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ABSTRACT
This paper presents an original investigation of the sensitivity of floor acceleration demands in gravity dams to

various modeling assumptions of the impounded reservoir. Such floor acceleration demands are crucial for the as-

sessment of the seismic performance or vulnerability of dam-supported appurtenant structures. Two approaches

are proposed to obtain floor acceleration demands: analytical and coupled dam-reservoir finite element models.

Both techniques are applied to typical dam-reservoir systems with different geometries. The dam-reservoir systems

are subjected to ground motions with various frequency contents and the resulting floor acceleration demands are

examined to investigate the effects of reservoir geometry,water compressibility, reservoir bottom wave absorp-

tion and dam higher vibration modes. A new approach based on proposed floor frequency response functions is

also developed to assess floor acceleration demands at the stage of preliminary seismic design or safety evaluation

of dam-supported appurtenant structures. Examples are given to illustrate how the proposed approach can be ef-

fectively used to compare floor acceleration demands withindifferent dams or within the same dam considering

various modeling assumptions of the reservoir.
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1 Introduction

Floor response spectra define maximum responses of light mass equipments or other secondary structures

supported at various locations of a more massive primary structure. These spectra are commonly used

to investigate the dynamic response of secondary structures when interaction with the primary structure

can be neglected. Floor response spectra were extensively studied in the contexts of nuclear facilities and

multi-storey buildings (Singh 1975; Singh 1980; Singh 1985; Asfura and Der Kiureghian 1986; Chen and

Soong 1988). Floor response spectra can also be used to assess the dynamic response of safety-critical

piping, power supply units, and other electrical or mechanical equipment anchored within dam galleries

as well as appurtenant facilities such as bridges, control unit buildings, spillway support structures, gates,

hoist bridges and lifting equipment generally located neardam crest where ground motions can be sig-

nificantly amplified from dam base. For example, seismic records at three dam sites in Quebec during the

Saguenay earthquake showed motion amplifications of7 to 15 times from rock to dam crest (Rainer and

Dascal 1991).

Assessment of maximum floor acceleration demands along the height of hydraulic structures is crucial

for the design and safety evaluation of appurtenant systems. Indeed, amplification of seismic demands in

dams may cause significant damage as was documented in several cases, such as the103m-high Koyna

dam (India) after the 1967 M6.3 reservoir induced earthquake, the105m-high Hsingfengkiang buttress

dam (China) under the effect of a 1962 M6.1 reservoir inducedearthquake, and the106m-high Sefid-Rud

buttress dam (Iran) following a 1990 M7.3 earthquake (Hansen and Roehm 1979, Arcangeli and Ciabarri

1994, ICOLD 2001). In other events, if damage to the dam itself remained marginal, supported equipment

and appurtenant structures were severely affected by amplified ground motions which induced offset or

cracking of elements such as walls, parapets, or bridge girders (USCOLD 2000, Matsumoto et al. 2011).

Amplifications of seismic demands in dams were also evidenced by shake table tests (Donlon and Hall

1991, Lin et al. 1993, Tinawi et al. 2000). Therefore, modernguidelines dealing with the earthquake re-

sponse of dams, such as ICOLD (2010), clearly specify that seismic input at the support of equipments or

at the base of appurtenant structures should take account ofground motion amplifications. Such practice

has not been always uniformly observed however, especiallyfor older dams and appurtenant structures

with initial designs that may fail to meet modern safety criteria.

Weiland and Malla (2000) performed 3D dynamic analysis of a45m-high arch-gravity dam assuming

that water in the reservoir is incompressible. They found anacceleration amplification factor with respect

to the PGA of3.8 at the upper gallery, and about8 at dam crest. They also used the floor response spec-

trum at a given level to generate artificial spectrum-compatible accelerograms used to conduct stability

analyses of an upper cracked portion of the dam (Wieland and Malla 2000 ; Malla and Wieland 2003).

Ben Ftima and Léger (2006) investigated the possibility to compute floor response spectra at the base of

cracked sections of a gravity dam and the use of these spectrato define compatible accelerograms to per-

form transient rigid body sliding/rocking response analyses along dam’s height. They used Westergaard’s

added masses to represent hydrodynamic loads from the reservoir.
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It is now widely accepted that the accurate evaluation of reservoir loading on a dam upstream face is

an important ingredient of its seismic safety assessment. Significant research has been devoted to study

this type of loading since the pioneering work of Westergaard (1933). Several advanced analytical and

numerical frequency-domain and time-domain approaches were also proposed to account for dam de-

formability, water compressibility, radiation of outgoing waves towards far reservoir upstream, and reser-

voir bottom wave absorption in the seismic response of dam-reservoir systems, such as described for

example by Chopra (1970), Fenves and Chopra (1984), Humar and Jablonski (1988), and Bouaanani

and Lu (2009). To the authors knowledge however, no published work has addressed the sensitivity of

floor acceleration demands to modeling assumptions commonly adopted for hydraulic structures such

as gravity dams, namely those related to hydrodynamic loading. These assumptions may range from

simplified added mass approach to more advanced treatment offrequency-dependent dam-reservoir in-

teraction, including water compressibility, reservoir bottom wave absorption and energy dissipation at

far reservoir upstream. Dam engineering analysts are usually left to select the most appropriate of these

assumptions for a particular project without having sens orprior knowledge of the relative impacts on

the design or safety evaluation of appurtenant infrastructure. Informed choices are however crucial con-

sidering the critical importance and seismic vulnerability that may be associated with dam-supported

appurtenant structures. This paper’s main objective is to feed such informed choices as analytical and

coupled dam-reservoir finite element models are proposed and used to thoroughly investigate the effects

of various assumptions on floor acceleration demands withintypical dam-reservoir systems with different

geometries.

2 Basic notation and types of analyses

2.1 Floor acceleration demands

We consider a gravity dam monolith, of heightHd, subjected to a horizontal ground accelerationüg at the

base as illustrated in Fig. 1. Floor seismic demands at a given point P of the dam are defined by studying

the dynamic response of SDOF systems with various vibrationfrequenciesfs, attached to point P, while

the dam is excited by a ground accelerationüg applied at its base. These SDOF systems, may represent

dam-supported appurtenant secondary structures, with mass ms, stiffnessks and viscous dampingcs.

We assume that the mass of the appurtenant secondary SDOF system is too light so that its dynamic

response does not affect that of the primary system, i.e. thedam monolith. The equation of motion of the

appurtenant SDOF can be written as

msüs + csu̇s + ksus = −ms(üP + üg) (1)

whereüP denotes the horizontal acceleration at point P of the dam relative to its base, andus, u̇s andüs the

horizontal displacement, horizontal velocity and horizontal acceleration of the secondary SDOF system

relative to point P, respectively.

The floor acceleration demandΓ(yP), at a point P of coordinateyP, is defined hereafter as the maximum
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√

ks

ms
and damping coefficientcs or equivalent damping ratioξs =

cs

4πmsfs
. We denote

by Γ* (yP) the maximum or peak floor acceleration at a point P of coordinate yP over the whole range

of frequenciesfs considered. Solving Eq. (1) requires the determination of the acceleration̈uP at point P

relative to the dam base. This can be achieved using a coupleddam-reservoir finite element model or a

semi-infinite reservoir analytical model as described in the next two sections.

2.2 Coupled dam-reservoir finite element model

The floor acceleration demands in a gravity dam can be obtained using a coupled dam-reservoir finite

element model as the one illustrated in Fig. 1 (a). In this case, the dam and the reservoir are modeled using

solid plane elasticity and potential-based fluid finite elements, respectively. The reservoir is truncated at

a certain distanceLr from the dam upstream face, large enough to eliminate reflection of waves at the

far reservoir upstream end. Fluid-structure interaction is accounted for through special elements at the

dam-reservoir interface. Dam vibrations cause water motions normal to its boundaries, and the induced-

pressure within water cause additional hydrodynamic loadsto act on the dam. In the present case of

two-dimensional analysis, the fluid-structure interface elements are 2-node line segments, which connect

4-node solid elements on the upstream face of the gravity damto adjacent potential-based fluid elements

on the reservoir boundary. Each node of the interface element contains a potential degree of freedom

and two horizontal and vertical structural displacement degrees of freedom. The potential and structural

degrees of freedom are related through a compatibility boundary condition.

The procedure used to obtain the seismic response of the dam,such as accelerations, is known as theφ−U

formulation since it is expressed in terms of displacementsU and velocity potentialsφ as state vari-

ables in the solid and water domains, respectively. It is assumed that the fluid is inviscid, compress-

ible or incompressible, and with an irrotational motion andrelatively small displacements of the fluid-

structure boundaries. Details of theφ−U formulation can be found elsewhere (Everstine 1981,Olson and

Bathe 1985a,Olson and Bathe 1985b,Bouaanani and Lu 2009) and only a brief review is given hereafter

for convenient reference. Under the above assumptions, thevelocity potentialφ in the reservoir satisfies

the wave equation

∇
2φ =

1

C2
r

∂2φ

∂t2
(2)

whereCr is the velocity of compression waves within water, andt the time variable. The velocity po-

tentialφ satisfies a free surface boundary condition, a compatibility boundary condition at the vibrating

dam-reservoir interface (Fenves and Chopra 1984,Bouaanani and Lu 2009), a radiation boundary condi-

tion to prevent reflection of waves at the far upstream of the reservoir (Sommerfeld 1949,Zienkiewicz and

Newton 1969, Bouaanani and Lu 2009, ADINA 2011), and a boundary condition accounting for energy

dissipation at reservoir bottom through one-dimensional partial wave absorption of incident compression

waves normal to the reservoir-foundation interface (Hall and Chopra 1982, Fenves and Chopra 1984,
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Bouaanani and Lu 2009). The last two boundary conditions canbe modeled by infinite fluid elements

placed at the upstream end of the reservoir and by viscous dampers placed at reservoir bottom, as will be

illustrated later.

Using standard techniques, the weak variational form of Eq.(2) can be obtained and discretized to yield

the following system of equations (Zienkiewicz and Newton 1969; Olson and Bathe 1985a)
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whereU andΦ are vectors containing nodal relative displacements and fluid potentials,Mdd andKdd

are the structural mass and stiffness matrices of the dam, respectively,Cdd is a damping matrix of the

dam structure that can be determined using a Rayleigh damping, equivalent to a modal dampingξd or

hysteretic dampingηd, Mrr andKrr are the potential and kinetic energy matrices of the impounded reser-

voir, respectively,Crd is a matrix coupling the velocity potential to displacements on the dam-reservoir

interface, matrixCrr accounts for damping due to energy dissipation at the reservoir bottom or at the far

upstream boundary of the reservoir,üg andu̇g are prescribed ground accelerations and velocities, and1 is

a column vector with the same dimension asU, containing ones when a translational degree of freedom

corresponds to the direction of earthquake excitation, andzero otherwise. The solution of Eq. (3) provides

the time-history response of the dam, including accelerationsüP at any point P to which an appurtenant

secondary structure might be attached.

2.3 Semi-infinite reservoir analytical model

According to this technique, only the dam monolith is modeled using finite elements, while the effect

of impounded reservoir is modeled analytically. In this case, the reservoir is assumed of rectangular

shape with heightHr as illustrated in Fig. 1 (b). Time-history acceleration responseüP at a given point P

to ground motion̈ug can then be obtained at each timet as (Fenves and Chopra 1984, Bouaanani and

Lu 2009)

üP(t) =
Nd
∑

j=1

ψ
(x)
j (xP, yP) Z̈j(t) (4)

whereNd is the number of dam structural mode shapes included in the analysis,ψ(x)
j is thex–components

of the j th dam mode shape, taken at the coordinates(xP, yP) of point P, andZ̈j is the second time-

derivative of generalized coordinates given by the Fourierintegral

Z̈j(t) = −
1

2π

∫

∞

−∞

ω2Z̄j(ω) ¯̈ug(ω) eiωt dω (5)

in which ¯̈ug(ω) is the Fourier transform of the ground accelerationüg(t)

¯̈ug(ω) =
∫ ta

0
üg(t) e−iωt dt (6)
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with ta denoting the time duration of the applied accelerogram. Thevector Z̄ of generalized coordi-

natesZ̄j, j=1 . . . Nd , required in Eq. (5) can be obtained by solving the system of equations

S̄ Z̄ = Q̄ (7)

where, forn=1 . . .Nd andj=1 . . .Nd

S̄nj(ω) =
[

− ω2 +
(

1 + i ηd

)

ω2
n

]

δnj + ω2
∫ Hr

0
p̄j(0, y, ω)ψ

(x)
n (0, y) dy (8)

Q̄n(ω) = −ψT
n Mdd1+

∫ Hr

0
p̄0(0, y, ω)ψ

(x)
n (0, y) dy (9)

in which δnj denotes the Kronecker symbol,ω the exciting frequency,ηd the dam hysteretic damping

factor assumed constant,ωn the vibration frequency corresponding to structural mode shapeψn of the

dam with empty reservoir,̄p0 the frequency response function (FRF) for hydrodynamic pressure at rigid

dam upstream face due to ground acceleration,p̄j the FRF for hydrodynamic pressure due to horizontal

accelerationψ(x)
j (0, y) of the dam upstream face, andHr the constant height of the rectangular reservoir.

The hydrodynamic pressures are determined analytically, by solving the Helmholtz equation and asso-

ciated boundary conditions accounting for: (i) a free surface boundary condition, (ii) a fluid-structure

boundary condition implying compatibility between hydrodynamic pressures and normal displacements

at dam-reservoir interface, (iii) a radiation boundary condition upstream of the reservoir to simulate

non reflection of outgoing waves at infinity, and (iv) a boundary condition at reservoir bottom to ap-

proximately account for energy dissipation due to sedimentation through one-dimensional partial wave

absorption of incident compression waves, characterized by a reflection coefficientα varying fromα=0

for full absorption, toα = 1 for full reflection. Details of the calculations of hydrodynamic pressures

are not reviewed here for brevity and can be found elsewhere (Fenves and Chopra 1984, Bouaanani and

Lu 2009). A convergence study has to be conducted to determine the sufficient numbersNd of struc-

tural mode shapes to be included. Such analysis will be performed later to evaluate the effect on floor

acceleration spectra.

3 Case studies, results and discussions

3.1 Dam-reservoir systems considered

The methods presented above are applied next to investigatethe sensitivity of floor acceleration demands

in two typical dam-reservoir systems considering various modeling assumptions. Two gravity dams with

heights of35m and90m are studied to assess dam size effects on floor accelerationdemands. For brevity

of notation, the35m- and90m-high gravity dams are designated, respectively, by D1 andD2 hereafter.

For each dam, rectangular and irregular reservoir geometries are considered as illustrated in Figs. 2 and 3.

A modulus of elasticityEd=25GPa, a Poisson’s ratioνd=0.2, and a densityρd=2400 kg/m3 are adopted

as concrete material properties. Compressible water in theimpounded reservoir is modeled using a mass

densityρr=1000 kg/m3 and a bulk modulusµr=2.07× 103 MPa corresponding to a velocity of pressure
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wavesCr = 1440m/s. A very large bulk modulus is considered to remove water compressibility effects

for comparison purposes.

The finite element software ADINA (2011) is used to build the coupled dam-reservoir finite element

models described in Section 2.2. This software implements the φ − U described previously, and was

validated elsewhere against analytical and experimental results from dynamic fluid-structure interaction

problems in civil engineering (Bouaanani and Lu 2009, Bouaanani et al. 2012, Wei et al. 2013). The

dam-reservoir mesh consists mainly of 9-node plane stress solid and potential-based fluid finite elements,

with some 7-node triangular transition elements in the reservoir. Special infinite fluid elements based on

the plane-wave and doubly asymptotic approximations are placed at a truncation distanceLr from dam

face to simulate infinite fluid region upstream of the reservoir (Olson and Bathe 1985b, Hamdan and

Dowling 1995, ADINA 2011). The effect of reservoir truncation length on floor acceleration demands

will be discussed later. Energy dissipation due to sedimentation can be simulated by considering a series

of axially vibrating thin independent columns of infinite lengths, extending in the direction normal to

reservoir bottom (Hall and Chopra 1982, Fenves and Chopra 1984). Using this analogy and the tech-

nique proposed by Lysmer and Kuhlemeyer (1969), we show thatthe absorptive condition at reservoir

bottom can be approximated by a series of viscous dampers placed in the direction normal to reservoir

bottom (Bouaanani and Lu 2009). These viscous dampers are illustrated in Figs. 2 and 3. To ensure com-

patibility between fluid and damper elements and enable fluid-structure interaction, isoparametric beam

elements, with negligible mass and stiffness properties are inserted along reservoir-foundation interface.

2-node damper elements are then built by connecting beam element nodes to the ground. Damper and

beam element nodes are constrained to move only perpendicularly to the reservoir bottom boundary. We

show that the consistent vector of damping coefficientsc(e) corresponding to each beam elemente with

lengthℓ(e) can be expressed in terms of mass densityρr, velocity of compression wavesCr and reflection

coefficientα as

c(e) = ρrCr

(

1 + α

1− α

)
∫ 1

−1
NT

b dr (10)

whereNb denotes the isoparametric shape function of the beam element andr the isoparametric coor-

dinate. Figs. 2 (a) and 3 (a) illustrate the determination ofviscous damping values for the 3-node beam

elements used in this work. A Rayleigh damping equivalent toa modal dampingξd = 5% of the dam

is adopted. As seen previously, the right hand side of Eq. (3)accounts for earthquake loading through

prescribed ground accelerationsüg and velocitiesu̇g. This loading can be introduced either as mass-

proportional body forces when ground motions are applied uniformly to the dam-reservoir system, or

as prescribed ground displacements when variability of seismic input is of concern (Bouaanani and

Lu 2009). In this work, mass-proportional body forces are adopted. The ground velocitieṡug are obtained

from input ground accelerations by numerical integration.An implicit Newmark integration scheme is

used and the time step adopted for each analysis is based on convergence studies.

The analytical method described in Section 2.3 is programmed to obtain floor acceleration demands

in any point of the gravity dams. The software ADINA (2011) isused to discretize the dry dams into
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9-node plane stress finite elements to obtain the mode shapes, natural frequencies and corresponding

modal participation factors. The same mesh densities of thedams in the coupled finite element models

are used. We consider a dam hysteretic damping factorηd=0.1, which is equivalent to a modal viscous

damping ratioξd=5%. The analytical method is used later to evaluate the effect of the number of included

structural modes on floor acceleration demands.

The floor acceleration demands within each dam-reservoir system are determined under the effect of

various seismic inputs described in the next section. Seismic demands within the dams with empty reser-

voirs are also given for comparison purposes. All floor acceleration spectra are determined considering a

viscous dampingξs=5% of the appurtenant secondary structures. For practical discussion of the results

hereafter, we refer to a dam with an empty reservoir as a dry structure, and as wet structure otherwise.

3.2 Earthquake loading

Four ground motions with acceleration time-histories and acceleration spectra illustrated in Fig. 4 are

considered in this work: (i) a horizontal component of Imperial Valley earthquake (1940) at station

El Centro, (ii) a horizontal component of Parkfield earthquake (1966) at station Cholame no. 5, (iii) a

horizontal component of Loma Prieta earthquake (1989) at station Gilroy Array no. 2, and (iv) a hor-

izontal component of Saguenay earthquake (1988) at stationLa Malbaie. The first three records were

obtained from PEER ground motion database (PEER 2012), and the forth from the Geological Survey of

Canada (GSC 2006). The four ground motions were selected considering the differences in their time-

history traces as well as frequency content as shown in Fig. 4. The effect of these variations on floor

acceleration demands within dams D1 and D2 will be discussedin what follows.

3.3 Effect of reservoir truncation length

Finite element discretization of a semi-infinite rectangular reservoir requires its truncation at a finite

length and application of an appropriate boundary condition that accounts for energy dissipation at the

far upstream end. In this work, special infinite fluid finite elements provided in ADINA (2011) are used.

It is important to investigate the effect of truncation length on the convergence of the results. For this

purpose, special fluid elements are applied at three increasing truncation distances from dam face:Lr =

2Hr ;Lr=4Hr andLr=20Hr. Fig. 5 illustrates the floor acceleration demandsΓ(Hd) obtained at the crests

of dams D1 and D2 (Point A in Figs. 2 and 3) subjected to Imperial Valley ground motion considering

the previously defined truncation lengths and a fully reflective reservoir bottom, i.e.α = 1. The floor

accelerations are non-dimensionalized with respect to thePGA of the applied ground motion. It can be

seen that convergence of the results is ensured using a truncation lengthLr=4Hr.

To investigate convergence sensitivity to the location where floor acceleration demands are computed,

these demands are determined as point P moves along the dam cross-section’s middle line made of two

segments relating points A, B and C as indicated in Figs. 2 and3. Fig. 6 illustrates the profiles of max-
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imum floor acceleration demandsΓ*(yP), 06 yP6Hd, when the dams are subjected to Imperial Valley

ground motion, considering the three truncation lengths defined previously. Peak floor accelerations are

non-dimensionalized with respect to the PGA of the applied ground motions to get a sense of the induced

amplifications. The results in Fig. 6 confirm that a truncation length ofLr=4Hr gives a good compromise

between accuracy and efficient numerical computation. The same conclusion is also reached considering

the other ground motions described under Section 3.2. Hence, only results using this truncation length are

presented and discussed in the rest of the paper. This corresponds to rectangular and irregular reservoirs

truncated at a distanceLr=128m andLr=344m from D1 and D2 dam faces, respectively.

3.4 Effect of reservoir geometry

In this section, we investigate the effect of reservoir geometry on floor acceleration demands within

the studied dams. For this purpose, we consider the irregular reservoir geometries shown in Figs. 2 (b)

and 3 (b). We note that the same truncation lengthLr=4Hr is considered for the rectangular and irregular

reservoir geometries for comparison purposes. Dams D1 and D2 are then subjected to the Imperial Valley,

Parkfield, Loma Prieta, and Saguenay ground motions described previously. The resulting floor accelera-

tion demands at the crests of dams D1 and D2 impounding rectangular and irregular geometry reservoirs

are depicted in Fig. 7. The acceleration demands at the crestof the dry structures are also shown for com-

parison purposes. This comparison shows that fluid-structure interaction effects are generally significant

in the evaluation of floor acceleration demands of both dams.For both reservoir geometries, we observe

that hydrodynamic loads can be neglected up to a frequency varying from approximately1.5Hz for dam

D2 subjected to Imperial Valley ground motion to approximately 4Hz for dams D1 and D2 subjected

to Saguenay ground motion. After this frequency range, fluid-structure interaction alters floor acceler-

ation demands either in terms of amplitudes or frequency content. Referring to acceleration spectra in

Figs. 4 (b) and (h), it can be seen that the values of1.5Hz and4Hz correspond roughly to the start of

predominant frequencies of Imperial Valley and Saguenay earthquakes, respectively. The results in Fig. 7

globally show that, for the cases studied, the more rigid is the dam-supported appurtenant structure, the

more its dynamic response is affected by fluid-structure interaction. We also observe that fluid-structure

interaction can lead to amplification or reduction of floor acceleration demands with respect to the empty

reservoir case. This interesting result shows that, in somesituations, maximum floor acceleration de-

mands can be associated with an empty reservoir, and can thenbe obtained without reservoir modeling

and fluid-structure interaction analyses.

Fig. 7 also reveals that the influence of reservoir geometry is negligible over the whole studied frequency

range for dam D1 when shaken by Parkfield earthquake, and onlyup to a frequency of about15Hz when

the other ground motions are applied. After this frequency,the irregular reservoir is generally associ-

ated with larger floor acceleration demands at the crest of dam D1. Most important differences between

floor accelerations corresponding to both types of reservoirs are however concentrated between15Hz

and25Hz approximately. Examination of the response of dam D2 shows that reservoir geometry does

not affect crest floor acceleration demands for frequenciesup to about5Hz for all applied ground mo-

9



tions. After this frequency, the irregular reservoir corresponds to higher acceleration amplitudes up to a

frequency of about22Hz under the effect of Saguenay ground motion, and over the whole frequency

range for all other applied ground motions.

The previous results focused on the frequency evolution of seismic floor accelerations at the crest of

dams D1 and D2. Non-dimensionalized maximum floor acceleration demandsΓ*(yP)/PGA along the

height of the two dams are also illustrated in Fig. 8. It is clearly seen that maximum floor acceleration

profiles are very sensitive to the geometry of the dam studiedand applied earthquake. For dam D1, the

lowest maximum floor accelerations are obtained for the dry structure under the effect of all considered

earthquakes. Maximum differences with responses of the wetstructure are produced by Parkfield and

Saguenay ground motions, yielding amplifications with respect to the dry case of about130% and65%,

respectively. For dam D2, the dry structure develops the highest floor accelerations near the crest for all

studied earthquakes. Below this location, the differencesbetween maximum floor acceleration demands

in the dry and wet structures vary depending on the earthquake applied as illustrated in Figs. 8 (b),

(d), (f) and (h). Largest floor acceleration demands for dam D2 are obtained within the dry structure

under the effect of Saguenay earthquake, and within the wet structure when subjected to Imperial Valley

and Parkfield ground motions. Imperial Valley and Loma Prieta earthquakes induce the least differences

between maximum floor acceleration demands within dry and wet dam D2. We also observe from Fig. 8

that reservoir geometry has generally little effect on maximum floor acceleration demands in both dams.

Maximum differences between results corresponding to rectangular and irregular reservoirs are found

at the crest, with the largest being observed at the crest of dam D2 under the effect of Imperial Valley

ground motion.

3.5 Effects of reservoir bottom wave absorption

The sensitivity of floor accelerations at the crest of dams D1and D2 to reservoir bottom wave absorp-

tion is illustrated in Figs. 9 and 10, respectively. The damsimpound rectangular and irregular reservoirs

characterized by bottom reflection coefficients ofα = 1.0, α = 0.8, α = 0.6, α = 0.4 andα = 0.2 and

are subjected to the Imperial Valley, Parkfield, Loma Prieta, and Saguenay ground motions as previously.

The floor accelerations within the dry structures are also shown for comparison purposes. The results

depicted in Fig. 9 indicate that maximum effects of energy dissipation at reservoir bottom are generally

concentrated around the main resonant segments of the curves, i.e. near8 to 10Hz. We observe that floor

acceleration demands at the crest of dam D1 increase as reservoir bottom wave absorption is lower, with

the full reflection case, i.e.α = 1.0, being generally notably distinct from the other absorption levels.

Practically the same observations apply to the floor accelerations at the crest of dam D2 subjected to

Imperial Valley and Parkfield earthquakes as illustrated byFigs. 10 (a) to (d). However, the floor acceler-

ations corresponding to Loma Prieta and Saguenay earthquakes do not follow the same trends as revealed

by Figs. 10 (e) to (h). For example, floor acceleration demands at the crest of dam D2 subjected to Sague-

nay ground motion are found to decrease with reservoir bottom wave absorption contrary to what was

observed previously. For both dams, the effect of reservoirgeometry could be neglected except for the
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fully reflective case, i.e.α=1.0. This effect is observed at frequencies higher than approximately15Hz

for dam D1. The same effect is less definite for dam D2, except when subjected to Imperial Valley earth-

quake and for frequencies up to20Hz. Overall, it can be concluded that reservoir geometry effects are

attenuated as energy dissipation is increased due to higherreservoir bottom wave absorption.

Figs. 11 and 12 show the profiles of non-dimensionalized maximum floor acceleration demandsΓ*(yP)/PGA

along the heights of dams D1 and D2, respectively. It is seen that maximum floor accelerations increase

with lower reservoir bottom wave absorption for dam D1, and that the lowest peak floor accelerations

correspond to the empty reservoir. However, the dispersionof the profiles depends on the earthquake ap-

plied, varying from very close for Imperial Valley and Loma Prieta ground motions, to more separated for

Parkfield and Saguenay ground motions. Maximum amplifications for dam D1 vary from about10 under

the effect of Loma Prieta ground motion to about27 under the action of Saguenay ground motion. These

amplifications are slightly higher for the rectangular reservoir. Fig. 12 shows that the profiles of maximum

floor acceleration demands within dam D2 present different features. First, maximum amplifications un-

der the effect of Imperial Valley earthquake are almost identical for all reservoir bottom absorption levels

except the fully reflective case. We also observe that maximum floor accelerations increase with lower

reservoir bottom wave absorption under the effect of Loma Prieta earthquake, while this trend does not

apply for Parkfield and Saguenay earthquakes.

3.6 Effects of water compressibility

The previous results were obtained assuming that water in the reservoir is compressible. In this section,

we investigate the effect of this assumption by comparing the results to cases: (i) where the water in the

reservoir is assumed incompressible by considering a very large bulk modulus as explained in Section 3.1,

and (ii) where hydrodynamic loads are modeled using Westergaard’s added mass formulation (Wester-

gaard 1933). According to the latter formulation, the effect of the reservoir is equivalent to inertia forces

generated by a body of water of parabolic shape moving back and forth with the vibrating dam which is

assumed rigid. The Westergaard added massm(W)
i to be attached to a nodei belonging to dam-reservoir

interface can be obtained as

m(W)
i =

7

8
ρr Si

√

Hr (Hr − yi) (11)

whereyi denotes the height above the dam’s base of nodei of the dam-reservoir interface andSi the

transverse surface area associated to nodei, considering a unit-thick slice of the studied gravity dam.

The same 9-node finite element discretizations described previously for dams D1 and D2 are used and a

consistent formulation is applied to evaluate the added masses.

Figs. 13 to 16 compare the results obtained using incompressible water assumption and added mass for-

mulation to those corresponding to a fully reflective reservoir containing compressible water. The re-

sponses of the dry structures are also plotted for comparison purposes. These figures clearly show the

high sensitivity of floor acceleration demands to above-mentioned reservoir modeling assumptions, and

illustrate that water compressibility affects the dynamicresponse of appurtenant secondary structures
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differently depending on the dam and frequency ranges considered. It is first seen that reservoir geometry

has practically no effect on the floor acceleration demands corresponding to the incompressible water

assumption, as opposed to the higher sensitivity associated with energy radiation in the reservoir due to

water compressibility. The incompressible water assumption induces the highest floor acceleration de-

mands at the crest of dam D1 subjected to Imperial Valley and Loma Prieta earthquakes and the crest of

dam D2 subjected to Loma Prieta and Parkfield earthquakes. The added mass formulation leads to the

largest peak floor accelerations at the crest of dam D1 subjected to Saguenay ground motion, and at the

crest of dam D2 subjected to Imperial Valley and Saguenay ground motions. Floor accelerations corre-

sponding to the compressible water assumption are the largest only for dam D1 subjected to Parkfield

and Saguenay earthquakes. The floor acceleration spectra atdam crest corresponding to the three assump-

tions are practically identical in the lower frequency range up to about8Hz for dam D1 and about3Hz

for more flexible dam D2. At higher frequencies, floor acceleration demands corresponding to incom-

pressible water assumption and added mass formulation are generally closer, as dam flexibility effects

diminish. The profiles of maximum floor acceleration demandsconfirm the sensitivity of the responses to

reservoir modeling assumptions, with differences generally decreasing as the position where seismic de-

mand is computed is lower. The largest difference between the results corresponding to compressible and

incompressible water assumptions is obtained at the crest of dam D2 subjected to Saguenay earthquake

as illustrated in Figs. 16 (g) or (h).

3.7 Effects of higher vibration modes of the dry structure

The simplified procedure presented in Section 2.3 is appliednext to assess the numberNd of structural

modes to be included in analysis on floor acceleration demands. Figs. 17 to 20 show the obtained results

for Nd = 1, Nd = 3, Nd = 5 andNd = 7. The cases of the dry dams are also presented to illustrate the

effect of dam-reservoir interaction including water compressibility on the results. It is clearly seen that the

number of modes to be included in the analysis depends on the flexibility of the dam and the predominant

frequency range of the appurtenant secondary structure considered. For example, for the dry dam D1, the

results show that: (i) the fundamental mode is required to obtain floor acceleration demands at frequencies

up to about15Hz for all earthquakes, and (ii) two modes are required to cover the whole frequency

range for all earthquakes except Saguenay ground motion, which necessitates including five structural

modes in the high frequency range, although the error introduced otherwise is negligible as can be seen

from Fig. 17 (g). The same observations apply for the wet dam D1, with the difference that the error

introduced by considering less that required structural modes is slightly attenuated with respect to the dry

case. Fig. 18 shows that a fundamental mode analysis is sufficient to assess maximum floor acceleration

demandsΓ*(yP) as they occur at low frequencies less than15Hz for dam D1. For higher dam D2, we

observe, as expected, that more modes are required to obtainconvergence of floor acceleration demands

for the same frequency range. For instance, fundamental mode response is valid only for a frequency

range up to5Hz, while5 modes are needed to cover the whole frequency range considered as shown in

Fig. 19. It is also seen that in this case, fundamental mode analysis can lead to inaccurate maximum floor
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acceleration demandsΓ*(yP) as for the dry dam subjected to Imperial Valley and Parkfield earthquakes,

i.e. Figs. 20 (a) and (c), or the wet structure subjected to Saguenay ground motion, i.e. Fig. 20 (h).

3.8 Proposed Floor Frequency Response Functions

The results presented previously were obtained under the effects of four earthquakes with various time-

history traces and frequency contents. We illustrated thatsome observed behaviors are complex and

cannot be interpreted easily based simply on the frequency contents of the earthquakes and natural fre-

quencies of the dam and appurtenant structures. For preliminary design and safety evaluation purposes, it

is generally worth carrying out a harmonic analysis to compare floor acceleration demands within differ-

ent dams or the same dam considering various assumptions. Inthis section, we propose a new approach

for assessing floor acceleration demands under the effect ofunit horizontal harmonic ground accelera-

tion üg(t) = eiωt, whereω is the exciting frequency. For this purpose, we introduce a floor frequency

response function (FFRF) which defines the relationship between the horizontal acceleration̈̄us of the

appurtenant secondary structure and the exciting frequency ω as

¯̈us(ω) = −ω2
Nd+1
∑

j=1

ψ̃
(x)
j (xs, ys)

¯̃Zj(ω) (12)

whereψ̃(x)
j (xs, ys) denotes thex–component of thej th structural mode shape of the coupled system com-

bining the dam and appurtenant secondary structure, taken along the SDOF representing the secondary

structure, and¯̃Zj is the corresponding generalized coordinate. The number ofmode shapes included

in the analysis is equal to that assuring convergence for thedam-reservoir system, i.e.Nd, plus one

mode to account for the vibration of the secondary structureSDOF. The vector̄̃Z of generalized coordi-

nates¯̃Zj, j=1 . . . Nd + 1, can be obtained by solving the system of equations

¯̃
S
¯̃
Z = ¯̃

Q (13)

where, forn=1 . . .Nd + 1 andj=1 . . .Nd + 1

¯̃Snj(ω) =
[

− ω2 +
(

1 + i ηc

)

ω̃2
n

]

δnj + ω2
∫ Hr

0
p̄j(0, y, ω)ψ

(x)
n (0, y) dy (14)

¯̃Qn(ω) = −ψ̃
T
nMcc1 +

∫ Hr

0
p̄0(0, y, ω)ψ

(x)
n (0, y) dy (15)

in whichηc, ω̃n, ψ̃n andMcc are the hysteretic damping factor, natural frequency, structural mode shape

and mass matrix corresponding to the coupled system combining the dam and secondary structure, re-

spectively. We note that the integral terms in Eqs. (14) and (15) are the same as in Eqs. (8) and (9),

respectively, since it is assumed that the presence of the dam-supported appurtenant structure does not

affect hydrodynamic pressure within the reservoir.

To illustrate the application of the proposed FFRFs, the dynamic responses of two appurtenant secondary

structures with fundamental frequencies of5Hz and15Hz are considered next. The secondary structures,
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referred hereafter as the5Hz- and15Hz-systems, are attached to point A of coordinates(xA, yA) on the

crest of each of dams D1 and D2 (Figs. 2 and 3). The coupled dam-secondary structure is assumed to

have a hysteretic damping factorηc = 0.1. Fig. 21 compares the FRFs̈̄uA of horizontal accelerations at

point A, given by

¯̈uA(ω) = −ω2
Nd
∑

j=1

ψ
(x)
j (xA , yA) Z̄j(ω) (16)

to FFRFs̄̈us of the secondary structures. The cases of (i) empty, (ii) compressible and (iii) incompressible

water reservoirs are considered for comparison purposes. The peaks in the FRFs of Figs. 21 (a) and (b)

correspond to the vibration frequencies of the dam-reservoir systems without the secondary structures.

These FRFs also illustrate the effects of compressible or incompressible water assumptions with respect

to the dynamic response of the empty dam. The FFRFs in Figs. 21(c) to (f) first show that the relative dif-

ferences between the amplitudes of the FFRFs correspondingto the three cases, i.e. empty, compressible

and incompressible water reservoirs, depend on the exciting frequency as FRFs, but that they attenu-

ate quickly after approximately12Hz and25Hz for the5Hz- and15Hz-systems, respectively. At dam

D1, we observe that maximum acceleration response of the5Hz-system (respectively15Hz-system) is

obtained when the dam impounds a compressible (resp. incompressible) water reservoir. At dam D2,

maximum acceleration response of the5Hz-system (respectively15Hz-system) is obtained when the

reservoir is empty (resp. full with an incompressible waterassumption).

For all four cases, frequencies at which resonant responsesoccur include the fundamental frequencies

of the dam-supported appurtenant structures. Comparison with the FRFs in Figs. 21 (a) and (b) reveals

that the other resonant peaks correspond roughly to the frequencies of the dam alone or dam-reservoir

systems, although slightly shifted in some cases due to interaction between the secondary structure and

the rest of the system. For instance, for dam D1 with an empty reservoir, the first mode also corresponds

to resonant responses of the dam with both secondary structures, while the effect of the second mode is

attenuated for the dam supporting the15Hz-system, and considerably attenuated for the dam supporting

the 5Hz-system. The same applies to dam D1 impounding a compressible reservoir, except that the

responses corresponding to the second and third modes of thedam-reservoir system are significantly

flattened for both appurtenant secondary structures. When dam D1 impounds an incompressible reservoir,

the resonant response corresponding to the first mode of the dam-reservoir system is slightly shifted

towards lower frequencies for both secondary systems, as well as the attenuated response corresponding

to the second mode for the15Hz-system. For higher dam D2, practically the same previousanalysis

can be applied, except that the frequency shifts are less pronounced than for dam D1. We also observe a

larger amplification of accelerations at the fundamental frequencies of5Hz and15Hz of the secondary

structures since these frequencies are close to those corresponding to the fundamental mode for the empty

dam and third mode of the dam impounding an incompressible reservoir.
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4 Conclusions

This paper presented an original investigation of the sensitivity of floor acceleration demands in gravity

dams to various modeling assumptions of the impounded reservoir. Two techniques were used to obtain

floor acceleration demands: a coupled dam-reservoir finite element model and a semi-infinite reservoir

analytical model. Both techniques were applied to typical dam-reservoir systems with different geome-

tries. The dam-reservoir systems were subjected to ground motions with various frequency contents and

the resulting floor acceleration demands within the dams were studied through examination of floor accel-

eration spectra obtained at the crest of the studied dams, and maximum floor acceleration demands along

their height. A detailed analysis of the effects of reservoir geometry, water compressibility, reservoir bot-

tom wave absorption and dam higher vibration modes was presented. Seismic demands within the dams

with empty reservoirs were also determined for comparison purposes. The following main conclusions

could be drawn:

– If the geometry of the reservoir is assumed rectangular, a truncation length equal to four times the

height of the reservoir was found to be a good compromise between accuracy and efficient numerical

computation of floor acceleration demands within the studied dams subjected to the ground motions

considered.

– Fluid-structure interaction effects are generally significant in the evaluation of floor acceleration de-

mands, except at the very low frequency range. It was found that these effects can lead to amplification

or reduction of floor acceleration demands with respect to the empty reservoir case.

– Reservoir geometry cannot always be assumed rectangular asusually done in practical 2D seismic

analyses, as higher floor acceleration demands can be induced by irregular reservoir geometries as

illustrated by the case studies in the paper. Reservoir geometry effects were found to attenuate with

increasing energy dissipation due to higher reservoir bottom wave absorption. These effects also vanish

if water in the reservoir is assumed incompressible.

– The dynamic response of a dam-supported appurtenant structure can be affected by energy dissipation

at reservoir bottom according to trends corresponding to increasing or decreasing floor acceleration

demands with lower reservoir bottom wave absorption. Maximum effects are however generally con-

centrated around the main resonant segments of the floor acceleration spectra.

– The results revealed a high sensitivity of floor acceleration demands to reservoir modeling assumptions

as added masses, incompressible or compressible water domain. Water compressibility was found to

affect the dynamic response of dam-supported appurtenant structures differently depending on the dam

and frequency ranges considered. Floor acceleration demands corresponding to the three assumptions

are however practically identical in the low frequency range.

– Fundamental mode analysis can be sufficient to obtain low frequency range floor acceleration demands

within rigid dams, while more modes are required to assess the dynamic response of appurtenant

secondary structures vibrating at larger frequencies on more flexible dams.

Finally, floor frequency response functions were developedto assess floor acceleration demands at the
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stage of preliminary seismic design or safety evaluation ofdam-supported appurtenant structures. We

showed through examples that the proposed approach can be effectively used to compare floor accelera-

tion demands within different dams or within the same dam considering various modeling assumptions

of the reservoir.
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Figure 1. Illustration of the computation of floor acceleration spectra at a given point P of a gravity dam: (a) using
a coupled dam-reservoir finite element model; and (b) using asemi-infinite reservoir analytical model.



Figure 2. Dimensions of the 35 m-high dam (D1) impounding reservoirs with: (a) rectangular, (b) and irregular
geometries.



Figure 3. Dimensions of the 90 m-high dam (D2) impounding reservoirs with: (a) rectangular, (b) and irregular
geometries.



Figure 4. Acceleration time-histories and5%-damped acceleration spectra of the ground motions considered: (a)
and (b) Imperial Valley earthquake (1940) horizontal component at Elcentro ; (c) and (d) Parkfield earthquake
(1966) horizontal component at Cholame Array no. 5 ; (e) and (f) Loma Prieta earthquake (1989) horizontal com-
ponent at Gilroy Array no. 2 ; (g) and (h) Saguenay earthquake(1988) horizontal component at La Malbaie. (a),
(c), (e) and (g): Acceleration time-histories; (b), (d), (f) and (h): Acceleration spectra.



Figure 5. Floor acceleration demands at the crests of dams D1and D2 subjected to Imperial Valley earthquake
considering truncation lengthsLr=2Hr, Lr=4Hr andLr=20Hr: (a) Dam D1, and (b) Dam D2.



Figure 6. Peak floor acceleration demands along the height ofdams D1 and D2 subjected to Imperial Valley earth-
quake considering truncation lengthsLr=2Hr, Lr=4Hr andLr=20Hr: (a) Dam D1, and (b) Dam D2.



Figure 7. Floor acceleration demands at the crests of dams D1and D2 impounding rectangular and irregular ge-
ometry reservoirs and subjected to: (a) and (b) Imperial Valley (1940) ground motion; (c) and (d) Parkfield (1966)
ground motion; (e) and (f) Loma Prieta (1989) ground motion;and (g) and (h) Saguenay (1988) ground motion.



Figure 8. Maximum floor acceleration demands along the height of dams D1 and D2 impounding rectangular
and irregular geometry reservoirs and subjected to: (a) and(b) Imperial Valley (1940) ground motion; (c) and (d)
Parkfield (1966) ground motion; (e) and (f) Loma Prieta (1989) ground motion; and (g) and (h) Saguenay (1988)
ground motion.



Figure 9. Effects of reservoir bottom wave absorption and reservoir geometry of the floor acceleration demands at
the crest of dam D1 subjected to: (a) and (b) Imperial Valley (1940) ground motion; (c) and (d) Parkfield (1966)
ground motion; (e) and (f) Loma Prieta (1989) ground motion;and (g) and (h) Saguenay (1988) ground motion.



Figure 10. Effects of reservoir bottom wave absorption and reservoir geometry of the floor acceleration demands
at the crest of dam D2 subjected to: (a) and (b) Imperial Valley (1940) ground motion; (c) and (d) Parkfield (1966)
ground motion; (e) and (f) Loma Prieta (1989) ground motion;and (g) and (h) Saguenay (1988) ground motion.



Figure 11. Effects of reservoir bottom wave absorption and reservoir geometry of the maximum floor acceleration
demands along the height of dam D1 subjected to: (a) and (b) Imperial Valley (1940) ground motion; (c) and (d)
Parkfield (1966) ground motion; (e) and (f) Loma Prieta (1989) ground motion; and (g) and (h) Saguenay (1988)
ground motion.



Figure 12. Effects of reservoir bottom wave absorption and reservoir geometry of the maximum floor acceleration
demands along the height of dam D2 subjected to: (a) and (b) Imperial Valley (1940) ground motion; (c) and (d)
Parkfield (1966) ground motion; (e) and (f) Loma Prieta (1989) ground motion; and (g) and (h) Saguenay (1988)
ground motion.



Figure 13. Effects of water modeling assumptions on floor acceleration demands at the crest of dam D1 subjected
to: (a) and (b) Imperial Valley (1940) ground motion; (c) and(d) Parkfield (1966) ground motion; (e) and (f) Loma
Prieta (1989) ground motion; and (g) and (h) Saguenay (1988)ground motion.



Figure 14. Effects of water modeling assumption on the floor acceleration demands at the crest of dam D2 subjected
to: (a) and (b) Imperial Valley (1940) ground motion; (c) and(d) Parkfield (1966) ground motion; (e) and (f) Loma
Prieta (1989) ground motion; and (g) and (h) Saguenay (1988)ground motion.



Figure 15. Effects of water modeling assumption on maximum floor acceleration demands along the height of dam
D1 subjected to: (a) and (b) Imperial Valley (1940) ground motion; (c) and (d) Parkfield (1966) ground motion; (e)
and (f) Loma Prieta (1989) ground motion; and (g) and (h) Saguenay (1988) ground motion.



Figure 16. Effects of water modeling assumption on maximum floor acceleration demands along the height of dam
D2 subjected to: (a) and (b) Imperial Valley (1940) ground motion; (c) and (d) Parkfield (1966) ground motion; (e)
and (f) Loma Prieta (1989) ground motion; and (g) and (h) Saguenay (1988) ground motion.



Figure 17. Effect of the number of structural modes includedin the analysis on floor acceleration demands at the
crest of dam D1 subjected to: (a) and (b) Imperial Valley (1940) ground motion; (c) and (d) Parkfield (1966) ground
motion; (e) and (f) Loma Prieta (1989) ground motion; and (g)and (h) Saguenay (1988) ground motion.



Figure 18. Effect of the number of structural modes includedin the analysis on maximum floor acceleration de-
mands along the height of dam D1 subjected to: (a) and (b) Imperial Valley (1940) ground motion; (c) and (d)
Parkfield (1966) ground motion; (e) and (f) Loma Prieta (1989) ground motion; and (g) and (h) Saguenay (1988)
ground motion.



Figure 19. Effect of the number of structural modes includedin the analysis on floor acceleration demands at the
crest of dam D2 subjected to: (a) and (b) Imperial Valley (1940) ground motion; (c) and (d) Parkfield (1966) ground
motion; (e) and (f) Loma Prieta (1989) ground motion; and (g)and (h) Saguenay (1988) ground motion.



Figure 20. Effect of the number of structural modes includedin the analysis on maximum floor acceleration de-
mands along the height of dam D2 subjected to: (a) and (b) Imperial Valley (1940) ground motion; (c) and (d)
Parkfield (1966) ground motion; (e) and (f) Loma Prieta (1989) ground motion; and (g) and (h) Saguenay (1988)
ground motion.



Figure 21. FRFs and FFRFs of the horizontal accelerations considering empty, compressible and incompressible
water reservoirs: (a) FRF for dam D1; (b) FRF for dam D2; (c) FFRF for 5Hz-system at the crest of dam D1;
(d) FFRF for5Hz-system at the crest of dam D2; (e) FFRF for15Hz-system at the crest of dam D1; (f) FFRF
for 15Hz-system at the crest of dam D2.


