This is a preprint of an article accepted for publication imourhal of Cold Regions
Science and Technology on 17 December 2012. The publishéidlearis available online at
http://www.sciencedirect.com/science/article/piil$8232X12002480

To be cited as: Goulmot D., Bouaanani N. 2013. Seismic aisabfsrectangular water-containing structures
with floating ice blocks. Journal of Cold Regions Science &achnology, 90-91: 22-32.

Seismic Analysis of Rectangular Water-Containing
Structures with Floating Ice Blocks

Damien Goulmot and Najib Bouaanani

ABSTRACT

This paper presents a new formulation to investigate thectsffof floating ice blocks on seismically-excited
rectangular water-containing structures. The proposdtiades based on a sub-structuring approach, where the
flexible containing structure and ice-added mass are modsiag finite elements, while hydrodynamic effects
are modeled analytically through interaction forces atthter-structure and water-ice interfaces, thus eliminat-
ing the need for reservoir finite element discretizatiomaddition to accounting for the influence of floating ice
blocks and container walls’ flexibility, the developed fuegcy- and time-domain techniques also include the ef-
fects of container geometrical or material asymmetry as$ agelhe coupling between convective and impulsive
components of hydrodynamic pressure. The proposed fotiomlis illustrated through a numerical example il-
lustrating the dynamic response of symmetric and asymenetier-containing structures covered with floating
ice blocks. Obtained time- and frequency-domain respoasesuccessfully validated against advanced finite
element analyses including fluid-structure interactiopatslities. For the water-containing structures studied,
the results show that the presence of floating ice blockstaffie frequency content and amplitudes of the
dynamic responses corresponding to convective and inveuisodes.
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1 Introduction

The dynamic behavior of water-containing structures has lvadely studied in the last five decades
to predict their response to seismic excitations and ptevesvy damage as observed during the 1960
Chilean Earthquakes (Steinbrugge and Flores, 1963), tb# ARska Earthquake (Hanson, 1973), and
more recently the 1994 Northridge Earthquake (Hall, 198%,1999 Turkey Earthquake (Steinberg
and Cruz, 2004) and the 2003 Tokachi-oki Earthquake (Koketsl., 2005).

In earlier analytical work, the containing structure wasLased rigid and the studies mainly focused on
the dynamic behavior of the contained liquid (Jacobsen91®%rner and Sundquit, 1949; Jacobsen
and Ayre, 1951; Housner, 1957; Housner, 1963). Significeséoved post-earthquake damage showed
that the rigid assumption may lead to the underestimatidheteismic response of such structures,
and clearly indicated the necessity of including the fldiypand vibrating response of the containing
structure as well as its coupled interaction with the caordiliquid.

The work of Chopra (1967, 1968, 1970), Veletsos (1974), Hiar(1980) and many others subse-
qguently (Veletsos and Yang, 1976; Veletsos and Yang, 19@ruth and Housner, 1981a; Haroun and
Housner, 1981b; Haroun, 1983; Balendra et al., 1982), auoafirthat structural flexibility affects con-
siderably the coupled dynamic response of water-contgisiructures. Another phenomenon which
attracted the attention of many researchers is the effestidfce gravity waves and corresponding
sloshing at the surface of the contained liquid during epréike excitation. Indeed, it has been evi-
denced that liquid sloshing was generally a source of moatda observed in the upper part of liquid
containing structures (Krausmann et al., 2011). In nunakagalyses, dynamic fluid pressures are gen-
erally decomposed into (i) a convective component gengtagehe sloshing of a portion of the fluid
near the surface, and (ii) an impulsive component genetatedportion of the fluid accelerating with
the containing structure. It has been shown that the cogipktween liquid sloshing modes and con-
tainer vibration modes is generally weak (Veletsos, 197&kpkdn, 1980; Haroun and Housner, 1982).
Convective and impulsive pressures can then be first datethseparately and their effects combined
later to obtain the total dynamic response (Kana, 1979; Medret al., 2000). Several researchers pro-
posed refined analytical and numerical methods to assedsrgipeffects in seismically-excited tanks,
such as Veletsos and Tang (1976), Gupta and Hutchinson 1B@0er and Rammerstorfer (1999),
and Ghaemmaghami and Kianoush (2010).

In cold climates, water-containing structures such as daamks or navigation locks are generally
covered withl to 2 m-thick ice sheets for significant periods of time during §fear. Increasing
exploration of natural ressources in northern regions hasvated a variety of research programs
which mainly focused on the dynamic response of ice-sudedroffshore platforms to drifting ice
action as well as to seismic excitation (Cammaert and Mudger 1988; Croteau, 1983; Miura et
al., 1988; Sun, 1993; Kiyokawa and Inada, 1989). Forcechtiim tests were carried out on a large
gravity dam in Quebec under both summer and severe wintelitomms including the presence of an
ice cover (Paultre et al., 2002). The experimental resultissabsequent numerical studies have shown



that the ice cover affects the dynamic response of gravitystas well as hydrodynamic pressure dis-
tribution in the reservoir (Bouaanani et al., 2002). In ad\pous studies, the ice-covered water domain
was assumed infinite, or delimited at a given truncatingadise from the structure by a transmitting

boundary condition to account for energy radiation at itfifBouaanani and Paultre, 2005). How-

ever, the dynamic or seismic response of ice-covered waservoirs of limited extent such as water

storages, channels and navigation locks received almaatt@ation in the literature.

In this paper, we investigate the effect of floating ice bkak the dynamic characteristics and seismic
response of rectangular water-containing structures asi¢he one illustrated in Fig. 1. The dynamic
analysis of such systems, commonly encountered in coldmegrequires the modeling of simulta-
neous dynamic interactions between floating ice blocksematd the containing structure. The ana-
lytical method developed in this work will address the dymaand seismic behavior of such systems
using a sub-structuring technique where structural andddychamic responses are coupled through
interface forces. Finite element modeling is then regtddb the containing structure, while hydro-
dynamic effects are accounted for analytically, thus elating the need for reservoir finite element
discretization. In addition to accounting for the influerudédloating ice blocks and container walls’
flexibility, the developed frequency- and time-domain taghes will also include the effects of pos-
sible geometrical or material asymmetry of the containitngcture as well as the coupling between
convective and impulsive components of hydrodynamic jpiress

2 Mathematical formulation
2.1 General assumptions and governing equations

We consider a rectangular water-containing structure @®tie depicted in Fig. 1. We assume that:
() the longitudinal dimensions of the structure are sugiitly large so that it can be modeled as a
two-dimensional plane-strain elasticity problem, (ii¢ tbonstitutive material of the containing struc-
ture has a linear elastic behavior, (iii) the lateral waflghe@ containing structure are flexible and have
vertical faces at the interfaces with the reservoir, (ivjewvds compressible, inviscid, with its motions
irrotational and limited to small amplitudes, (v) water fage is covered by floating ice blocks, vi-
brating vertically without friction, and (iv) the contaimg-structure can be geometrically or materially
asymmetrical.

The reservoir has a length = 20, and height, as indicated in Fig. 1. We adopt a Cartesian coordinate
system with origin at the reservoir bottom, a horizontabaxand a vertical axig coincident with the
axis of symmetry of the reservoir. As mentioned previousty,will apply a sub-structuring approach
as illustrated in Fig. 2, where the flexible containing stuwe and ice-added mass are modeled using
finite elements, while water effects are modeled analysicdarough interaction forces at the water-
structure and water-ice interfaces.



The hydrodynamic pressugéz, y, t) within the reservoir is governed by the classical wave déqoat

1 9%p

vip= 2L
=2 or

(1)
whereV? is the Laplace differential operatdrthe time variablep, the mass density of water adg

the compression wave velocity. We consider harmonic graguelerationsiy(t) = ag€“* wherew
denotes the exciting frequency. Hydrodynamic pressurbeanéservoir can then be expressed in fre-
quency domain ag(z, y,t) =p(z,y,w) €, wherep(z, y,w) is a complex-valued frequency response
function (FRF). Eqg. (1) becomes then the classical Helnzlexjuation

Vp+ —=p=0 (2)

Using a modal superposition analysis, the FRFs for strattlisplacements and accelerations can be
expressed as

u(r,y,w) = i@b}x)(x,y)zj(w); (z,y,w Z¢ W (@, y)Z;5(w) (3)

i(x,y,w) 22¢()$?JZ() v(z,y,w) 22¢y)xy iw) @

whereu andv denote the horizontal and vertical displacements, reseyti andv the horizontal
and vertical accelerations, respectivve) and ¢§y) the z- andy-components of theg th structural
mode shape, respectivelyy; the generalized coordinate, and the number of structural mode shapes
included in the analysis. The FRFor hydrodynamic pressure can be written as (Fenves andr@hop
1984; Bouaanani and Lu, 2009)

ms

p(z,y,w) = po(z,y,w) —wQZZj(w)[)j(x,y,w) (5)

j=1

wherep, is the FRF for hydrodynamic pressure due to rigid body motbithe containing struc-
ture subjected to ground acceleratiog) and wherep; is the FRF for hydrodynamic pressure due
to horizontal ground acceleratioméx)(—br,y) and wj(-x)(br,y) of the lateral walls of the containing
structure vibrating along structural mogeHydrodynamic pressure FRF-can be decomposed into
an impulsive componem and a convective componepy, yielding

]3(1', y7w) - ﬁl (ZL’, va) +Z3C(x7 y7w>
- ﬁl,O(x> Y, Ld) + ﬁC,O(x> Y, Ld) (6)

—w’ Z [ﬁl,j($7 Y, w) + ﬁC,j(‘rv Y, w)} Zj(w>
j=1

The boundary conditions to be satisfied by FREs pc o, p1,; andpc ; are as follows



— At structure-reservoir vertical interfaces

op . Ip
S (b, ) = —prigl) S0 (b w) = 0 (7)
Wiy — +b,. 1) : Wi 4y, — 0 8
c%v ( I y7w> - _pl’qu)j( ry y) ) c%v ( ry y7w) - ( )
— At reservoir bottom
op Op,
5y (0,0) =0, 5 (r,0,6) =0 ©)
O (2,0,) = 0 2 (1,0,0) =0 (10)
— At reservoir surface
2 aﬁ 2=
(g — pihiw )a—y@, Hy,w) = pw?p(x, Hy,w) (11)
ﬁI,O(x7Hl’aw) :ﬁf,j(x7Hl’aw) =0 (12)

wherep; denotes the mass density of floating ice bloéksheir average thickness apdhe acceler-
ation due to gravity. The boundary condition in Eq. (11) waswkd using the kinematic condition
and linearized Bernoulli’'s equation at the interface betwthe floating ice blocks and the reser-
voir (Weitz and Keller, 1950; Sun, 1993; Bouaanani et alQ20Adopting the decomposition of
hydrodynamic pressure into a convective and an impulsigegure as per Eq. (6), and substituting
Eq. (12) into Eqg. (11), the surface boundary condition in(Ed) yields the two following boundary
conditions expressed in terms of FRirsg, pco, pi1; andpcj, j=1...ms

P10

9%
Pco o (x, H,w) (13)

dy

(prg = pihi w?) =25 (2, Hy,w) — peo®peole, Hr,w) = —(prg — pili w?)

Opc.j oD
(g — pihi w?) SZ’J (2, Hy,w) — pw*po i (w, Hy,w) = —(peg — pihi w?) g; (z, Hr,w) (14

The FRFp for total hydrodynamic pressure is given by Eq. (6) wherewvketor Z of generalized
coordinatesZ;, j=1...ms, is obtained by solving the system of equations

SZ=Q (15)



in which elements of matricé$ andQ are obtained fon=1...msandj=1...msas
Shj(w) = { w? + (1 +i 775) ]&w
Hy
+ w2 { /0 [ﬁlyj(bh Y, w) + ﬁCJ(bra Y, w)} ¢r(z$) (br, y) dy

- /OHr [ﬁl,j(—br, y,w) + be,j(—br, y,w)] V@ (~by,y) dy} (16)

Hy
Qu(w) =— M1+ /0 [Pro(be, v, w) + Beo(br, v, w)| 0 (b, y) dy
Hr
- A |:l3|,0(_bl’7y7w> +Z3C,0(_bl’7y7w>:| ¢7(1$)(_bl’7y) dy (17)

wherej denotes the Kronecker symbal, is the vibration frequency corresponding to structural enod
shapey,, of the empty containing structure combined to ice-addedsnMss the mass matrix of the
ice-container systemy is the structural hysteretic damping factor, dnig a column-vector with the
same dimension as the vector of nodal relative displacesneontaining zeros except along horizontal
degrees of freedom which correspond to the direction ohgaeke excitation.

2.2 Impulsive hydrodynamic pressure

Solutions for FRFg,, andp, ;, j = 1...ms, are developed next using Eq. (2), and the associated
boundary conditions described in the previous sections@ening a unit horizontal ground accelera-
tion tig(w) =1, we show in Appendix A that FRF, , can be expressed as

e M2 (I (w) X (2,w) = I (w) X, (2, 0))
= pelt nzl () Fin (@) Sinh[brron ()] coshlbrin ()]

pro(z,y,w cos]\a(w)y]  (18)

in which m, is the number of impulsive pressure modes included in thi/sisaand the parameters
Ay Bn(w), kn(w), X, (z,w), X} (z,w), I5,(w) and I, (w) are given in Appendix A. We also show
in Appendix A that FRF$, ;, j=1...ms, can be written as

N2 (15 (w) X (2,w) — I (w) X (2, )]

ﬁl,j(I,yaw):PrHrng:l (W) Fop(w) sinh[brk,, (w)] cosh[byr, (W)]

cos[\, (w) y] (19)
wherel}, (w) andI;,(w) are given in Appendix A.

2.3 Convective hydrodynamic pressure

In this work, we consider rectangular water-containingdures that can be geometrically or mate-
rially asymmetric, i.e. with different lateral walls. As artsequence, the horizontal accelerations at
wall-water interfaces on each side of the reservoir can fherdint and thus generate both symmetric
and asymmetric hydrodynamic pressure waves. To accouttitobehavior, the FRF for convective
hydrodynamic pressurg: will be decomposed into a symmetric tefig and an antisymmetric term
pc, which correspond to symmetric and antisymmetric modekshing, respectively. FREg , and



pc;, J=1...ms, can then be expressed as

A ~

ﬁC,O(x>y>w) = pC,o(ﬂf,y,W) "‘PC,O(%%W) (20)
ﬁC,j(xvyuw) - ﬁC,j(x7y7w) +ﬁC,j($7y7w) (21)

FRFspc andpc ; are solutions of Eq. (2), and satisfy the boundary conditidascribed in Sec-

tion 2.1, among which Egs. (13) and (14) which relate the FeFsonvective hydrodynamic pressure
to those for impulsive hydrodynamic pressure determinegkiction 2.2. Accordingly, FRFs for con-
vective hydrodynamic pressure are developed in AppendisiBguthe decompositions in Egs. (20)
and (21).

Considering a unit horizontal ground acceleratigfw) = 1, we show in Appendix B that FRFc
andpc ; can be obtained as

por(@,y,w) = > 3 { Ay m(w) coshlin (w) y] cos[A,,(w) 2]
m=1n=1
+ Ry (@) coshliim () y] sinAn(w) 2]} €=0,5  (22)
wherem, is the number of reservoir convective modes and

2 x (=1)™ " peg Hy A3 (w) [ 1, (@) — 17, (w)]

A/A\é,n,m(w) - R < R R ; (= O?] (23)
b Ba(w) Xm (@) [£2(w) + A2, ()] [42(w) — w?] coshlfim(w) H]
- —2 X (=1)™" pgHe N3 ()1} (w) + I, (w
) 2 (21" prgHe Xy )| (@) + ()] o e
b B () Ko (@) [K2(@) + A2, ()] [72,(w) — w?] cosh[fim(w) H]
in which the frequency-dependent functioffsandy?2, are given forn=1...m by
-2 g him(w) . -2 g Fim(w) "
w) = = tanh|i,,(w) Hy|; (W) == tanh|&,, (w) H 25
where the parametefs,,, X, ~,» andx,, are obtained as
. o, pili . . - ., Pl _
Xm(w) =1+ Rm(w) tanh[&,, (w) H; Xm(w) =1+ Rm(w) tanh[f,, (w) Hy]  (26)
Pr Pr
2 2
A — A2 _ w_ . s — ~2 — W_
/im(LU) )‘m Cr2 ) K)m(UJ) )\m Cr2 (27)

in which the eigenvalueisﬂ and)\,, corresponding to convective symmetric and antisymmetddes,
respectively, are given fon=1...m by
< mm N 2m—1)=w

Ay = =2 Ay = 20 28
by 20, (28)




The natural convective symmetric and antisymmetric fregies correspond to the frequencigs
andw,,, respectively, that satisfy the equations

Ao () — @2, = 0; Yo (@Om) — @2 =0 (29)

form=1...mc. Ifwateris assumed incompressible, then the parameteasdx,,, become frequency-
independent, and Eq. (27) simplifies to

- 5\m ; ’%m - 5\m (30)

The natural convective symmetric and antisymmetric fregiesw,, andw,,, respectively, become
also frequency-independent, and can be obtaineghferl . .. m. as

\/————tanh H,); x/————tanh/-ﬁm r) (32)

2.4 Time responses for a seismic loading

The generalized coordinate vecibis computed after substituting the impulsive and convediRFs
into Eq. (15), then the total pressure in the frequency-donsacomputed according to Eg. (6). The
time-history displacements and accelerations of a poirtheflateral walls subjected to a ground
acceleratioriiy4(t) can be obtained as

u(z,y,t) Z@b( (z,9) Z;(t); iz, y,t Z@D( (z,9) Z;(t) (32)
Ns s .
vz, y,t) = S0V (x,y) Z;(1); iz, y,t) = S W (2,y) Z;(t) (33)

j=1 j=1
where the time-domain generalized coordindeare given by the Fourier integrals

40 =5 [ i) et 0= o [T 2w i) et (38

in which iig(w) is the Fourier transform of the ground acceleratig(t)
_ ta .
fig(w) = / ug(t) &t di (35)
0
with ¢, denoting the time duration of the applied accelerogram.

The time-history response for total hydrodynamic presguard vertical displacemeijtat reservoir
surface under the effect of ground acceleratigft) can also be obtained as

p(l‘,y,t) :po(ZL’,y,t)—ngpj(I,y,t) ZJ(t) (36)

j=1



1
C(xat) - —p(l', Hl'at> (37)
Prg
Based on the above relations, other quantities of intetes$t 8s shear forces or overturning moments,
can also be determined.

In the coupled systems studied, two types of damping shaustbounted for to model the dissipation
of energy in the solid containing structure and in the comdifluid. A viscous damping has to be
applied to represent energy dissipation in the vibratimgcstire and associated impulsive modes.
A damping for convective modes is introduced to mainly aotdar energy dissipation within the
contained fluid, and is generally assumed to be less thi&li for light viscosity liquids without
dissipative devices. Various design codes like the Eure@&®003) or the ACI 350.3 (2006) specify
0.5% damping for convective modes af@h damping for impulsive modes. These conservative values
are based on several studies such as (Scarsi, 1971; MaatelE298; Ghaemmaghami and Kianoush,
2010). They are used in the numerical models presented next.

In the analytical formulation, damping for impulsive modssepresented by a hysteretic damping
factornsincluded in Eg. (16). Damping for convective modes is actedifor through a viscous damp-
ing & introduced into Eqs. (38) and (39) to yield

2 x (1) peg Hy A3 (w) [ 1, (w) = I, ()]
b B () X (@) [52 (@) + A2, ()] [42,(@) + 21 &ow Fm(w) — w?] coshiop(w) H

o~

Af,n,m(w) -

(38)

Ko (0) = =2 (=)™ pog Hy X3 (w) [T, (w) + I, (w)] -
T b Bal(@) Xm(@) [R2(@) + A2,(@)] [F2(@) + 21 oo Fm(w) — 2] coshlfn(w) H]

for (=0, ;.

The proposed method is validated in the next section thr@aughmerical example illustrating the
dynamic response symmetric and asymmetric water-contaisiiructures covered with floating ice
blocks.

3 lllustrative numerical example
3.1 Properties of the studied system and numerical modeling

We consider the geometrically asymmetric wall-water sysilkustrated in Fig. 3. It consists of two
lateral walls impounding a reservoir of heighf=20 m and a length., =20 m, covered with floating
ice blocks. The following properties are adopted for thestibutive material of the walls: modulus
of elasticity Fs = 25 GPa, Poisson’s ratios = 0.2, and mass densitys = 2400 kg/n?’. The water is
assumed compressible, with a velocity of pressure wayes 1440 m/s, and a mass density =
1000 kg/m?. An ice mass density; = 917 kg/n? is adopted (USACE, 2002). Although the thickness



of the ice blocks may vary from one point to another, an avemagform thickness; = 1.0m is
considered for this numerical example.

The application of the proposed method first requires therdenation of the mode shapes,
j=1...ms, of the lateral walls without water, i.e. dry structure. s purpose, both walls are dis-
cretized into 4-node plane-strain solid finite elementagighe software ADINA (2010) as illustrated

in Fig. 4 (a). Fig. 5 shows the obtained first four mode shaipesns =4, given by ADINA (2010) as
well as the corresponding frequencies and horizontal &ffemodal masses expressed in percentage
of total mass of the walls. Convergence studies showednthat 30 convective modes are required.
A viscous damping ratig. = 0.5% and a hysteretic damping factgy= 0.1 are applied to damp-out
convective and impulsive modes, respectively.

To validate the proposed formulation, we build a coupledifstructure finite element model where
both the walls and the reservoir are modeled using 4-nodee@#ain and 4-node potential-based
finite elements programmed in ADINA (2010), respectivelig.B (b) illustrates the finite element
mesh used. In this case, a potential-based formulation effithd domain is adopted (Everstine,
1981; Bouaanani and Lu, 2009). Dynamic interaction betwkemnwalls and the reservoir is achieved
through fluid-structure interface elements. Beam elemwiitsnegligible stiffness are introduced at
the reservoir surface to account for fluid-structure irtBom between the reservoir and the floating
ice blocks. Two modal viscous damping values are assumedrtgpeut convective and impulsive
modes, respectively: (i) @5% modal damping ratio is applied to the first 30 modes with laegtren-
cies corresponding to convective modes only, and (iiYiamodal damping ratio is applied to the rest
of the modes up to th210 th.

The frequency- and time-domain dynamic responses of thewedér system are investigated next
using the previously described analytical and finite elammadels shown in Figs. 4 (a) and (b).

3.2 Frequency-domain response

Fig. 6 presents the FRFs for nondimensionalized hydrodyng@messuresp/(prgH;)| obtained at
points A and A, nondimensionalized horizontal relativemlacementsu/us| at points C and C’,
whereug is the lateral static displacement under the effect of hgtdtoc pressure, and nondimension-
alized vertical displacement/ H, at points B and B’ at reservoir surface. The results are deted

at points A, B and C located on the left wall, and points A, BdaC’ belonging to the right wall as
indicated in Fig. 4. The vertical positions of the points ggie=yx =1m, yg =yg =20M, yc =24 m
andyc = 28 m. The FRFs in Fig. 6 clearly show that the proposed formutayields excellent re-
sults when compared to those obtained through finite elemedtling whether with or without the
presence of floating ice blocks. Each frequency curve etghif)) a lower frequency range patrt, i.e.
f<0.5Hz, corresponding to convective modes, and (ii) a higheeacy range part, i.¢.>1.5 Hz,
corresponding to impulsive modes. The FRFs of hydrodynanm@ssures at reservoir’'s bottom and the
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lateral displacements at the top of the walls show that teegrce of floating ice blocks affects dy-
namic responses corresponding to convective modes and twla larger extent those corresponding
to the impulsive ones. As can be seen, the main effect is @dserof resonant frequencies, a behav-
ior that can be related to the added mass from floating icekbldt/e also observe that the FRFs of
vertical displacements at reservoir surface are the méesttatl by the presence of ice blocks, which
mainly leads to the appearance of impulsive modes with mgdnequencies larger thdm Hz.

The techniques described previously are applied next @rohte convective and impulsive hydro-
dynamic pressure profiles corresponding to frequenties,, 1.1&, 0.9w; and1.1w;, wherew,
andw; denote the natural frequencies corresponding to the fitsyammetric convective mode and
first impulsive mode, respectively. The resulting hydraayic profiles illustrated in Fig. 7 confirm
that the proposed formulation is in excellent agreemertt thié advanced finite element solution. The
profiles also reveal that the presence of ice blocks: (ihdlygdecreases the amplitude of convective
hydrodynamic pressure along the height of the reservadr(@nncreases the amplitude of impulsive
hydrodynamic pressure, with maximum amplification obseiereservoir surface.

3.3 Time-domain response

In this section, we investigate the performance of the pgedanethod in assessing the seismic re-
sponse of the previously described wall-water system. Bhieéntal acceleration component of Impe-
rial Valley earthquake (1940) at El Centro is selected talc@hthe analyses using the proposed and fi-
nite element techniques described above. Fig. 8 illusgtthefirst20 s of the input ground acceleration.
The obtained time-histories of nondimensionalized hariabrelative displacements/ug] at points

C and C’, the nondimensionalized shear fort@dy, at sections A and A, wheréyy = prgH?/2
denotes the hydrostatic force, and the vertical displacesdeat points B and B’ at reservoir surface
are shown in Figs. 9 and 10 for the reservoir with free surtao@ ice-covered, respectively. These
figures show that the time-history results given by the dgyadl formulation and the finite element
solution are practically coincident.

We observe that the amplitudes of all the quantities stuithectase with the presence of floating ice
blocks. This effect is maximum for the vertical displacemsenat reservoir surface, with displace-

ments approximately 5 times larger with an ice-coveredrvegsethan with a free surface case. We
also note that the frequency content of the response cus\adftected by the presence of ice blocks.
This is more pronounced in the response curves of resemwdace vertical displacements as we com-
pare Figs. 9 (e) and (f) to Figs. 10 (e) and (f). Low convectreguencies dominate indeed the free
surface reservoir dynamic response as anticipated fromaRfreof reservoir surface vertical displace-
ment shown in Fig. 6 (e), which explains the predominant lpaigod oscillations in the time-domaine

response of free surface vertical displacements in Figg.&r{d (f). We also note the obvious oppo-
sition of phase of vertical displacements at points B andaBiich originates from predominant first

antisymmetric sloshing mode. On the other hand, Fig. 6 \sthat the FRF of vertical displacement

11



of ice-covered reservoir surface also contains low frequ&onvective modes, but more importantly
impulsive modes with resonant frequencies larger thaikz, similarly to the FRFs of hydrodynamic
pressure or lateral displacements in Figs. 6 (a) to (d). & mpulsive modes are predominant in the
time-domain response of ice-covered reservoir surfadecaédisplacements shown in Figs. 9 (e) and
(f), which explains the approximate resemblance of theiethistory signature to that of lateral dis-
placements and base shears in Figs. 9 (a) to (d), also dadibgtimpulsive modes. We see from the
latter figures that maximum displacements at top of contdateral walls are amplified by abouts
times due to the presence of floating ice blocks, while thaisfaece at the base of the walls is not
significantly affected.

Finally, the proposed formulation is used to illustrate &fiect of asymmetry of the previous ice-
covered water-containing structure on its dynamic resposr this purpose, we consider a symmet-
ric rectangular water-containing structure made by reptathe right wall of the asymmetric structure
in Fig. 3 by its3 m-thick and24 m-high rectangular left wall. The dimensions of the reserace the
same as the asymmetric wall-water system. The symmetriersgantaining structure is subjected
to the same earthquake as previously. The time-historiesdimensionalized horizontal displace-
ments|u/ug| at point C, as well as vertical displacemeqtat points B and B’ at reservoir surface
obtained using the developed method are illustrated inlAigor the symmetric and asymmetric
water-containing structures. The results in Figs. 11 (d)(@Bhshow that asymmetry has a minor effect
of the structural response of the walls either with or withioa blocks. The vertical displacements of
reservoir surface at point B are also practically insevesitdb asymmetry with or without ice blocks as
observed in Figs. 11 (c) and (d). Figs. 11 (e) and (f) revealdver that the vertical displacements of
reservoir surface at point B’ are affected by asymmetry ufige surface conditions, and to a much
larger extent when the reservoir is covered by ice blocks fdsult emphasizes that, for the particular
water-containing structures studied, the presence oflaekb increases the impact of asymmetry on
hydrodynamic response indicators such as displacemenidlii@ns at reservoir surface.

4 Conclusions

This paper presented a new formulation to investigate tieetsfof floating ice blocks on seismically-
excited rectangular water-containing structures. The@@sed method is based on a sub-structuring
approach, where the flexible containing structure and doeed mass are modeled using finite ele-
ments, while hydrodynamic effects are modeled analytidhltough interaction forces at the water-
structure and water-ice interfaces, thus eliminating #edrfor reservoir finite element discretization.
In addition to accounting for the influence of floating icedis and container walls’ flexibility, the
developed frequency- and time-domain techniques alsadedhe effects of container asymmetry as
well as the coupling between convective and impulsive camepts of hydrodynamic pressure. The
application of the proposed formulation is illustratecoigh a numerical example illustrating the dy-
namic response of an asymmetric water-containing strecovered with floating ice blocks, as well
as that of an equivalent symmetric structure containingardir with the same dimensions. The ob-
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tained time- and frequency-domain responses showed thatrdposed formulation yields excellent
results when compared to those from coupled fluid-strudinree element modeling either with or
without the presence of floating ice blocks. For the watertaming structures studied, we observed
that the presence of floating ice blocks mainly affects dyinagsponses corresponding to convective
and impulsive modes as follows: (i) a slight decrease of eotive frequencies and a more important
decrease of impulsive ones, mainly due to the added massifieftoating ice blocks; (ii) a slight de-
crease of the amplitude of convective hydrodynamic presalang the height of the reservoir; (iii) an
increase of the amplitude of impulsive hydrodynamic pressuith maximum amplification observed
at reservoir surface; (iv) an increase of the amplitudesspfldcements, shear forces and, in particular,
vertical sloshing displacements at reservoir surface.

List of symbols

Abbreviations

FRF frequency response function
Symbols
Ano, Anjy Ay, o and A7, coefficients used for mathematical derivations in Apperdix

B0y Bm,js B, o andBy, ;. coefficients used for mathematical derivations in Apperiiix

ag amplitude of harmonic ground acceleration

iig Fourier transform of ground acceleratiép

by half-length of the reservoir

Cy compression wave velocity within the reservoir

l index referring to rigid body motion effects whée-0 and to lateral vibrations

along structural modg¢ when/=j

Es modulus of elasticity of the containing structure
Fstat hydrostatic force

g acceleration due to gravity

hi average thickness of the floating ice blocks

H, height of the reservoir
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P andpc
D10 andpc,o
Di; andpc ;

pc andpc

pc,0 andpe o

pc,j andpc

Q andQ,

S andsS,,;

parameters given by Eq. (All) far=1...m,

parameters given by Eqgs. (A12) and (A13) jeel...msandn=1...m;
length of the reservoir

mass matrice of the ice-container system

number of reservoir convective modes

number of impulsive pressure reservoir modes includeddratialysis
number of structural mode shapes included in the analysis
hydrodynamic pressure and corresponding FRF, respactivel

FRF for hydrodynamic pressure due to rigid body motion of ¢bataining
structure subjected to ground acceleratign

FRF for hydrodynamic pressure due to horizontal ground laca#ons
wj(.x) (=br,y) andz/)j@ (br, y) of the lateral walls vibrating along structural mode

J

impulsive and convective components of hydrodynamic jpiressRFb
impulsive and convective components of hydrodynamic piresERFb,
impulsive and convective components of hydrodynamic pires§RFb;

symmetric and antisymmetric components of convective dgygimamic pres-
sure FRFpc, respectively

symmetric and antisymmetric components of convective dgygiamic pres-
sure FRFpc o, respectively

symmetric and antisymmetric components of convective dglmamic pres-
sure FRFc ;, respectively

vector in Eq. (15) and its elements given by Eq. (17)det 1. .. mg, respec-
tively

matrix in Eq.(15) and its elements given by Eq. (16) for= 1...ms and
j=1...ms, respectively

time variable

time duration of the applied accelerogram
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x andy
X, and X"

u andv

Ust

u ando

B

Ym andyy,
)

¢

US

Kn,

Rm andi,,
An

Ay and\,,

Aé,n,m andAé,n,m

v2

Vs

horizontal and vertical axes of Cartesian coordinate aystespectively
parameters given by Eq. (A14) far=1...m,

time-history response of horizontal and vertical struaitutisplacements, re-
spectively

lateral static displacement under the effect of hydrostatessure

FRFs of horizontal and vertical structural displacememrgspectively
time-history of ground acceleration

FRFs of horizontal and the vertical structural acceleratigespectively

shear force

vector of generalized coordinates afith generalized coordinate, respectively

column-vector with the same dimension as the vector of noelative dis-
placements, containing zeros except along horizontal egsgof freedom
which correspond to the direction of earthquake excitation

parameter given by Eq. (A10) fer=1...m,
parameters given by Eq. (25) for=1...m¢
Kronecker symbol

vertical displacement at reservoir surface
structural hysteretic damping factor
parameter given by Eq. (A3) for=1...m,
parameters given by Eq. (27) for=1...m¢
eigenvalue given by Eq. (A3) for=1...m,
eigenvalues given by Eq. (28) for=1...mc

parameters given by Eqgs. (38) and (39), respectively! 00, j, m=1...m¢
andn=1...m;

Laplace differential operator

Poisson’s ratio of the containing structure

15



€c
pi
Pr
Ps
P

Xm @ndx,,

z/)j(.“) andw§y)

W andw,,

viscous damping associated with convective modes

mass density of floating ice blocks

mass density of water

mass density of the containing structure

n th mode shape of the empty containing structure combinezttadded mass
parameters given by Eq. (26) for=1...mc

x- andy-components of the th structural mode shape, respectively
exciting frequency

vibration frequency corresponding to structural mode shap of the empty
containing structure combined to ice-added mass

m th impulsive frequency

m th convective symmetric and antisymmetric frequenciespeetively
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APPENDIX A

Using Egs.(2), (12) and the boundary conditions in the lefiimn of Egs. (9) and (10), we show that FRk§
andp, ;, 7=1...ms, can be expressed as

myr

Do 5 w) = Y [Ano(w) €7 4 4] (@) €)7] cos(, y) (A1)
n=1
mr

(e y.w) =) [An,j(w) e T 4 A7 (w) e ““"] cos(An y) (A2)
n=1

wherem; is the number of impulsive pressure modes and frequencgrdiemt coefficientsl,, o, A, ;, A7, g
and A;w. are to be determined later, and eigenvaligsand frequency-dependent parametefrsare given
forn=1...m; by

2n —1 2
B b = || A2 — = (A3)
r

Ay = -

Substitution of Egs. (A1) and (A2) into the boundary corfi in the left column of Egs. (7) and (8) yields
Z K (W) = Ay o(w) e (@b 4 Ay o(w) gin@)br cos(Any) = —pr (A4)
n=1 B .

Z K (W) = Apo(w) gin(@br 4 Ay o(w) g rn(@)br] cos(Any) = —pr (A5)

n=1

S bin(w) |~ Ang(w) e @b Al (W) e br_ cos(An ) = —pr ¥\ (br, ) (A6)

n=1

> kin(w) |~ An(w) @b Al (w) e () br_ cos(Any) = —pr ¥\ (~br,y) (A7)

Multiplying Egs. (A4) to (A7) bycos(\,, y), integrating over reservoir height and using the orthotiyngrop-
erties of trigonometric functions yields to a systemtof; linear equations which can be solved for coefficients
Ao, A%,o’ Ay andA;w., n=1...my, j=1...ms, as follows

pHAZ |1, (w) €n ) — I (w) etmn )]

Anelw) = 20 (w) K (w) sinh[brky, (w)] cosh by, (w)] ; 6=0j (A8)
o eHR [ et ] Ao
”’Z(w)  2Bp(w) ki (w) sinh[byrsy, (w)] cosh by, (w)] =0.J (A9)
in which
Bn = Hy X2, (A10)
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andly,,, Iy, I;,, andI are given by

0O, “j,n

- I 2 x (—=1)"+1 H,
Iyp(w) = I, (w) = I /0 cos(An y) dy = % (A11)
L[ @)
T ¥ (=br,y) cos(Any) dy (A12)
rJo
L[ @)
T ¥ (br,y) cos(Ap y) dy (A13)
rJo

Substituting Egs. (A8) and (A9) into Egs. (A1) and (A2) yeltie expressions @f o andp, ; given in Egs. (18)
and (19), respectively, with the coefficients, and X, obtained as

X, (z,w) = cosh [(z — by) kn(w)];

X} (z,w) = cosh [(z + by) kp(w)] (A14)
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APPENDIX B
Using Egs. (2), and the boundary conditions in the rightmwiwf Egs. (7), (8), (9) and (10), we show that FRFs
pc,o andpc ;, j=1...ms, can be expressed as

mc

pco(z,y,w) = Z {Bm,o(w) cosh [ (w) y] cos(Am ) + B, o(w) cosh [fp(w) y] sin( A, :1:)} (B1)

m=1
me

Pz, y,w) = Z {Bmvj(w) cosh [/%m(w) y] cos(jxm x) + B,’n,j(w) cosh [Fam(w) y] sin(S\m 3:)} (B2)
m=1
wheremc is the number of reservoir convective modes and frequeepgident coefficients,,, o, By, ;, B{mo
and B;m are to be determined later, and eigenvaldg,sand Am, and frequency-dependent parametess
andk,, are given form=1...m¢ by

- mm N /
)\m - b—r ’ K‘m(w) 02 (83)
- @Cm-1)7 )
S = () =4[ 3 — o (B4)
Substitution of Egs. (B1) and (B2) into the boundary coodisiin Egs. (13) and (14) yields
Z {Bm,o(w) Xm(w) cosh [/%m(w) Hr] cos(j\m x) [’y?n(w) - w2]
m=1 (B5)

+.B;wa)xnxw)cnsh[km(w)fa}anXmag[a;(w)-aﬂ}} = —g g Hrow)

mc

Z {Bmvj(w) Xm(w) cosh [/%m(w) Hr] cos(j\m x) [’ygl(w) — w2]
m=1 (B6)

+ By (@) Xm(w) cosh [fn(w) Hi] sin(hn @) [72(w) = w?] } = =g 85'”’ (a, Hr,w)
’ Y
where the derlvatlvesa? and agl J can be determined using Egs. (18) and (19), respectivadyfutictions
Y

Am and+,, are given by Eq. (25), and the parametgrsandy,,, are defined by Eq. (26).

Multiplying Eqgs.(B5) and (B6) bycos(An, 2) andsin(\,, x), integrating over reservoir lengtth, and using
orthogonality properties of trigonometric functions yigelthe following expression for coefficients,, o(w),
By, o(w), B j(w) and By, ;(w), m=1...my, j=1...ms

G 25 (=1)™ " pegHy A3 (W) (1, (w) — I, (@) '
Brm,e(w) = L 0=0, B7
) ; br B (@) Xm (w) [K2(w )+ A2, (w )] [42,(w) — w?] cosh[f, (w) Hy] i @)

, A =2 x (=1)™*t" p.gH, Ai(w)[[jn(w) + 1, (w)] .
w) = = : : ; (=0, B8
meld) ,;1 br B (W) Xm (W) [K2 (W) + A% ()] [ (w) — w?] cosh[Rp (w) Hi] .
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Figure 7. Nondimensionalized hydrodynamic pressure pofin the walls of the asymmetric wall-water sys-
tem: (a) Convective hydrodynamic pressures without iceecab) Impulsive hydrodynamic pressures without
ice cover; (c) Convective hydrodynamic pressures with meéec (d) Impulsive hydrodynamic pressures with
ice cover— Finite element solution;— Proposed solution.
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Figure 8. Firs0 s of the horizontal acceleration component of Imperial&atarthquake (1940) at El Centro.
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Figure 9. Time-history response of the asymmetric wallewatystem without ice: (a) Nondimensionalized
displacement at point C; (b) Nondimensionalized displaa@mat point C’; (¢) Nondimensionalized shear force
at section A; (d) Nondimensionalized shear force at se@&ipfe) Nondimensionalized vertical displacement of
water at point B; (f) Nondimensionalized vertical displamnt of water at point B Finite element solution;
— Proposed solution.
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Figure 10. Time-history response of the asymmetric wallewaystem with ice: (2) Nondimensionalized dis-
placement at point C; (b) Nondimensionalized displacemepbint C’; (c) Nondimensionalized shear force at
section A; (d) Nondimensionalized shear force at sectig& Nondimensionalized vertical displacement of
water at point B; (f) Nondimensionalized vertical displamnt of water at point B Finite element solution;
— Proposed solution.
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Figure 11. Time-history responses of the symmetric and awtnic wall-water systems: (a) Nondimensional-
ized displacement at point C without ice; (b) Nondimensiized displacement at point C with ice; (c) Nondi-
mensionalized vertical displacement of water at point Bauit ice; (d) Nondimensionalized vertical displace-
ment of water at point B with ice; (e) Nondimensionalizedtizat displacement of water at point B’ without ice;
(H Nondimensionalized vertical displacement of water@hpB’ with ice. __ Symmetric structure;_ Asym-
metric structure.



