalized
displacement at point C; (b) Nondimensionalized displacement at point C’; (c) Nondimensionalized shear force
at section A; (d) Nondimensionalized shear force at sectionA’; (e) Nondimensionalized vertical displacement of
water at point B; (f) Nondimensionalized vertical displacement of water at point B’. Finite element solution;

Proposed solution.



Figure 10. Time-history response of the asymmetric wall-water system with ice: (a) Nondimensionalized dis-
placement at point C; (b) Nondimensionalized displacementat point C’; (c) Nondimensionalized shear force at
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Proposed solution.



Figure 11. Time-history responses of the symmetric and asymmetric wall-water systems: (a) Nondimensional-
ized displacement at point C without ice; (b) Nondimensionalized displacement at point C with ice; (c) Nondi-
mensionalized vertical displacement of water at point B without ice; (d) Nondimensionalized vertical displace-
ment of water at point B with ice; (e) Nondimensionalized vertical displacement of water at point B’ without ice;
(f) Nondimensionalized vertical displacement of water at point B’ with ice. Symmetric structure; Asym-
metric structure.


