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ABSTRACT

This paper presents an original investigation of the seitgitof floor acceleration demands in gravity dams to
various modeling assumptions of the impounded reservaagh3oor acceleration demands are crucial for the as-
sessment of the seismic performance or vulnerability of-dapported appurtenant structures. Two approaches
are proposed to obtain floor acceleration demands: anallydind coupled dam-reservoir finite element models.
Both techniques are applied to typical dam-reservoir systeith different geometries. The dam-reservoir systems
are subjected to ground motions with various frequencyesdatand the resulting floor acceleration demands are
examined to investigate the effects of reservoir geometager compressibility, reservoir bottom wave absorp-
tion and dam higher vibration modes. A new approach basedapoped floor frequency response functions is
also developed to assess floor acceleration demands aageedtpreliminary seismic design or safety evaluation
of dam-supported appurtenant structures. Examples aga ¢villustrate how the proposed approach can be ef-
fectively used to compare floor acceleration demands willffierent dams or within the same dam considering
various modeling assumptions of the reservoir.
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1 Introduction

Floor response spectra define maximum responses of liglst@@spments or other secondary structures
supported at various locations of a more massive primaugcttre. These spectra are commonly used
to investigate the dynamic response of secondary stricnen interaction with the primary structure
can be neglected. Floor response spectra were extensivdlgd in the contexts of nuclear facilities and
multi-storey buildings (Singh 1975; Singh 1980; Singh 1,98&ura and Der Kiureghian 1986; Chen and
Soong 1988). Floor response spectra can also be used tg #ssa/namic response of safety-critical
piping, power supply units, and other electrical or mecbalrequipment anchored within dam galleries
as well as appurtenant facilities such as bridges, contibbuildings, spillway support structures, gates,
hoist bridges and lifting equipment generally located regan crest where ground motions can be sig-
nificantly amplified from dam base. For example, seismicnggat three dam sites in Quebec during the
Saguenay earthquake showed motion amplificatiorstofl 5 times from rock to dam crest (Rainer and
Dascal 1991).

Assessment of maximum floor acceleration demands alongeligithof hydraulic structures is crucial
for the design and safety evaluation of appurtenant systersed, amplification of seismic demands in
dams may cause significant damage as was documented inlssagas, such as th®3 m-high Koyna
dam (India) after the 1967 M6.3 reservoir induced earthqudite105 m-high Hsingfengkiang buttress
dam (China) under the effect of a 1962 M6.1 reservoir indwaethquake, and th&6 m-high Sefid-Rud
buttress dam (Iran) following a 1990 M7.3 earthquake (Harsal Roehm 1979, Arcangeli and Ciabarri
1994, ICOLD 2001). In other events, if damage to the damfitsatained marginal, supported equipment
and appurtenant structures were severely affected by @apyiround motions which induced offset or
cracking of elements such as walls, parapets, or bridgeigr@SCOLD 2000, Matsumoto et al. 2011).
Amplifications of seismic demands in dams were also evidghgeshake table tests (Donlon and Hall
1991, Lin et al. 1993, Tinawi et al. 2000). Therefore, modguidelines dealing with the earthquake re-
sponse of dams, such as ICOLD (2010), clearly specify thatrse input at the support of equipments or
at the base of appurtenant structures should take accogmafid motion amplifications. Such practice
has not been always uniformly observed however, esped@llglder dams and appurtenant structures
with initial designs that may fail to meet modern safetyesd.

Weiland and Malla (2000) performed 3D dynamic analysis db a-high arch-gravity dam assuming
that water in the reservoir is incompressible. They found@eleration amplification factor with respect
to the PGA 0f3.8 at the upper gallery, and abotiat dam crest. They also used the floor response spec-
trum at a given level to generate artificial spectrum-combpatccelerograms used to conduct stability
analyses of an upper cracked portion of the dam (Wieland aakkaN000 ; Malla and Wieland 2003).
Ben Ftima and Léger (2006) investigated the possibilitysimpute floor response spectra at the base of
cracked sections of a gravity dam and the use of these spededine compatible accelerograms to per-
form transient rigid body sliding/rocking response anatyalong dam’s height. They used Westergaard’s
added masses to represent hydrodynamic loads from theo@ser



It is now widely accepted that the accurate evaluation aémesr loading on a dam upstream face is
an important ingredient of its seismic safety assessmégnifeant research has been devoted to study
this type of loading since the pioneering work of Westerdga®33). Several advanced analytical and
numerical frequency-domain and time-domain approaches @also proposed to account for dam de-
formability, water compressibility, radiation of outggimaves towards far reservoir upstream, and reser-
voir bottom wave absorption in the seismic response of dasefroir systems, such as described for
example by Chopra (1970), Fenves and Chopra (1984), Hunthdaplonski (1988), and Bouaanani
and Lu (2009). To the authors knowledge however, no pulbdist@rk has addressed the sensitivity of
floor acceleration demands to modeling assumptions conyramdpted for hydraulic structures such
as gravity dams, namely those related to hydrodynamic tgadihese assumptions may range from
simplified added mass approach to more advanced treatméeigolency-dependent dam-reservoir in-
teraction, including water compressibility, reservoitttbon wave absorption and energy dissipation at
far reservoir upstream. Dam engineering analysts are lydaélto select the most appropriate of these
assumptions for a particular project without having senprar knowledge of the relative impacts on
the design or safety evaluation of appurtenant infrastirecinformed choices are however crucial con-
sidering the critical importance and seismic vulnerapilitat may be associated with dam-supported
appurtenant structures. This paper’s main objective i®éal fsuch informed choices as analytical and
coupled dam-reservoir finite element models are proposeédsed to thoroughly investigate the effects
of various assumptions on floor acceleration demands wigpical dam-reservoir systems with different
geometries.

2 Basic notation and types of analyses
2.1 Floor acceleration demands

We consider a gravity dam monolith, of heighi, subjected to a horizontal ground acceleratigat the

base as illustrated in Fig. 1. Floor seismic demands at aagieet P of the dam are defined by studying
the dynamic response of SDOF systems with various vibrdtemuenciesfs, attached to point P, while

the dam is excited by a ground acceleratigrapplied at its base. These SDOF systems, may represent
dam-supported appurtenant secondary structures, witls mgsstiffnesskis and viscous dampings.

We assume that the mass of the appurtenant secondary SD@msgstoo light so that its dynamic
response does not affect that of the primary system, i.edldhemonolith. The equation of motion of the
appurtenant SDOF can be written as

whereiip denotes the horizontal acceleration at point P of the daativelto its base, andl, s andiis the
horizontal displacement, horizontal velocity and horiabacceleration of the secondary SDOF system
relative to point P, respectively.

The floor acceleration demantdyp), at a point P of coordinatg., is defined hereafter as the maximum



absolute acceleration respodﬁevL Uup + ug‘ of the secondary SDOF system for a given vibration fre-

% We denote

qgquencyfs = L\/E and damping coefficient; or equivalent damping rati¢s =

21\ mg drmsfs
by I (yp) the maximum or peak floor acceleration at a point P of cootdigpaover the whole range
of frequenciesfs considered. Solving Eq. (1) requires the determinatiomefacceleratiotip at point P
relative to the dam base. This can be achieved using a codpleereservoir finite element model or a
semi-infinite reservoir analytical model as described eriaxt two sections.

2.2 Coupled dam-reservoir finite element model

The floor acceleration demands in a gravity dam can be olataismg a coupled dam-reservoir finite
element model as the one illustrated in Fig. 1 (a). In thig ce dam and the reservoir are modeled using
solid plane elasticity and potential-based fluid finite edais, respectively. The reservoir is truncated at
a certain distancé, from the dam upstream face, large enough to eliminate reffecf waves at the
far reservoir upstream end. Fluid-structure interact®adcounted for through special elements at the
dam-reservoir interface. Dam vibrations cause water metimrmal to its boundaries, and the induced-
pressure within water cause additional hydrodynamic ldadsct on the dam. In the present case of
two-dimensional analysis, the fluid-structure interfaleeents are 2-node line segments, which connect
4-node solid elements on the upstream face of the gravitytdaadjacent potential-based fluid elements
on the reservoir boundary. Each node of the interface elecwntains a potential degree of freedom
and two horizontal and vertical structural displacemeigtrées of freedom. The potential and structural
degrees of freedom are related through a compatibility dapncondition.

The procedure used to obtain the seismic response of thesdamas accelerations, is known asdhe/
formulation since it is expressed in terms of displaceméhtsnd velocity potentialg as state vari-
ables in the solid and water domains, respectively. It isi@esl that the fluid is inviscid, compress-
ible or incompressible, and with an irrotational motion amthtively small displacements of the fluid-
structure boundaries. Details of the- U formulation can be found elsewhere (Everstine 1981,0lsdn a
Bathe 1985a, Olson and Bathe 1985b, Bouaanani and Lu 208%)rdy a brief review is given hereafter
for convenient reference. Under the above assumptionsglbeity potentiakp in the reservoir satisfies
the wave equation 5
1 0%
oz o (2)
where( is the velocity of compression waves within water, arttie time variable. The velocity po-
tential ¢ satisfies a free surface boundary condition, a compatitibundary condition at the vibrating
dam-reservoir interface (Fenves and Chopra 1984, Bouaandriu 2009), a radiation boundary condi-
tion to prevent reflection of waves at the far upstream oféisenvoir (Sommerfeld 1949, Zienkiewicz and
Newton 1969, Bouaanani and Lu 2009, ADINA 2011), and a bogndandition accounting for energy
dissipation at reservoir bottom through one-dimensioadi@ wave absorption of incident compression
waves normal to the reservoir-foundation interface (Hall &hopra 1982, Fenves and Chopra 1984,

V¢ =



Bouaanani and Lu 2009). The last two boundary conditionsbeamodeled by infinite fluid elements
placed at the upstream end of the reservoir and by viscoupelamlaced at reservoir bottom, as will be
illustrated later.

Using standard techniques, the weak variational form of Bcan be obtained and discretized to yield
the following system of equations (Zienkiewicz and Newt®69; Olson and Bathe 1985a)
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whereU and ® are vectors containing nodal relative displacements amnd flatentials Mgy and Kgyq
are the structural mass and stiffness matrices of the dapectvely,Cyq4 is @ damping matrix of the
dam structure that can be determined using a Rayleigh dagnequivalent to a modal dampirgg or
hysteretic dampingq, M,; andK,, are the potential and kinetic energy matrices of the impedndser-
voir, respectivelyC,q is a matrix coupling the velocity potential to displacenseomn the dam-reservoir
interface, matrixC,, accounts for damping due to energy dissipation at the resdygttom or at the far
upstream boundary of the reservaig,anduy are prescribed ground accelerations and velocitieslasd
a column vector with the same dimensionldscontaining ones when a translational degree of freedom
corresponds to the direction of earthquake excitationzanol otherwise. The solution of Eq. (3) provides
the time-history response of the dam, including accelenatip at any point P to which an appurtenant
secondary structure might be attached.

2.3 Semi-infinite reservoir analytical model

According to this technique, only the dam monolith is modalsing finite elements, while the effect
of impounded reservoir is modeled analytically. In thisesathe reservoir is assumed of rectangular
shape with height{, as illustrated in Fig. 1 (b). Time-history accelerationp@sseiip at a given point P

to ground motioniiy can then be obtained at each timas (Fenves and Chopra 1984, Bouaanani and
Lu 2009)

Z¢ (zp, yp) Z;(t) (4)

whereNy is the number of dam structural mode shapes included in mma,%@ is thex—components
of the ;™ dam mode shape, taken at the coordindtesyp) of point P, ande is the second time-
derivative of generalized coordinates given by the Founizgral

Z;(t) = —% /O:O wW? Z;(w) iig(w) € dw (5)

in which iig(w) is the Fourier transform of the ground acceleratig(t)

o) = | gt e dt (6)



with ¢, denoting the time duration of the applied accelerogram. Vdwtor Z of generalized coordi-
natesZ;, j=1... Ny, required in Eq. (5) can be obtained by solving the systengoégons

SZ=Q (7)
where, forn=1... Ngandj=1... Ny
_ ) H;
Snj(w) - [ - WQ + (1 + 1 77d) wi:|5nj + WQ/O ﬁj(()? Y, Ld) ng)(()? y) dy (8)
_ T H;
Qu(e) = =T Mgl + [ po(0,5.) (0, y) oy ©)

in which ¢,,; denotes the Kronecker symbal,the exciting frequencyyy the dam hysteretic damping
factor assumed constant, the vibration frequency corresponding to structural mdusps),, of the
dam with empty reservoif, the frequency response function (FRF) for hydrodynamisguee at rigid
dam upstream face due to ground acceleratiothe FRF for hydrodynamic pressure due to horizontal
accelerationbj(-x)(o, y) of the dam upstream face, aff] the constant height of the rectangular reservoir.
The hydrodynamic pressures are determined analyticallgobving the Helmholtz equation and asso-
ciated boundary conditions accounting for: (i) a free stefaoundary condition, (ii) a fluid-structure
boundary condition implying compatibility between hydyodmic pressures and normal displacements
at dam-reservoir interface, (iii) a radiation boundary dition upstream of the reservoir to simulate
non reflection of outgoing waves at infinity, and (iv) a bourydeondition at reservoir bottom to ap-
proximately account for energy dissipation due to sediatert through one-dimensional partial wave
absorption of incident compression waves, characterigeareflection coefficient varying froma =0

for full absorption, toa = 1 for full reflection. Details of the calculations of hydrodymic pressures
are not reviewed here for brevity and can be found elsewltameves and Chopra 1984, Bouaanani and
Lu 2009). A convergence study has to be conducted to deterthim sufficient numberd/y of struc-
tural mode shapes to be included. Such analysis will be pedd later to evaluate the effect on floor
acceleration spectra.

3 Case studies, results and discussions
3.1 Dam-reservoir systems considered

The methods presented above are applied next to investigasensitivity of floor acceleration demands
in two typical dam-reservoir systems considering varioasleling assumptions. Two gravity dams with
heights of35 m and90 m are studied to assess dam size effects on floor acceledstimands. For brevity

of notation, the35 m- and90 m-high gravity dams are designated, respectively, by D1htereafter.
For each dam, rectangular and irregular reservoir geoesadre considered as illustrated in Figs. 2 and 3.
A modulus of elasticity=y =25 GPa, a Poisson’s ratigy= 0.2, and a densityy = 2400 kg/m’ are adopted

as concrete material properties. Compressible water imtheunded reservoir is modeled using a mass
densityp, = 1000 kg/n? and a bulk modulug, =2.07 x 10°> MPa corresponding to a velocity of pressure



wavesC, = 1440 m/s. A very large bulk modulus is considered to remove watenpressibility effects
for comparison purposes.

The finite element software ADINA (2011) is used to build tleeigled dam-reservoir finite element
models described in Section 2.2. This software implemdras)t— U described previously, and was
validated elsewhere against analytical and experimeesaillts from dynamic fluid-structure interaction
problems in civil engineering (Bouaanani and Lu 2009, Boaaa et al. 2012, Wei et al. 2013). The
dam-reservoir mesh consists mainly of 9-node plane stodisisagd potential-based fluid finite elements,
with some 7-node triangular transition elements in thersesie Special infinite fluid elements based on
the plane-wave and doubly asymptotic approximations aeqal at a truncation distanég from dam
face to simulate infinite fluid region upstream of the resegr(©@lson and Bathe 1985b, Hamdan and
Dowling 1995, ADINA 2011). The effect of reservoir truncatilength on floor acceleration demands
will be discussed later. Energy dissipation due to sediataat can be simulated by considering a series
of axially vibrating thin independent columns of infinitentghs, extending in the direction normal to
reservoir bottom (Hall and Chopra 1982, Fenves and Chop8d)1®sing this analogy and the tech-
nique proposed by Lysmer and Kuhlemeyer (1969), we showtligaabsorptive condition at reservoir
bottom can be approximated by a series of viscous dampersdla the direction normal to reservoir
bottom (Bouaanani and Lu 2009). These viscous damperdastalted in Figs. 2 and 3. To ensure com-
patibility between fluid and damper elements and enable-fitriacture interaction, isoparametric beam
elements, with negligible mass and stiffness propertiesraerted along reservoir-foundation interface.
2-node damper elements are then built by connecting beameatenodes to the ground. Damper and
beam element nodes are constrained to move only perpeadictd the reservoir bottom boundary. We
show that the consistent vector of damping coefficieff'scorresponding to each beam elememtith
length?(©) can be expressed in terms of mass densityelocity of compression waves and reflection
coefficienta as

14+« 1
c© = p G, (ﬁ) /_ Npdr (10)

whereN}, denotes the isoparametric shape function of the beam eteamen the isoparametric coor-
dinate. Figs. 2 (a) and 3 (a) illustrate the determinatiomistous damping values for the 3-node beam
elements used in this work. A Rayleigh damping equivalerd tnodal dampingq = 5% of the dam

is adopted. As seen previously, the right hand side of Eca¢8punts for earthquake loading through
prescribed ground acceleratiotig and velocitiesiy. This loading can be introduced either as mass-
proportional body forces when ground motions are appliatbumly to the dam-reservoir system, or
as prescribed ground displacements when variability a$nsiei input is of concern (Bouaanani and
Lu 2009). In this work, mass-proportional body forces areged. The ground velocitieg, are obtained
from input ground accelerations by numerical integratidn.implicit Newmark integration scheme is
used and the time step adopted for each analysis is basedhweergence studies.

The analytical method described in Section 2.3 is prograthtoeobtain floor acceleration demands
in any point of the gravity dams. The software ADINA (2011)used to discretize the dry dams into



9-node plane stress finite elements to obtain the mode shagesal frequencies and corresponding
modal participation factors. The same mesh densities ofiéimes in the coupled finite element models
are used. We consider a dam hysteretic damping fagter0.1, which is equivalent to a modal viscous
damping raticg=5%. The analytical method is used later to evaluate the effabemnumber of included
structural modes on floor acceleration demands.

The floor acceleration demands within each dam-reservasteny are determined under the effect of
various seismic inputs described in the next section. Seidamands within the dams with empty reser-
voirs are also given for comparison purposes. All floor am@ion spectra are determined considering a
viscous dampings= 5% of the appurtenant secondary structures. For practicaligigson of the results
hereafter, we refer to a dam with an empty reservoir as a dngtsire, and as wet structure otherwise.

3.2 Earthquake loading

Four ground motions with acceleration time-histories aocegeration spectra illustrated in Fig.4 are
considered in this work: (i) a horizontal component of ImakeNalley earthquake (1940) at station
El Centro, (ii) a horizontal component of Parkfield eartig§l966) at station Cholame no. 5, (iii) a
horizontal component of Loma Prieta earthquake (1989)adiost Gilroy Array no. 2, and (iv) a hor-
izontal component of Saguenay earthquake (1988) at statidalbaie. The first three records were
obtained from PEER ground motion database (PEER 2012) haridith from the Geological Survey of
Canada (GSC 2006). The four ground motions were selectesldming the differences in their time-
history traces as well as frequency content as shown in Fighé effect of these variations on floor
acceleration demands within dams D1 and D2 will be discussedhat follows.

3.3 Effect of reservoir truncation length

Finite element discretization of a semi-infinite rectamguleservoir requires its truncation at a finite
length and application of an appropriate boundary comdlitimt accounts for energy dissipation at the
far upstream end. In this work, special infinite fluid finitemlents provided in ADINA (2011) are used.
It is important to investigate the effect of truncation lédmgn the convergence of the results. For this
purpose, special fluid elements are applied at three inagéasincation distances from dam fadg:=
2H,; Ly=4H,andL,=20H,. Fig. 5 illustrates the floor acceleration demah({&4) obtained at the crests
of dams D1 and D2 (Point A in Figs. 2 and 3) subjected to Imp&fa#ley ground motion considering
the previously defined truncation lengths and a fully reilecteservoir bottom, i.ea. = 1. The floor
accelerations are non-dimensionalized with respect t&’A of the applied ground motion. It can be
seen that convergence of the results is ensured using atroméengthl, =4 H.,.

To investigate convergence sensitivity to the location nieHor acceleration demands are computed,
these demands are determined as point P moves along the dssrserction’s middle line made of two
segments relating points A, B and C as indicated in Figs. 23arkdg. 6 illustrates the profiles of max-



imum floor acceleration demand$(yp), 0 < yp < Hyg, When the dams are subjected to Imperial Valley
ground motion, considering the three truncation lengttimee previously. Peak floor accelerations are
non-dimensionalized with respect to the PGA of the appliedigd motions to get a sense of the induced
amplifications. The results in Fig. 6 confirm that a trunacatength ofL, =4 H, gives a good compromise
between accuracy and efficient numerical computation. &heesconclusion is also reached considering
the other ground motions described under Section 3.2. Henbgresults using this truncation length are
presented and discussed in the rest of the paper. This porrés to rectangular and irregular reservoirs
truncated at a distandg =128 m andL, =344 m from D1 and D2 dam faces, respectively.

3.4 Effect of reservoir geometry

In this section, we investigate the effect of reservoir getsynon floor acceleration demands within
the studied dams. For this purpose, we consider the irreges&rvoir geometries shown in Figs. 2 (b)
and 3 (b). We note that the same truncation lerigth 4 H, is considered for the rectangular and irregular
reservoir geometries for comparison purposes. Dams D1 arad®then subjected to the Imperial Valley,
Parkfield, Loma Prieta, and Saguenay ground motions destpieviously. The resulting floor accelera-
tion demands at the crests of dams D1 and D2 impounding raai@nand irregular geometry reservoirs
are depicted in Fig. 7. The acceleration demands at theafrdst dry structures are also shown for com-
parison purposes. This comparison shows that fluid-stredateraction effects are generally significant
in the evaluation of floor acceleration demands of both d&wosboth reservoir geometries, we observe
that hydrodynamic loads can be neglected up to a frequengiynggfrom approximatelyl.5 Hz for dam

D2 subjected to Imperial Valley ground motion to approxietatl Hz for dams D1 and D2 subjected
to Saguenay ground motion. After this frequency range, #iidcture interaction alters floor acceler-
ation demands either in terms of amplitudes or frequencyetinReferring to acceleration spectra in
Figs. 4 (b) and (h), it can be seen that the value$.9Hz and4 Hz correspond roughly to the start of
predominant frequencies of Imperial Valley and Saguenaygaakes, respectively. The results in Fig. 7
globally show that, for the cases studied, the more rigitiésdam-supported appurtenant structure, the
more its dynamic response is affected by fluid-structureradtion. We also observe that fluid-structure
interaction can lead to amplification or reduction of flooceeration demands with respect to the empty
reservoir case. This interesting result shows that, in ssito@tions, maximum floor acceleration de-
mands can be associated with an empty reservoir, and car¢hebtained without reservoir modeling
and fluid-structure interaction analyses.

Fig. 7 also reveals that the influence of reservoir geometnggligible over the whole studied frequency
range for dam D1 when shaken by Parkfield earthquake, andiprtly a frequency of aboub Hz when
the other ground motions are applied. After this frequetiog,irregular reservoir is generally associ-
ated with larger floor acceleration demands at the crestrof[d&. Most important differences between
floor accelerations corresponding to both types of reses\arie however concentrated betwdérHz
and25 Hz approximately. Examination of the response of dam D2 shibvt reservoir geometry does
not affect crest floor acceleration demands for frequenget abouts Hz for all applied ground mo-



tions. After this frequency, the irregular reservoir cepends to higher acceleration amplitudes up to a
frequency of abou2 Hz under the effect of Saguenay ground motion, and over thaennequency
range for all other applied ground motions.

The previous results focused on the frequency evolutiore@nsic floor accelerations at the crest of
dams D1 and D2. Non-dimensionalized maximum floor acceteratemandd™ (yp)/PGA along the
height of the two dams are also illustrated in Fig. 8. It isadie seen that maximum floor acceleration
profiles are very sensitive to the geometry of the dam stualietapplied earthquake. For dam D1, the
lowest maximum floor accelerations are obtained for the ttocture under the effect of all considered
earthquakes. Maximum differences with responses of thestmetture are produced by Parkfield and
Saguenay ground motions, yielding amplifications with eespo the dry case of abous0% and65%,
respectively. For dam D2, the dry structure develops thbdsgfloor accelerations near the crest for all
studied earthquakes. Below this location, the differemsga/een maximum floor acceleration demands
in the dry and wet structures vary depending on the eartregagblied as illustrated in Figs.8 (b),
(d), (f) and (h). Largest floor acceleration demands for daPnaile obtained within the dry structure
under the effect of Saguenay earthquake, and within thetwettare when subjected to Imperial Valley
and Parkfield ground motions. Imperial Valley and Loma Rresdrthquakes induce the least differences
between maximum floor acceleration demands within dry artcthaen D2. We also observe from Fig. 8
that reservoir geometry has generally little effect on maxn floor acceleration demands in both dams.
Maximum differences between results corresponding taarggtlar and irregular reservoirs are found
at the crest, with the largest being observed at the cresamf D2 under the effect of Imperial Valley
ground motion.

3.5 Effects of reservoir bottom wave absorption

The sensitivity of floor accelerations at the crest of damsabBd D2 to reservoir bottom wave absorp-
tion is illustrated in Figs. 9 and 10, respectively. The damgound rectangular and irregular reservoirs
characterized by bottom reflection coefficientsnof 1.0, « = 0.8, « = 0.6, « = 0.4 anda = 0.2 and
are subjected to the Imperial Valley, Parkfield, Loma Priatel Saguenay ground motions as previously.
The floor accelerations within the dry structures are alsmshfor comparison purposes. The results
depicted in Fig. 9 indicate that maximum effects of energgsigiation at reservoir bottom are generally
concentrated around the main resonant segments of thescuezeneaRB to 10 Hz. We observe that floor
acceleration demands at the crest of dam D1 increase asogd®ttom wave absorption is lower, with
the full reflection case, i.ex = 1.0, being generally notably distinct from the other absomptievels.
Practically the same observations apply to the floor acattars at the crest of dam D2 subjected to
Imperial Valley and Parkfield earthquakes as illustrateérigg. 10 (a) to (d). However, the floor acceler-
ations corresponding to Loma Prieta and Saguenay eartbgua@aknot follow the same trends as revealed
by Figs. 10 (e) to (h). For example, floor acceleration dermatdhe crest of dam D2 subjected to Sague-
nay ground motion are found to decrease with reservoir bott@ve absorption contrary to what was
observed previously. For both dams, the effect of reseg@ametry could be neglected except for the
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fully reflective case, i.ew = 1.0. This effect is observed at frequencies higher than apprately15 Hz
for dam D1. The same effect is less definite for dam D2, excégivsubjected to Imperial Valley earth-
guake and for frequencies up 20 Hz. Overall, it can be concluded that reservoir geometrgatéf are
attenuated as energy dissipation is increased due to higbenvoir bottom wave absorption.

Figs. 11 and 12 show the profiles of non-dimensionalized mari floor acceleration demands(yp) /PGA
along the heights of dams D1 and D2, respectively. It is seanhmaximum floor accelerations increase
with lower reservoir bottom wave absorption for dam D1, amat the lowest peak floor accelerations
correspond to the empty reservoir. However, the dispesitime profiles depends on the earthquake ap-
plied, varying from very close for Imperial Valley and Lomad®a ground motions, to more separated for
Parkfield and Saguenay ground motions. Maximum amplifioatfor dam D1 vary from about) under

the effect of Loma Prieta ground motion to abaatunder the action of Saguenay ground motion. These
amplifications are slightly higher for the rectangular reeg. Fig. 12 shows that the profiles of maximum
floor acceleration demands within dam D2 present differeafures. First, maximum amplifications un-
der the effect of Imperial Valley earthquake are almostiidanfor all reservoir bottom absorption levels
except the fully reflective case. We also observe that maxirfiloor accelerations increase with lower
reservoir bottom wave absorption under the effect of Lomet®earthquake, while this trend does not
apply for Parkfield and Saguenay earthquakes.

3.6 Effects of water compressibility

The previous results were obtained assuming that wateeinebervoir is compressible. In this section,
we investigate the effect of this assumption by compariegésults to cases: (i) where the water in the
reservoir is assumed incompressible by considering a aegg lbulk modulus as explained in Section 3.1,
and (ii) where hydrodynamic loads are modeled using Westeds added mass formulation (Wester-
gaard 1933). According to the latter formulation, the dffgfche reservoir is equivalent to inertia forces
generated by a body of water of parabolic shape moving badkaath with the vibrating dam which is

assumed rigid. The Westergaard added mal@@ to be attached to a nodédelonging to dam-reservoir

interface can be obtained as .
m = < pe S/ Hy (Hr = i) (11)

wherey; denotes the height above the dam’s base of rnicafethe dam-reservoir interface arid the
transverse surface area associated to ripdensidering a unit-thick slice of the studied gravity dam.
The same 9-node finite element discretizations describ®dqursly for dams D1 and D2 are used and a
consistent formulation is applied to evaluate the addedsesas

Figs. 13 to 16 compare the results obtained using incomiptessater assumption and added mass for-
mulation to those corresponding to a fully reflective resgreontaining compressible water. The re-
sponses of the dry structures are also plotted for compapsoposes. These figures clearly show the
high sensitivity of floor acceleration demands to abovetmard reservoir modeling assumptions, and
illustrate that water compressibility affects the dynam@sponse of appurtenant secondary structures
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differently depending on the dam and frequency ranges dereil. It is first seen that reservoir geometry
has practically no effect on the floor acceleration demarmdsesponding to the incompressible water
assumption, as opposed to the higher sensitivity assdomth energy radiation in the reservoir due to
water compressibility. The incompressible water assusnptiduces the highest floor acceleration de-
mands at the crest of dam D1 subjected to Imperial Valley aordd_Prieta earthquakes and the crest of
dam D2 subjected to Loma Prieta and Parkfield earthquakesatdtled mass formulation leads to the
largest peak floor accelerations at the crest of dam D1 siglnjeéc Saguenay ground motion, and at the
crest of dam D2 subjected to Imperial Valley and Saguenayrgtanotions. Floor accelerations corre-
sponding to the compressible water assumption are theskaogdy for dam D1 subjected to Parkfield
and Saguenay earthquakes. The floor acceleration spedamatrest corresponding to the three assump-
tions are practically identical in the lower frequency rang to aboug Hz for dam D1 and abowtHz

for more flexible dam D2. At higher frequencies, floor accgien demands corresponding to incom-
pressible water assumption and added mass formulationeaeraly closer, as dam flexibility effects
diminish. The profiles of maximum floor acceleration demaswidirm the sensitivity of the responses to
reservoir modeling assumptions, with differences gehedaicreasing as the position where seismic de-
mand is computed is lower. The largest difference betweenasults corresponding to compressible and
incompressible water assumptions is obtained at the cfesto D2 subjected to Saguenay earthquake
as illustrated in Figs. 16 (g) or (h).

3.7 Effects of higher vibration modes of the dry structure

The simplified procedure presented in Section 2.3 is appléad to assess the numh&y of structural
modes to be included in analysis on floor acceleration demdfigs. 17 to 20 show the obtained results
for Ng=1, Ng=3, Ng=5 and Nq = 7. The cases of the dry dams are also presented to illustrate th
effect of dam-reservoir interaction including water coegsibility on the results. It is clearly seen that the
number of modes to be included in the analysis depends orethibifity of the dam and the predominant
frequency range of the appurtenant secondary structusedered. For example, for the dry dam D1, the
results show that: (i) the fundamental mode is required tainlfloor acceleration demands at frequencies
up to aboutl5 Hz for all earthquakes, and (ii) two modes are required tcecalie whole frequency
range for all earthquakes except Saguenay ground motioichwiecessitates including five structural
modes in the high frequency range, although the error intted otherwise is negligible as can be seen
from Fig. 17 (g). The same observations apply for the wet damvidth the difference that the error
introduced by considering less that required structuralesas slightly attenuated with respect to the dry
case. Fig. 18 shows that a fundamental mode analysis isisnffio assess maximum floor acceleration
demandd™ (yp) as they occur at low frequencies less tHarHz for dam D1. For higher dam D2, we
observe, as expected, that more modes are required to abtaiargence of floor acceleration demands
for the same frequency range. For instance, fundamentaémesponse is valid only for a frequency
range up td Hz, while5 modes are needed to cover the whole frequency range coaedideishown in
Fig. 19. Itis also seen that in this case, fundamental modhysis can lead to inaccurate maximum floor

12



acceleration demands (yp) as for the dry dam subjected to Imperial Valley and Parkfieidrgjuakes,
i.e. Figs. 20 (a) and (c), or the wet structure subjected gu&aay ground motion, i.e. Fig. 20 (h).

3.8 Proposed Floor Frequency Response Functions

The results presented previously were obtained under teetef four earthquakes with various time-
history traces and frequency contents. We illustrated soate observed behaviors are complex and
cannot be interpreted easily based simply on the frequeniatents of the earthquakes and natural fre-
guencies of the dam and appurtenant structures. For pralmndesign and safety evaluation purposes, it
is generally worth carrying out a harmonic analysis to coml@or acceleration demands within differ-
ent dams or the same dam considering various assumptiotiss Isection, we propose a new approach
for assessing floor acceleration demands under the effagtibhorizontal harmonic ground accelera-
tion iig(t) = €+, wherew is the exciting frequency. For this purpose, we introducenarffrequency
response function (FFRF) which defines the relationshipvben the horizontal acceleratian of the
appurtenant secondary structure and the exciting frequers

Ng+1

liw) = ~w* D2 U e, 5) Z;(w) (12)

WhereJ)J(»I) (75, ys) denotes the—component of thé™" structural mode shape of the coupled system com-
bining the dam and appurtenant secondary structure, tdkag the SDOF representing the secondary
structure, andéj is the corresponding generalized coordinate. The numbenaxfe shapes included
in the analysis is equal to that assuring convergence fod#éme-reservoir system, i.€Vy, plus one
mode to account for the vibration of the secondary strucBDOF. The vectoZ of generalized coordi-
natesfj, j=1...Ngq+ 1, can be obtained by solving the system of equations

SZ=0Q (13)
where, forn=1... Ng+1landj=1... Ng+1
= ) H;
Snj(w) = [ —w+ (1+inc) @ﬂ% + w2/0 P;(0,y,0) {7(0, ) dy (14)
5 l i ()
Qn(w) - _’l/)n MCC ]- + A 130(07 y7 w) ¢n£ (07 y) dy (15)

in whichr,, @,, ¥, andM, are the hysteretic damping factor, natural frequencycgiral mode shape
and mass matrix corresponding to the coupled system contgbthe dam and secondary structure, re-
spectively. We note that the integral terms in Eqgs. (14) di) are the same as in Egs. (8) and (9),
respectively, since it is assumed that the presence of timesti@ported appurtenant structure does not
affect hydrodynamic pressure within the reservoir.

To illustrate the application of the proposed FFRFs, theadyis responses of two appurtenant secondary
structures with fundamental frequencie$ &fz and15 Hz are considered next. The secondary structures,
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referred hereafter as tlieHz- and15 Hz-systems, are attached to point A of coordindtes y») on the
crest of each of dams D1 and D2 (Figs. 2 and 3). The coupledsgmmnAdary structure is assumed to
have a hysteretic damping factay= 0.1. Fig. 21 compares the FRFg, of horizontal accelerations at
point A, given by

fia(w) = —w* > U\ (2a, ya) Z;(w) (16)

to FFRFsiis of the secondary structures. The cases of (i) empty, (ii)gressible and (i) incompressible
water reservoirs are considered for comparison purposespéaks in the FRFs of Figs. 21 (a) and (b)
correspond to the vibration frequencies of the dam-resesystems without the secondary structures.
These FRFs also illustrate the effects of compressiblecamipressible water assumptions with respect
to the dynamic response of the empty dam. The FFRFs in Figs) 24 (f) first show that the relative dif-
ferences between the amplitudes of the FFRFs correspotulthg three cases, i.e. empty, compressible
and incompressible water reservoirs, depend on the egditaguency as FRFs, but that they attenu-
ate quickly after approximateli2 Hz and25 Hz for the5 Hz- and15 Hz-systems, respectively. At dam
D1, we observe that maximum acceleration response ds Hesystem (respectivelis Hz-system) is
obtained when the dam impounds a compressible (resp. inessiple) water reservoir. At dam D2,
maximum acceleration response of thelz-system (respectively5 Hz-system) is obtained when the
reservoir is empty (resp. full with an incompressible watgsumption).

For all four cases, frequencies at which resonant respatw®s include the fundamental frequencies
of the dam-supported appurtenant structures. Comparigbntie FRFs in Figs. 21 (a) and (b) reveals
that the other resonant peaks correspond roughly to thedreges of the dam alone or dam-reservoir
systems, although slightly shifted in some cases due toaictien between the secondary structure and
the rest of the system. For instance, for dam D1 with an engsgrroir, the first mode also corresponds
to resonant responses of the dam with both secondary stesctuhile the effect of the second mode is
attenuated for the dam supporting thieHz-system, and considerably attenuated for the dam supgort
the 5 Hz-system. The same applies to dam D1 impounding a complessiservoir, except that the
responses corresponding to the second and third modes dfathereservoir system are significantly
flattened for both appurtenant secondary structures. Waeril impounds an incompressible reservoir,
the resonant response corresponding to the first mode ofaimereservoir system is slightly shifted
towards lower frequencies for both secondary systems, hsisvithe attenuated response corresponding
to the second mode for thies Hz-system. For higher dam D2, practically the same prevanaysis
can be applied, except that the frequency shifts are lesopreed than for dam D1. We also observe a
larger amplification of accelerations at the fundamentddencies of Hz and15 Hz of the secondary
structures since these frequencies are close to thossponding to the fundamental mode for the empty
dam and third mode of the dam impounding an incompressikkrveir.
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4 Conclusions

This paper presented an original investigation of the sertgiof floor acceleration demands in gravity

dams to various modeling assumptions of the impoundedvasefwo techniques were used to obtain
floor acceleration demands: a coupled dam-reservoir fildi@ent model and a semi-infinite reservoir
analytical model. Both techniques were applied to typi@hereservoir systems with different geome-
tries. The dam-reservoir systems were subjected to growtidns with various frequency contents and
the resulting floor acceleration demands within the dameweerdied through examination of floor accel-
eration spectra obtained at the crest of the studied dardsnarimum floor acceleration demands along
their height. A detailed analysis of the effects of resargelometry, water compressibility, reservoir bot-
tom wave absorption and dam higher vibration modes was pie$eSeismic demands within the dams
with empty reservoirs were also determined for compariampgses. The following main conclusions
could be drawn:

— If the geometry of the reservoir is assumed rectangulamnecation length equal to four times the
height of the reservoir was found to be a good compromisedmtvaccuracy and efficient numerical
computation of floor acceleration demands within the stidi@ms subjected to the ground motions
considered.

— Fluid-structure interaction effects are generally sigaifit in the evaluation of floor acceleration de-
mands, except at the very low frequency range. It was fouaidttiese effects can lead to amplification
or reduction of floor acceleration demands with respectécethpty reservoir case.

— Reservoir geometry cannot always be assumed rectangulssuadly done in practical 2D seismic
analyses, as higher floor acceleration demands can be mhdhyceregular reservoir geometries as
illustrated by the case studies in the paper. Reservoir gagreffects were found to attenuate with
increasing energy dissipation due to higher reservoiopotvave absorption. These effects also vanish
if water in the reservoir is assumed incompressible.

— The dynamic response of a dam-supported appurtenantisiwan be affected by energy dissipation
at reservoir bottom according to trends corresponding ¢eessing or decreasing floor acceleration
demands with lower reservoir bottom wave absorption. Maxmeffects are however generally con-
centrated around the main resonant segments of the flodeeaiien spectra.

— The results revealed a high sensitivity of floor acceleratiemands to reservoir modeling assumptions
as added masses, incompressible or compressible wateirddaer compressibility was found to
affect the dynamic response of dam-supported appurtetrantuwres differently depending on the dam
and frequency ranges considered. Floor acceleration désywamresponding to the three assumptions
are however practically identical in the low frequency rang

— Fundamental mode analysis can be sufficient to obtain logu&acy range floor acceleration demands
within rigid dams, while more modes are required to assesgdjmamic response of appurtenant
secondary structures vibrating at larger frequencies o iexible dams.

Finally, floor frequency response functions were develdpeaissess floor acceleration demands at the
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stage of preliminary seismic design or safety evaluatiodarh-supported appurtenant structures. We
showed through examples that the proposed approach cafebgvely used to compare floor accelera-
tion demands within different dams or within the same dansm®ring various modeling assumptions
of the reservoir.
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Figure 1. lllustration of the computation of floor acceleratspectra at a given point P of a gravity dam: (a) using
a coupled dam-reservoir finite element model; and (b) usisgna-infinite reservoir analytical model.
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Figure 3. Dimensions of the 90 m-high dam (D2) impoundingemesirs with: (a) rectangular, (b) and irregular
geometries.
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Figure 5. Floor acceleration demands at the crests of damand1D2 subjected to Imperial Valley earthquake
considering truncation lengthls =2H,, Ly=4H, andL,=20H,: (a) Dam D1, and (b) Dam D2.
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Figure 6. Peak floor acceleration demands along the heigtdaro D1 and D2 subjected to Imperial Valley earth-
qguake considering truncation lengths=2H,, L, =4H, and L, =20H,: (a) Dam D1, and (b) Dam D2.
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Figure 7. Floor acceleration demands at the crests of damsnB D2 impounding rectangular and irregular ge-
ometry reservoirs and subjected to: (a) and (b) Imperideyd[1940) ground motion; (c) and (d) Parkfield (1966)
ground motion; (e) and (f) Loma Prieta (1989) ground motamd (g) and (h) Saguenay (1988) ground motion.
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Figure 8. Maximum floor acceleration demands along the hegllams D1 and D2 impounding rectangular
and irregular geometry reservoirs and subjected to: (a)anbnperial Valley (1940) ground motion; (c) and (d)

Parkfield (1966) ground motion; (e) and (f) Loma Prieta ()9&®und motion; and (g) and (h) Saguenay (1988)
ground motion.



— Empty reservoir —a=10 —a=08 —a=06 —a=04 — a=02

25 T T T T @ T T T T ®
ol || —
£ 15F 1 F -
P
< 10F . - .
~ = — - ———

0 ! ! ! ! ! ! ! !

25 T T T T © T T T T @
E S
& 15 — - —
P
< 10F . - .
= sl ] i ]

0 ! ! | | ! ! | |

12 T T T T T T T T

I'(Hq)/PGA

I'(Hq)/PGA

0 10 20 30 40 50
Frequency f; (Hz) Frequency f; (Hz)

Figure 9. Effects of reservoir bottom wave absorption asgmeir geometry of the floor acceleration demands at
the crest of dam D1 subjected to: (a) and (b) Imperial Valte340) ground motion; (c) and (d) Parkfield (1966)
ground motion; (e) and (f) Loma Prieta (1989) ground motamd (g) and (h) Saguenay (1988) ground motion.
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Figure 10. Effects of reservoir bottom wave absorption asivoir geometry of the floor acceleration demands
at the crest of dam D2 subjected to: (a) and (b) Imperial Ygl1©40) ground motion; (¢) and (d) Parkfield (1966)
ground motion; (e) and (f) Loma Prieta (1989) ground motamd (g) and (h) Saguenay (1988) ground motion.
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Figure 11. Effects of reservoir bottom wave absorption @&saérvoir geometry of the maximum floor acceleration
demands along the height of dam D1 subjected to: (a) and (pgrid Valley (1940) ground motion; (c) and (d)
Parkfield (1966) ground motion; (e) and (f) Loma Prieta ()9&®und motion; and (g) and (h) Saguenay (1988)
ground motion.
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Figure 12. Effects of reservoir bottom wave absorption @saérvoir geometry of the maximum floor acceleration
demands along the height of dam D2 subjected to: (a) and (pgrid Valley (1940) ground motion; (c) and (d)
Parkfield (1966) ground motion; (e) and (f) Loma Prieta ()9&®und motion; and (g) and (h) Saguenay (1988)
ground motion.



— Empty reservoir — a=1.0 — Incompressible water — Westergaard added mass
30 T T T T @ 30 T T T T )
D1 D1
S 20t \ 4 20F ’\l .
[
P
o
SIS 41 10f -
—~
0 ! ! ! ! 0 ! ! ! !
25 T T T T © 25 T T T T @
201 D17 20 D17
g EN —— I\
& 151 4 15F .
P
5 10 1 10 -
= <l i _ i
0 ! ! | | 0 ! ! | |
15 T T T T © 15 T T T T 0
D1 D1
S 1ot \ +4 10f ’\l .
[
P
—~
0 ! ! ! ! 0 ! ! ! !
30
S 20f
[
P
= jof
[
0 ! ! ! ! 0 ! ! ! !
0 10 20 30 40 50 0 10 20 30 40 50
Frequency f; (Hz) Frequency f; (Hz)

Figure 13. Effects of water modeling assumptions on flooekcation demands at the crest of dam D1 subjected
to: (a) and (b) Imperial Valley (1940) ground motion; (c) gajl Parkfield (1966) ground motion; (e) and (f) Loma
Prieta (1989) ground motion; and (g) and (h) Saguenay (1§&8)nd motion.
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Figure 14. Effects of water modeling assumption on the flooekeration demands at the crest of dam D2 subjected
to: (a) and (b) Imperial Valley (1940) ground motion; (c) gajl Parkfield (1966) ground motion; (e) and (f) Loma
Prieta (1989) ground motion; and (g) and (h) Saguenay (1§&8)nd motion.
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Figure 15. Effects of water modeling assumption on maximwamrfacceleration demands along the height of dam
D1 subjected to: (a) and (b) Imperial Valley (1940) groundiorg (c) and (d) Parkfield (1966) ground motion; (e)
and (f) Loma Prieta (1989) ground motion; and (g) and (h) agy (1988) ground motion.
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Figure 16. Effects of water modeling assumption on maximwarfacceleration demands along the height of dam
D2 subjected to: (a) and (b) Imperial Valley (1940) groundiorg (c) and (d) Parkfield (1966) ground motion; (e)
and (f) Loma Prieta (1989) ground motion; and (g) and (h) agy (1988) ground motion.
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Figure 17. Effect of the number of structural modes incluttethe analysis on floor acceleration demands at the
crest of dam D1 subjected to: (a) and (b) Imperial Valley (9ground motion; (c) and (d) Parkfield (1966) ground
motion; (e) and (f) Loma Prieta (1989) ground motion; andafgl (h) Saguenay (1988) ground motion.
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Figure 18. Effect of the number of structural modes inclugtethe analysis on maximum floor acceleration de-
mands along the height of dam D1 subjected to: (a) and (b) rimpéalley (1940) ground motion; (c) and (d)
Parkfield (1966) ground motion; (e) and (f) Loma Prieta ()9&®und motion; and (g) and (h) Saguenay (1988)
ground motion.
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Figure 19. Effect of the number of structural modes incluttethe analysis on floor acceleration demands at the
crest of dam D2 subjected to: (a) and (b) Imperial Valley (9ground motion; (c) and (d) Parkfield (1966) ground
motion; (e) and (f) Loma Prieta (1989) ground motion; andafgl (h) Saguenay (1988) ground motion.
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Figure 20. Effect of the number of structural modes inclugtethe analysis on maximum floor acceleration de-
mands along the height of dam D2 subjected to: (a) and (b) rimpéalley (1940) ground motion; (c) and (d)
Parkfield (1966) ground motion; (e) and (f) Loma Prieta ()9&®und motion; and (g) and (h) Saguenay (1988)
ground motion.
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Figure 21. FRFs and FFRFs of the horizontal accelerationsidering empty, compressible and incompressible
water reservoirs: (a) FRF for dam D1; (b) FRF for dam D2; (cRFFor 5 Hz-system at the crest of dam D1;
(d) FFRF forb Hz-system at the crest of dam D2; (e) FFRF f6Hz-system at the crest of dam D1, (f) FFRF
for 15 Hz-system at the crest of dam D2.



