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Practical Formulas for Frequency Domain Analysis
of Earthquake Induced Dam-Reservoir Interaction

Najib Bouaanani and Charles Perrault

ABSTRACT

Dam-reservoir dynamic interactions are complex phenomegaring advanced mathematical and numerical mod-
eling. Although available sophisticated techniques carmdlgamany aspects of these phenomena, simplified proce-
dures are useful and still needed to globally evaluate timaualyc response of dam-reservoir systems. This paper
presents and validates an original practical proceduraviestigate earthquake induced dam-reservoir interaction
in the frequency domain, including the effects of dam flditipiwater compressibility and reservoir bottom wave
absorption. The procedure relates hydrodynamic pressigréodany deflected modal response of a 2D gravity dam
on a rigid foundation to hydrodynamic pressure caused byriadrdal rigid body motion. New analytical expres-
sions that can be easily programmed in a spreadsheet pamkigplemented in a dam structural analysis program
are also proposed to conduct simplified fundamental modéeeake analysis of gravity dams. The techniques
presented can be efficiently used to provide valuable imsngt the effects and relative importance of the various
parameters involved in the dynamic response of dam-reiseygtems. Although the mathematical derivations and
closed-form expressions developed were applied to daarvais systems herein, they can be easily adapted to
other fluid-structure interaction problems.
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1 Introduction

Reliable and accurate prediction of hydrodynamic pressied upmost importance to the safety
evaluation of hydraulic structures in earthquake pronasar8ignificant research has been devoted
to understand this type of loading since the pioneering vadWestergaard (Westergaard 1933). In
Westergaard'’s solution, hydrodynamic pressure on a daenisanodeled as a heightwise added mass
distribution obtained by neglecting dam flexibility and etatompressibility. This added mass con-
cept has been widely used for several decades to desiggeakeresistant gravity dams. Chopra and
collaborators contributed significantly to the understagaf fluid-structure interaction in dam engi-
neering (Chopra 1968; Chopra 1970; Chakrabarti and Chdpr8;1Chopra 1978). They developed
procedures to account for the effects of dam deformability water compressibility in earthquake
excited dam-reservoir systems. These techniques weredefter to account for reservoir bottom
wave absorption and dam-foundation interaction (Fenvd<Copra 1985; Fenves and Chopra 1987).

The developments proposed by Chopra and collaboratorsbiesre extensively used worldwide for
design and safety evaluation of concrete dams. These neetimadd be cast into two categories: (i)
simplified procedures in which the fundamental vibratiordeoesponse of a dam-reservoir-foundation
system is used to investigate most significant factors intiungy the seismic behavior, and (ii) more so-
phisticated time history analysis procedures based onpl@d@ield solution through sub-structuring
of the dam-reservoir-foundation system. The latter tegqpies were implemented in finite element
codes specialized in two- and three-dimensional analyfsesarete gravity dams (Fenves and Chopra
1984; Fok etal. 1986). Some of these codes were used redentiglidate forced-vibration test-
ing of concrete gravity and arch dams (Proulx etal. 2001;do@ani etal. 2002). During the last
three decades, several researchers developed advanbgatalend numerical frequency-domain and
time-domain approaches to model dynamic dam—reserveineation interactions (Saini etal. 1978;
Liu and Cheng 1984; Tsai and Lee 1987; Humar 1988; Maeso 2084). Most of these methods
make use of finite elements, boundary elements or a mix of both

Dynamic dam-reservoir interactions are complex phenomegairing advanced mathematical and
numerical modeling. Although the available sophisticatechniques can handle many aspects of
these phenomena, simplified procedures are useful andestilled to globally evaluate the dynamic re-
sponse of dam-reservoir systems, namely for preliminasygteor safety evaluation of concrete dams.
In a previous work, the first author proposed a simplified etbBrm formulation for earthquake-
induced hydrodynamic pressure on concrete dams (Bouaahaini2003). The method includes the
effects of water compressibility and reservoir bottom walsorption. The influence of dam deforma-
bility was however neglected and therefore the total hygnadhic pressure exerted on a dam during
an earthquake and the associated response quantitiesromiuiiee evaluated. The main purpose of
this work is to develop a new closed-form formulation whére tigid dam restricting assumption is
waived.



2 Theoretical Formulation

A triangular 2D gravity dam cross-section was used by Chepah (Chopra 1970; Fenves and Chopra
1985) to illustrate the application of the simplified and rauiwal techniques they proposed. This
idealized dam section is considered herein for convengdatence. The geometry of the dam-reservoir
system is shown in Fig. 1. The dam has a total hefghand it impounds a semi-infinite reservoir of
constant deptlti/,. Wave absorption due to sediments that may be depositegaatogr bottom is also
considered. A Cartesian coordinate system with axeady with origin at the heel of the structure
is adopted and the following main assumptions are made h€idlam and the water are assumed to
have a linear elastic behavior; (ii) the dam foundation s&iased rigid; (iii) the water in the reservoir
iIs compressible and inviscid, with its motion irrotatiorgadd limited to small amplitudes; and (iv)
gravity surface waves are neglected. The hydrodynamispres(z, y, t) in the reservoir (in excess
of the hydrostatic pressure) obeys the following wave eqgoat
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whereu, andv, are ther andy components of the displacement of a water particle, resgdgtt is the
time variablep, the mass density of water an@the velocity of sound in water. Considering harmonic
ground motions : horizontaly(t) = a{* ¢, and verticaljy(t) = a{) ¢!, the hydrodynamic pressure
in the reservoir can be expressed in the frequency domaiftds, y, 1) =p 9 (z, y, w) e, where the
superscript®) denotes the corresponding directiomr 3, w the exciting frequency, ang® (z, y, w)
the complex-valued frequency response function. Introduthis transformation into Eq. (3) yields
the classical Helmholtz equations
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The frequency response function of structural displacéi@et acceleration components along earth-
guake excitation directions=x, y can be expressed as
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wheret () and7(©) denote the horizontal and vertical displacements, reségtii () and?(© the
horizontal and vertical accelerations, respectiv¢§§7? and¢§y) the z— andy—components of thg™"
structural mode shapE,;O the generalized coordinate along earthquake excitati@ction(, andNg
the total number of mode shapes included in the analysis.

The complex-valued hydrodynamic pressure frequency respfunctions ©) along directions, =
x,y can be expressed as (Fenves and Chopra 1984)

POz, y,w) = ps (2, y, w) —wQZZ w) pi(x, Y, w); =,y (7)

Whereﬁéo is the frequency response function for hydrodynamic pmesatirigid dam face due to
ground acceleration along=z, y direction, and wherg; is the frequency response for hydrodynamic
pressure due to horizontal accelerati,!éﬁ) (y) :zp](f’”)(o, y) of the dam upstream face. Throughout this
paper, hydrodynamic pressu@%’ andp; will be referred to as the “rigid” and the “flexible” parts of
the total hydrodynamic pressupgrespectively.

The boundary conditions to be satisfied by frequency respfnrni:tlonsp0 ,p andpj are

— At the dam-reservoir interface

8]7(93) N
or (Oa yaw) = _Praé ) (8)
pg”
0 =0 9
9 (0,y,w) (9)
op; ()
a—;(ou va) = _pr¢j (y) (10)
— At the reservoir bottom
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wheregq is a damping coefficient defined at the reservoir bottom as
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and whereps andCt denote the mass density and the compression-wave velotthinwhe dam-
reservoir foundation, respectively. The portion of the awmplitude reflected back to the reservoir



can then be represented by the wave reflection coefficiel@fined by
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wherea may vary from0, for full wave absorption, ta, for full wave reflection.
— At the reservoir free surface
ﬁ(ga:)(ll?th) :ﬁéy)(‘I?th) :ﬁj(xath) :0 (16)

The complex frequency response functions of the rigid andbile parts of hydrodynamic pres-

sure,ﬁéx) andp,, can be expressed as the summationVpfesponse functlonﬁé,i andp,, corre-

sponding each to a reservoir mode
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Frequency response functioﬁtg) andp,, are given by
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where)\,, andY,, are complex-valued frequency dependent eigenvalues #mogomnal eigenfunctions
satisfying, for each reservoir mode
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() =37 [ Yy w) dy (25)
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Using Egs. (21) and (22), the integig}, given by Eq. (25) can be determined as
i e*i An Hy
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where), (w) is noted),, for brevity.

The complex frequency response function of hydrodynamaissnreiéy) is independent of-coordinate
and can be expressed as (Fenves and Chopra 1984)
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A relationship between the rigid and flexible parts of hygmuaimic pressure is investigated next.
We assume that the-component of structural mode shapgecan be approximated as a polynomial
function

k
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wherey is the coordinate varying along the height of the structueasared from its base. The coeffi-
cientsa, can be determined based on a finite element analysis of Uinetgte as illustrated in Fig. 2.
Simplified formulas approximating the fundamental modepshaf gravity dams as the one proposed
by Chopra (1970) can also be used. On substituting Eq. (2®}he integral/;,, given by Eq. (26), we
have
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To alleviate the notation, we introduce the complex-valugattion A,,, defined by
An(2) == (31)
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wherez andm are complex and integer numbers, respectively. Using iatem by parts, we show



that
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Eq. (30) becomes then
Ijn(w) = Fjn(w) Ton(w) + Gjn(w) (34)

where
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For example, if a cubic profile is used to approxima}@
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Egs. (35) and (36) simplify to

2 6H,

_ @) r
(38)

[ wq (x) 6H|— 1 6
. — L)) — —
Ginw) = =371 le ) = om |~ wmm™ ™t mm®

To closely interpolate various modal shapgs, and G/, expressions developed using quadratic to
quintic approximations are given in Appendix A.

Getting back to the frequency response funcfignof the the flexible part of hydrodynamic pressure
and substituting Eq. (34) into Eqg. (20), we show that
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This original and important relation relates the flexiblel aigid parts of hydrodynamic pressure at a
given reservoir mode to the vibration of the structure along a given mode shapeTlherefore, if
frequency response functi@éf) is known for a given reservoir modg the effect of a given structural



mode shapeu](-‘”) can be obtained using Eq. (39) to find frequency responséifume;,, corresponding
to the same reservoir moade Summation over the number of reservoir modégields the total rigid
and flexible parts of hydrodynamic pressure according to @3 and (18), respectively.

For purpose of illustration, this formulation is appliedtbee dam-reservoir system shown in Fig. 1.
We consider a unit horizontal harmonic ground motigyit) = ¢'“!, a one-meter wide dam section
of height Hs = 121.92m (400 ft), a downstream slope @8 and a vertical upstream face. The fol-
lowing dam material properties are selected: a modulusasttieity £ = 25 GPa; a Poisson’s ratio
vs = 0.2; and a mass density = 2400 kg/m?. Water is assumed compressible, with a velocity of
pressure wave§, = 1440 m/s, and a mass density= 1000 kg/n?*. We denote by g 9.81 m/s’ the
gravitational acceleration. The absolute value of fregyaesponse functions of the flexible part of
hydrodynamic pressure at dam heel due to structural mogeshato ¢, are determined. Two levels
of reservoir bottom wave absorptian=0.95 anda =0.65 are considered. Mode shapes are obtained
from a plane stress finite element analysis of the dam credses carried out using the software AD-
INA (2008). These refined mode shapes are included in theici$ormulation described previously.
The proposed method is applied using cubic to quintic exyioas (Appendix A) to appropriately
approximate the modal shapes at dam face. Fig. 3 compareeshks obtained using the proposed
approximate method to those of the classical formulatioraftull reservoir case, i.ed, = Hs, and
frequency ratiosu/wy varying from 0 to 4, wherey, = 7 C;/(2H,) denotes the natural frequency of
the full reservoir. As can be seen, both methods yield praltyi identical frequency response curves.
We also observe that once a minimum approximation order &lfto match a given mode shape,
increasing the order of the approximation has virtually fieat on the results.

3 Practical Closed-form Expressions

The eigenvalue problem given by Eq. (21) has to be solvedif@mealues\,, at each excitation fre-
guencyw in the range of interest. For this purpose, numerical ilggdechniques such as Newton-
Raphson method have to be programmed as done in the EAGD tencpde (Fenves and Chopra 1984).
Such methods also require an initial guess of the eigensalnd would converge only after a certain
number of iterations. In this paper, closed-form expressiihat can be used to directly obtain the
eigenvalues\,, are developed. The proposed formulas can be efficientlyamehted in a practical
dam structural analysis without recourse to iterative smhs or complex programming. This ap-
proach also allows more insight into the relative contiims of different parameters to the overall
response of a dam-reservoir system. Once the eigenvakiegsrmined, practical analytical expres-
sions to evaluate complex-valued frequency responseifursodf the rigid and hydrodynamic parts of
hydrodynamic pressure can be developed.

Performing derivation with respect ta we show that Eq. (21) is equivalent to the non-linear differ



ential equation
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We also demonstrate through numerical simulations thaafge and moderate values of the reflection
coefficient, i.ea > 0.5, the termw? is relatively small compared to the other terms in Eq. (40, that

it can be dropped without introducing significant error al lae shown later. Hence, we can assume
that under some conditions that define the range of validititie approximation, Eq. (40) simplifies

to
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Using the root\,,(0) = T of Eq. (21) at frequency =0, and integrating Eq. (41) between 0

2H,
andw yields the approximater solution for eigenvalugs
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Eq. (42) can then be introduced into Eqs. (22) to (24) andZA).to obtain the parameteYs, 5, <,
and [y, required to determine frequency response functmgsandﬁox) according to Egs. (19) and
(17), respectively.

For practical programming, we propose the following sitigdi expressions to evaluate frequency

response functioﬁé,f) of the rigid part of hydrodynamic pressure at dam face
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For a fully reflective reservoir bottona(= 1), the frequency respon@éi) of the rigid part of hydro-
dynamic pressure at dam face is given by
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Having estimated frequency response funcﬁé,ﬂ according to Eq. (43) or (58), frequency response
functionpy,, of the flexible part of hydrodynamic pressure correspondindam fundamental mode
responseﬁ”) can be obtained using Eq. (39). A cubic profile as in Eq. (38ukhbe adopted to ap-
propriately match the fundamental mode shape at dam faceh@sn in Appendix A, eigenvalues,
appear in the denominators of expressidhs and Gy,,, with higher exponents as the order of the
approximation increases. Therefore, to minimize the @ntvoduced by the approximations used to
obtain eigenvalues,,, mode shape profiles of orders higher that cubic need notridered to study
dam fundamental mode response using this simplified method.

To assess the validity and accuracy of the analytical espes presented in this section, they are
applied to the dam-reservoir system described previo#sty 1). Figs. 4 to 6 illustrate the frequency
dependence of the real and imaginary parts of eigenvalyesid parameters, andx,, obtained for

a full reservoir case and for different values of wave reitectoefficienta. In these Figures, the
proposed closed-form formulation is compared to a numienreghod based on a Newton-Raphson
resolution scheme of Eq. (21). This technique will be reféio as the “classical method” in the rest of
the paper. Results in Figs. 4 to 6 are determined for frequeatosw /w, varying from O to 4, where
wo = 7 C;/(2H,) denotes the natural frequency of the full reservoir. Figs. @ clearly show that the
proposed method gives excellent results for high refleataefficientsa. The quality of the approx-
imation slightly decreases with larger reservoir bottonvevabsorption. The agreement between the
two methods remains however very satisfactory even foregabia as low ag).65. Minor discrepan-
cies are found at high frequencies larger thap @hd would be less critical to typically short-period
dam-reservoir systems. Recommended values fgenerally lie between 0.9 and 1.0 for new dams,
and between.75 and0.90 for older dams. Larget values are usually adopted for preliminary design
purposes since they generally yield conservative restifts.curves also confirm that, within the fre-
quency interval of interest, the real parts of eigenvalugare virtually insensitive to frequency and
reservoir bottom wave reflection as suggested by Eq. (42).iflaginary parts of the eigenvalugs
exhibit a linear variation, taking larger values with ingseng frequency ratio and bottom wave ab-
sorption. Even for a high absorptive reservoir bottom, {ygreximation of the coefficients, andx,,

is excellent over the whole frequency range of interest.

Fig. 7 illustrates the absolute value of normalized hydradyic pressure frequency response func-
tions;ié“”)/(prgHr) andp, /(p:gH;) obtained at the heel of the dam for different values of waflece
tion coefficienta. First, frequency response functiﬁéﬁ) of the rigid part of hydrodynamic pressure
is determined using Eq. (43) or (58). Frequency responseitmp,, of the flexible part of hydro-
dynamic pressure due to dam vibration along its fundamembale shape is obtained next according
to EqQ. (39). A cubic profile is chosen to approximate the fitaictural mode shap&lx) resulting
from a plane stress finite element analysis of the dam credses carried out using the software
ADINA (2008). Eq. (37) is used accordingly and coefficieAtg andG,,, are calculated next by ap-
plying Eq. (38). Egs. (17) and (18) are then used to compwéhstdrodynamic pressure frequency
response functior@x)/(prgHr) andp; /(prgH;) including a sufficient number of reservoir mod¥s
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As shown in Fig. 7, an excellent agreement is observed frencdmparison with the results obtained
using the classical method for frequency response furmﬁé)ﬂ/(prgH,) corresponding to the rigid
part of hydrodynamic pressure. The quality of the approxiomadoes not decay as wave reflection
coefficient decreases. Results for frequency responséduaseg, /(p,gH,) corresponding to the flex-
ible part of hydrodynamic pressure are also excellent, in&m highly reflective reservoir bottoms.
Slight discrepancies are observed for reservoirs with leghrvoir bottom wave absorption, the agree-
ment between the two methods remains however excellent fgrw, and still quite reasonable for
higher frequency ratios. In all cases, the resonant fretjastare accurately predicted by the proposed
method. We note that these results do not include the caupktween the vibration of the dam up-
stream face and the pressure modes of the reservoir. Teigation will be investigated in the next
section.

4 Application to the Simplified Earthquake Analysis of Gravi ty Dams

In this section, the closed-form expressions developedeaboe implemented into a fundamental
mode dynamic analysis that takes account of some signifiaatatrs influencing the seismic response
of dam-reservoir systems. Fenves and Chopra (1984, 1983) pfoved indeed that the earthquake re-
sponse of a dam-reservoir system can be efficiently inwvastiin the frequency domain through con-
struction of an Equivalent Single Degree of Freedom (ESD&YB)em. The effects of dam-reservoir
interaction and reservoir bottom wave absorption are geauthrough added frequency-dependent
force, mass and damping. Fenves and Chopra (1987) presaumteelical examples illustrating the
use of the ESDOF system representation and discussediitgtions.

Considering the fundamental mode response of the dam andzoti@l ground excitation, Eq. (5)
simplifies to

1) (2, y,w) = 6 (2, 9) 27 (w) i (2, y,w) = —? 0 (2,9) Z (W) (59)

Under unit horizontal harmonic ground motidg(t) = ¢'“*, the vibrations of a dam-reservoir ESDOF
system are governed in the frequency domain by

(~ M+ iwCy+ K)Z0w) = Lot [ 500,5.0) 97 (0) dy (60)

where the generalized mass,, generalized damping’;, generalized stiffnes&’; and participation
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factor L, of the ESDOF corresponding to the dam with an empty researeigiven by

= [ e [ P oty s [f o) [0 et o
Ch = 2M1 61w, (62)
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in which ps is the mass density of the dam concréteis the fraction of critical damping at the fun-
damental vibration mode of the dam with an empty reservoit.g its fundamental natural vibration
frequency. The integration over the area of the dam can b@xzippated by integration over its height,
thus simplifying Egs. (61) and (64) to

Hs

M [ py) [0 )] dy (65)

Hs

Li= | () 947 () dy (66)

wherey is the mass of the dam per unit height. Substituting Eq. (o) k. (60) results in

Hy —(z
MO+ K [ 0,y ) 4] 70 () =

B () (2) (67)
— L +/ 13035 (0,y,w) (e (y)dy
0
which yields the generalized coordinate
75@ () = —L — By(w) (68)
—w? (]\/[1 -+ Re[Bl(w)D +i w(Cl —w Im[Bl(w)D + K,
in which
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n=1
Hi (@) l
=~ [ B0.5.0) 6 @)ty = 3 Buuw) (70)
n=1
where we introduced the notation
e (2) 2)
By, (w) = —/0 Pon (0,y,w) 1y (y) dy (71)
i ()
Bua(@) = = [ pual0.,0) v (9) y (72)

These frequency-dependent hydrodynamic parameters radoouhe effects of dam-reservoir inter-
action and reservoir bottom wave absorption. The téncan be interpreted as an added force, the
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real part of B; as an added mass and the imaginary parBpfas an added damping (Fenves and
Chopra 1984). Using Eq. (19), we obtain

Bun(w) = 2ty 23 2 [T 00 .00 (73)

Substituting with/,,, according to Eq. (30) and then Eq. (34) yields
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and using the transformation of Eq. (39)
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= 2 ) (@)

Bln(u)) = [Fln(W) + ‘| Bon(u)>
(75)

[Fin) ) + Ga(e)]

The resulting values can be introduced into Eqg. (68) to dater the generalized coordinaféz) and
then the displacement and acceleration frequency resgonstons according to Eq. (59). We note
that for a fully reflective reservoir bottora (= 1), the hydrodynamic termB, andB; are real-valued,
and Egs. (74) and (75) take the form

(=)™ [2 % (=1)" P (w) + (20 — 1) 7 Gia(w)]

Bon(w) = 4pcHy (76)
> , [@n—=1Pn" W
- (B
and ,
B () = 20.H, [2 X (=1)" 1 Fin(w) + (20 — 1) 7 G (w)] -

(2n —1)°7*  W?
o — 1) 2 ST W
(2n ”V oo

The effectiveness of the closed-form expressions devdlppeviously in reproducing the dynamic
response of a dam-reservoir system is investigated next8firesents the absolute value of the fre-
guency response function of horizontal acceleration at dast obtained using the classical and the
proposed methods. The responses are plotted against theeffrey ratiov/w, wherew, is the fun-
damental vibration frequency of the dam on rigid foundatiatth an empty reservoir. This frequency
can be estimated as (Fenves and Chopra 1987)

2w/ Es
~ 0.38H,

(78)

%1

whereFs is expressed in MPa anfds in meters. To assess the influence of dam stiffness, two medul
of elasticity Fs= 25 GPa andts= 35 GPa are considered. A damping ragie=0.05 is adopted. Fig. 8
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clearly shows the excellent agreement between the cladsicaulation and the proposed method
even for highly absorptive reservoirs. The same obsenvatpplies to the absolute value of the total
hydrodynamic pressure frequency response functions ahé@ahas illustrated in Fig. 9. To further in-
vestigate the influence of frequency ratigw; on the accuracy of the proposed method, Fig. 10 shows
the absolute value of the total hydrodynamic pressureibligions over reservoir height, obtained for
different frequency ratios /w; and different values of reflection coefficiemt Again, we confirm the
excellent agreement between the classical formulatiorttemgroposed method.

An important parameter in the analysis of dam-reservoeratttion problems is the first resonant vi-
bration frequency of the combined fluid and structure sulesys. This parameter can be evaluated by
plotting the fundamental mode response functions givendpy3®) and identifying the frequency
corresponding to the first resonant peak. Hydrodynamictsifare known to lengthen the vibration
period of the dam-reservoir system, and that this effecoles more important as reservoir height
and dam stiffness increase. The classical formulation e@gtoposed method are used to determine
the influence of reservoir height on the variation of the @eriatio 7, = 1;/T}, whereT; = 27 /&, is

the natural period of the dam-reservoir system, &ne- 27 /w, is the natural period of dam with an
empty reservoir. The results obtained for two modulus ofteddy £s = 25 GPa andEs = 35 GPa,
different reflection coefficients and reservoir heightd, > 0.5Hs are presented in Fig. 11. The pro-
posed method provides accurate predictions of the reseifaznation frequency of the dam-reservoir
system for different reservoir heights.

Estimating the damping rati§ of the dam-reservoir ESDOF is also of interest. Fenves arapzh
(1984) developed an analytical expression to include thextsf of an added damping due to dam-
reservoir interaction and reservoir bottom wave absompfithe damping rati@, of the ESDOF dam-
reservoir system can then be found based on the damping raifdhe dam with an empty reservoir
as follows - .,

G g (g) |5 (5)] 79)
Fig. 12 presents the variation of the damping ratiof the ESDOF dam-reservoir system as a function
of reservoir height{, > 0.5H,. As before, different values of reflection coefficienand two modulus
of elasticity of dam concrete are considered. The curvesiodd using the classical and the proposed
method coincide for reservoirs with a high reflective bott@xa previously emphasized, very small
differences between the two sets of results are observedas/pir bottom wave absorption increases.

The analytical expressions presented in this section caléeted to conduct a simplified earthquake
analysis of gravity dams for purposes of preliminary desggmethod initially proposed by Fenves
and Chopra (1985). As discussed previously, the fundarhébtation periodl; = 2 /@, of the dam-
reservoir system is identified by the first resonant peak efftimdamental mode response functions
given by Eq. (59). The generalized coordinate correspantbnresonant frequency; is given by
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Eq. (68) )
() —L
7@ = ——— (80)
—W M, +10,C) + K,
where the generalized mags,, generalized damping,, and participation factof; of the dam-
reservoir ESDOF are defined by

Ml =M, + Re{Bl(&)r)} ; él =C1 — @y |m{Bl(a)r)} ; IN/I =L+ BO(@I') (81)

Maximum response of the dam-reservoir ESDOF system to admal earthquake ground motion
can be approximated at each time instant by its static regponder the effect of equivalent lateral
forcesf; applied at the upstream dam face (Clough and Penzien 19@gegand Chopra 1987)

ily) = -2 5T, &) [fsy) 647 )] (82)

1

whereSa(Tr,fr) is the pseudo-acceleration ordinate of the earthquakgmiasgiectrum at vibration
period7; and for damping ratig;, of the dam-reservoir ESDOF system, and whese) approximates
the mass of the dam per unit height including hydrodynanfecés. This added-mass can be expressed
here as

Re[p1 (0, y, &)]
Y (y)

(83)

— jly) — m nﬁfl Re{ﬁéﬁi)(oa Y, &r) [F n(w) + if(td))} }

in which Eq. (39) was used to determine the frequency respimetion of the hydrodynamic pressure
due to fundamental vibration mode. Frequency responsd&iﬁurﬁré?(O, y,wr) can be evaluated using
Eq. (43) or (58). It is important to note that the minus sigim (83) corresponds to the orientation of
the system of axes shown in Fig. 2. We also assume that thariugratal mode shapzéx) is positive as
indicated on the same Figure. Denotifig= p,gH?/2 the total hydrostatic force exerted on dam face,
we determine the normalized equivalent lateral forﬂgﬁl(y)/[FstSa(Tr,Er)} considering different
reservoir bottom wave absorption levels and two modulusastieity of the one-meter wide dam sec-
tion described previously. Fig. 13 shows that the resultaiobd using the classical formulation and
the proposed method are identical. We note that the valuseodquivalent lateral force is null at the
dam crest because of the triangular shape of the dam motbighwvould not be the case in general.
Finally, Fenves and Chopra (1985) discussed the effectgbé&hvibration modes on dam earthquake
response. Using a static correction technique, this effi@etbe accounted for approximately by eval-
uating the static response of the dam-reservoir ESDOF stgloj¢o the lateral forcef.
(e 2) () By z)
fsely) = g {us(y) ll ~ L U (y)] - [po (y) + A ps(y) 1y (y)] } (84)
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where:ﬁ&max) denotes the maximum ground acceleration, ﬁﬁ&(y) the real-valued, frequency inde-
pendent hydrodynamic pressure applied on a rigid dam sigloj¢o unit ground acceleration, with
water compressibility neglected

N, n—1
_(2) T (=1 (2n—1)my
Py (y) Spr rn:1 (2n — 1)2 2 CObl 2H, (85)

and where the term, is given by

e () (@)
Bi=— [ 57w e w) oy
Wz(z)

g \ I

The total earthquake response of the dam can then be degshioynapplying the SRSS rule to com-
bine response quantities associated with the fundameamddiigher vibration modes.

(86)

5 Conclusions

This paper presented and validated a practical and effiteemtulation to evaluate the dynamic re-
sponse of gravity dams impounding semi-infinite reserveiith rectangular shapes. The proposed
method uses closed-form analytical expressions to relateodynamic pressure due to any deflected
modal response of a 2D gravity dam on a rigid foundation torbggnamic pressure caused by a
horizontal rigid body motion. Effects of dam flexibility, wex compressibility and wave absorption at
reservoir bottom are included in the formulation. New atief} expressions that can be easily pro-
grammed in a spreadsheet package or implemented in a dactusaluanalysis program were also
proposed to conduct simplified fundamental mode earthgaa&dysis of gravity dams. The assump-
tions adopted to develop the formulas were first validatad,then numerical examples illustrating
their use were presented. The proposed formulas were shificierg to determine the frequency
response functions of hydrodynamic pressure and dam aatele the heightwise distributions of
hydrodynamic pressure, the dynamic properties of an etpntvvdam-reservoir system and the asso-
ciated equivalent lateral forces. The results obtaineceweempared to classical solutions based on
iterative numerical schemes. The agreement between thedtsoof results is excellent namely for
reservoirs with common high to moderate levels of reservoitom wave reflection. The techniques
presented in this paper can be efficiently used to provideabdé insights into the effects and rela-
tive importance of the various parameters involved in theaalyic response of dam-reservoir systems.
Although the mathematical derivations and closed-fornresgions developed were applied to dam-
reservoir systems herein, they can be easily adapted toftaiftestructure interaction problems.

17



Acknowledgements
The authors would like to acknowledge the financial suppbitt® Natural Sciences and Engineering

Research Council of Canada (NSERC) and the Quebec Fund $eaR# on Nature and Technology
(FQRNT).

18



Appendix A

Order of the approximation

Fj, andGj, expressions

Quadratic approximation

2 k
() Y (2) 2
W =Ya()  Fue) = - g e
J ,; H ! 7T N HE
Ginlw) = — 4 [0 )] - o
m A2 H L™ A2 H, Hg
Cubic approximation
k
(@) y (@) 2 6Hy
= Z F. =\ (H,) — _
wj (y) ]; a’k’ <Hs> J (CL)) ¢] ( I’) )\% HSQ ag )\% Hg) a3
i wq (z) 6H, 1 6
(w) = ——— [\ (H,) — —— -
GJ (w) )\% Hr wj ( I') )\% Hg) as )\% Hr Hs a + )\% Hr Hg) az
Quartic approximation
4 k 2
@) N _ ' (@) 2 6H, 24 12H;
_dwg [ @) GH; 12H?
Gl = =5, |1 ) " N 0 N
1 6
TN HHE" T N E "
Quintic approximation
k 2
(@) _ Y ' (@) 2 6H, 24 12H;
N 120H, 20H}?
— a
MNHZ N HE)
oy dwg [ @ 6H, 12H? 120H,  20H;
Gnte) = 5 87 00~ sz oo~y g oo (g~ )
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