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ABSTRACT

Dam-reservoir dynamic interactions are complex phenomenarequiring advanced mathematical and numerical mod-

eling. Although available sophisticated techniques can handle many aspects of these phenomena, simplified proce-

dures are useful and still needed to globally evaluate the dynamic response of dam-reservoir systems. This paper

presents and validates an original practical procedure to investigate earthquake induced dam-reservoir interaction

in the frequency domain, including the effects of dam flexibility, water compressibility and reservoir bottom wave

absorption. The procedure relates hydrodynamic pressure due to any deflected modal response of a 2D gravity dam

on a rigid foundation to hydrodynamic pressure caused by a horizontal rigid body motion. New analytical expres-

sions that can be easily programmed in a spreadsheet packageor implemented in a dam structural analysis program

are also proposed to conduct simplified fundamental mode earthquake analysis of gravity dams. The techniques

presented can be efficiently used to provide valuable insight into the effects and relative importance of the various

parameters involved in the dynamic response of dam-reservoir systems. Although the mathematical derivations and

closed-form expressions developed were applied to dam-reservoir systems herein, they can be easily adapted to

other fluid-structure interaction problems.
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1 Introduction

Reliable and accurate prediction of hydrodynamic pressureis of upmost importance to the safety

evaluation of hydraulic structures in earthquake prone areas. Significant research has been devoted

to understand this type of loading since the pioneering workof Westergaard (Westergaard 1933). In

Westergaard’s solution, hydrodynamic pressure on a dam face is modeled as a heightwise added mass

distribution obtained by neglecting dam flexibility and water compressibility. This added mass con-

cept has been widely used for several decades to design earthquake resistant gravity dams. Chopra and

collaborators contributed significantly to the understanding of fluid-structure interaction in dam engi-

neering (Chopra 1968; Chopra 1970; Chakrabarti and Chopra 1973; Chopra 1978). They developed

procedures to account for the effects of dam deformability and water compressibility in earthquake

excited dam-reservoir systems. These techniques were refined later to account for reservoir bottom

wave absorption and dam-foundation interaction (Fenves and Chopra 1985; Fenves and Chopra 1987).

The developments proposed by Chopra and collaborators havebeen extensively used worldwide for

design and safety evaluation of concrete dams. These methods could be cast into two categories: (i)

simplified procedures in which the fundamental vibration mode response of a dam-reservoir-foundation

system is used to investigate most significant factors influencing the seismic behavior, and (ii) more so-

phisticated time history analysis procedures based on a coupled field solution through sub-structuring

of the dam-reservoir-foundation system. The latter techniques were implemented in finite element

codes specialized in two- and three-dimensional analyses of concrete gravity dams (Fenves and Chopra

1984; Fok et al. 1986). Some of these codes were used recentlyto validate forced-vibration test-

ing of concrete gravity and arch dams (Proulx et al. 2001; Bouaanani et al. 2002). During the last

three decades, several researchers developed advanced analytical and numerical frequency-domain and

time-domain approaches to model dynamic dam–reservoir–foundation interactions (Saini et al. 1978;

Liu and Cheng 1984; Tsai and Lee 1987; Humar 1988; Maeso et al.2004). Most of these methods

make use of finite elements, boundary elements or a mix of both.

Dynamic dam-reservoir interactions are complex phenomenarequiring advanced mathematical and

numerical modeling. Although the available sophisticatedtechniques can handle many aspects of

these phenomena, simplified procedures are useful and stillneeded to globally evaluate the dynamic re-

sponse of dam-reservoir systems, namely for preliminary design or safety evaluation of concrete dams.

In a previous work, the first author proposed a simplified closed-form formulation for earthquake-

induced hydrodynamic pressure on concrete dams (Bouaananiet al. 2003). The method includes the

effects of water compressibility and reservoir bottom waveabsorption. The influence of dam deforma-

bility was however neglected and therefore the total hydrodynamic pressure exerted on a dam during

an earthquake and the associated response quantities couldnot be evaluated. The main purpose of

this work is to develop a new closed-form formulation where the rigid dam restricting assumption is

waived.
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2 Theoretical Formulation

A triangular 2D gravity dam cross-section was used by Chopraet al. (Chopra 1970; Fenves and Chopra

1985) to illustrate the application of the simplified and numerical techniques they proposed. This

idealized dam section is considered herein for convenient reference. The geometry of the dam-reservoir

system is shown in Fig. 1. The dam has a total heightHs and it impounds a semi-infinite reservoir of

constant depthHr. Wave absorption due to sediments that may be deposited at reservoir bottom is also

considered. A Cartesian coordinate system with axesx andy with origin at the heel of the structure

is adopted and the following main assumptions are made : (i) the dam and the water are assumed to

have a linear elastic behavior; (ii) the dam foundation is assumed rigid; (iii) the water in the reservoir

is compressible and inviscid, with its motion irrotationaland limited to small amplitudes; and (iv)

gravity surface waves are neglected. The hydrodynamic pressurep(x, y, t) in the reservoir (in excess

of the hydrostatic pressure) obeys the following wave equations

∂p

∂x
= −ρr

∂2ur

∂t2
(1)

∂p

∂y
= −ρr

∂2vr

∂t2
(2)

∂2p

∂x2
+
∂2p

∂y2
=

1

C2
r

∂2p

∂t2
(3)

whereur andvr are thex andy components of the displacement of a water particle, respectively; t is the

time variable;ρr the mass density of water andCr the velocity of sound in water. Considering harmonic

ground motions : horizontal̈xg(t)=a
(x)
g eiωt, and vertical̈yg(t)=a

(y)
g eiωt, the hydrodynamic pressure

in the reservoir can be expressed in the frequency domain asp (ζ)(x, y, t)= p̄ (ζ)(x, y, ω) eiωt, where the

superscript(ζ) denotes the corresponding directionx or y, ω the exciting frequency, and̄p (ζ)(x, y, ω)

the complex-valued frequency response function. Introducing this transformation into Eq. (3) yields

the classical Helmholtz equations

∂2p̄ (ζ)

∂x2
+
∂2p̄ (ζ)

∂y2
+
ω2

C2
r

p̄ (ζ) = 0 ζ = x, y (4)

The frequency response function of structural displacement and acceleration components along earth-

quake excitation directionsζ=x, y can be expressed as

ū(ζ)(x, y, ω) =
Ns∑

j=1

ψ
(x)
j (x, y)Z

(ζ)
j (ω) ; ¯̈u(ζ)(x, y, ω) = −ω2

Ns∑

j=1

ψ
(x)
j (x, y)Z

(ζ)
j (ω) (5)

v̄(ζ)(x, y, ω) =
Ns∑

j=1

ψ
(y)
j (x, y)Z

(ζ)
j (ω) ; ¯̈v(ζ)(x, y, ω) = −ω2

Ns∑

j=1

ψ
(y)
j (x, y)Z

(ζ)
j (ω) (6)
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whereū (ζ) and v̄ (ζ) denote the horizontal and vertical displacements, respectively, ¯̈u (ζ) and ¯̈v (ζ) the

horizontal and vertical accelerations, respectively,ψ
(x)
j andψ(y)

j thex– andy–components of thej th

structural mode shape,Z
(ζ)
j the generalized coordinate along earthquake excitation directionζ , andNs

the total number of mode shapes included in the analysis.

The complex-valued hydrodynamic pressure frequency response functions̄p (ζ) along directionsζ =

x, y can be expressed as (Fenves and Chopra 1984)

p̄ (ζ)(x, y, ω) = p̄
(ζ)
0 (x, y, ω)− ω2

Ns∑

j=1

Z
(ζ)
j (ω) p̄j(x, y, ω) ; ζ = x, y (7)

where p̄ (ζ)
0 is the frequency response function for hydrodynamic pressure at rigid dam face due to

ground acceleration alongζ=x, y direction, and wherēpj is the frequency response for hydrodynamic

pressure due to horizontal accelerationψ
(x)
j (y)=ψ

(x)
j (0, y) of the dam upstream face. Throughout this

paper, hydrodynamic pressuresp̄ (ζ)
0 andp̄j will be referred to as the “rigid” and the “flexible” parts of

the total hydrodynamic pressurēp, respectively.

The boundary conditions to be satisfied by frequency response functionsp̄(x)0 , p̄(y)0 andp̄j are

– At the dam-reservoir interface

∂p̄
(x)
0

∂x
(0, y, ω) = −ρra

(x)
g (8)

∂p̄
(y)
0

∂x
(0, y, ω) = 0 (9)

∂p̄j
∂x

(0, y, ω) = −ρrψ
(x)
j (y) (10)

– At the reservoir bottom

∂p̄
(x)
0

∂y
(x, 0, ω) = i ωq p̄ (x)

0 (x, 0, ω) (11)

∂p̄
(y)
0

∂y
(x, 0, ω) = −ρra

(y)
g + i ωq p̄ (y)

0 (x, 0, ω) (12)

∂p̄j
∂y

(x, 0, ω) = i ωq p̄j(x, 0, ω) (13)

whereq is a damping coefficient defined at the reservoir bottom as

q =
ρr

ρf Cf
(14)

and whereρf andCf denote the mass density and the compression-wave velocity within the dam-

reservoir foundation, respectively. The portion of the wave amplitude reflected back to the reservoir
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can then be represented by the wave reflection coefficientα defined by

α =
1− q Cr

1 + q Cr
(15)

whereα may vary from0, for full wave absorption, to1, for full wave reflection.

– At the reservoir free surface

p̄
(x)
0 (x,Hr, ω) = p̄

(y)
0 (x,Hr, ω) = p̄j(x,Hr, ω) = 0 (16)

The complex frequency response functions of the rigid and flexible parts of hydrodynamic pres-

sure,p̄ (x)
0 and p̄j , can be expressed as the summation ofNr response functions̄p (ζ)

0n and p̄jn corre-

sponding each to a reservoir moden

p̄
(x)
0 (x, y, ω) =

Nr∑

n=1

p̄
(x)
0n (x, y, ω) (17)

p̄j(x, y, ω) =
Nr∑

n=1

p̄jn(x, y, ω) (18)

Frequency response functionsp̄ (x)
0n andp̄jn are given by

p̄
(x)
0n (x, y, ω) = −2ρra

(x)
g Hr

λ2n(ω)

βn(ω)

I0n(ω)

κn(ω)
eκn(ω) x Yn(y, ω) (19)

p̄jn(x, y, ω) = −2ρrHr
λ2n(ω)

βn(ω)

Ijn(ω)

κn(ω)
eκn(ω) x Yn(y, ω) (20)

whereλn andYn are complex-valued frequency dependent eigenvalues and orthogonal eigenfunctions

satisfying, for each reservoir moden

e2iλn(ω)Hr = −
λn(ω)− ωq

λn(ω) + ωq
(21)

Yn(y, ω) =

[
λn(ω)− ωq

]
e−i λn(ω) y +

[
λn(ω) + ωq

]
ei λn(ω) y

2λn(ω)
(22)

and where the termsβn, κn, I0n andIjn are given by

βn(ω) = Hr

[
λ2n(ω)− ω2q2

]
+ i ωq (23)

κn(ω) =

√√√√λ2n(ω)−
ω2

C2
r

(24)
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I0n(ω) =
1

Hr

∫ Hr

0
Yn(y, ω) dy (25)

Ijn(ω) =
1

Hr

∫ Hr

0
ψ

(x)
j (y) Yn(y, ω) dy (26)

Using Eqs. (21) and (22), the integralI0n given by Eq. (25) can be determined as

I0n(ω) =
i e−i λnHr

λ2nHr

(
λn − ωq + ωq ei λnHr

)
(27)

whereλn(ω) is notedλn for brevity.

The complex frequency response function of hydrodynamic pressurēp (y)
0 is independent ofx-coordinate

and can be expressed as (Fenves and Chopra 1984)

p̄
(y)
0 (y, ω) =

ρrCra
(y)
g

ω

(
cos

ωHr

Cr
+ i q Cr sin

ωHr

Cr

) sin
ω (Hr − y)

Cr
(28)

A relationship between the rigid and flexible parts of hydrodynamic pressure is investigated next.

We assume that thex–component of structural mode shapeψj can be approximated as a polynomial

function

ψ
(x)
j (y) =

∑

k

ak

(
y

Hs

)k
(29)

wherey is the coordinate varying along the height of the structure measured from its base. The coeffi-

cientsak can be determined based on a finite element analysis of the structure as illustrated in Fig. 2.

Simplified formulas approximating the fundamental mode shape of gravity dams as the one proposed

by Chopra (1970) can also be used. On substituting Eq. (29) into the integralIjn given by Eq. (26), we

have

Ijn(ω) =
1

Hr

∫ Hr

0
ψ

(x)
j (y) Yn(y, ω) dy

=
1

Hr

∑

k

ak
Hk

s

∫ Hr

0
yk Yn(y, ω) dy

(30)

To alleviate the notation, we introduce the complex-valuedfunctionΛm defined by

Λm(z) =
zm

m!
(31)

wherez andm are complex and integer numbers, respectively. Using integration by parts, we show
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that

∫ Hr

0
y2k Yn(y, ω) dy =

i ωq
λ2n

(−1)k

Λ2k(λn)
+

[
Hr I0n −

i ωq
λ2n

]
k∑

ℓ=0

(−1)k−ℓ Λ2ℓ(λnHr)

Λ2k(λn)
(32)

∫ Hr

0
y2k+1 Yn(y, ω) dy = −

(−1)k

λn Λ2k+1(λn)
+

[
Hr I0n −

i ωq
λ2n

]
k∑

ℓ=0

(−1)k−ℓ Λ2ℓ+1(λnHr)

Λ2k+1(λn)
(33)

Eq. (30) becomes then

Ijn(ω) = Fjn(ω) I0n(ω) +Gjn(ω) (34)

where

Fjn(ω) =
∑

k





[
k∑

ℓ=0

(−1)k−ℓ Λ2ℓ(λnHr)

Λ2k(λnHs)

]
a2k +

[
k∑

ℓ=0

(−1)k−ℓ Λ2ℓ+1(λnHr)

Λ2k+1(λnHs)

]
a2k+1



 (35)

Gjn(ω) = −
i ωq
λ2nHr

Fjn(ω) +
1

λnHr

∑

k





[
i ωq
λn

(−1)k

Λ2k(λnHs)

]
a2k −

[
(−1)k

Λ2k+1(λnHs)

]
a2k+1



 (36)

For example, if a cubic profile is used to approximateψ
(x)
j

ψ
(x)
j (y) = a1

y

Hs
+ a2

(
y

Hs

)2
+ a3

(
y

Hs

)3
(37)

Eqs. (35) and (36) simplify to

Fjn(ω) = ψ
(x)
j (Hr)−

2

λ2nH
2
s
a2 −

6Hr

λ2nH
3
s
a3

Gjn(ω) = −
i ωq
λ2nHr

[
ψ

(x)
j (Hr)−

6Hr

λ2nH
3
s

a3

]
−

1

λ2nHr Hs
a1 +

6

λ4nHrH3
s

a3

(38)

To closely interpolate various modal shapes,Fjn andGjn expressions developed using quadratic to

quintic approximations are given in Appendix A.

Getting back to the frequency response functionp̄jn of the the flexible part of hydrodynamic pressure

and substituting Eq. (34) into Eq. (20), we show that

p̄jn(x, y, ω) =
p̄
(x)
0n (x, y, ω)

a
(x)
g

[
Fjn(ω) +

Gjn(ω)

I0n(ω)

]
(39)

This original and important relation relates the flexible and rigid parts of hydrodynamic pressure at a

given reservoir moden to the vibration of the structure along a given mode shapeψj . Therefore, if

frequency response function̄p (x)
0n is known for a given reservoir moden, the effect of a given structural
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mode shapeψ(x)
j can be obtained using Eq. (39) to find frequency response function p̄jn corresponding

to the same reservoir moden. Summation over the number of reservoir modesNr yields the total rigid

and flexible parts of hydrodynamic pressure according to Eqs. (17) and (18), respectively.

For purpose of illustration, this formulation is applied tothe dam-reservoir system shown in Fig. 1.

We consider a unit horizontal harmonic ground motionẍg(t) = ei ωt, a one-meter wide dam section

of heightHs = 121.92m(400 ft), a downstream slope of0.8 and a vertical upstream face. The fol-

lowing dam material properties are selected: a modulus of elasticityEs = 25GPa ; a Poisson’s ratio

νs = 0.2 ; and a mass densityρs = 2400 kg/m3. Water is assumed compressible, with a velocity of

pressure wavesCr = 1440m/s, and a mass densityρr = 1000 kg/m3. We denote by g= 9.81m/s2 the

gravitational acceleration. The absolute value of frequency response functions of the flexible part of

hydrodynamic pressure at dam heel due to structural mode shapesψ1 toψ4 are determined. Two levels

of reservoir bottom wave absorptionα=0.95 andα=0.65 are considered. Mode shapes are obtained

from a plane stress finite element analysis of the dam cross-section carried out using the software AD-

INA (2008). These refined mode shapes are included in the classical formulation described previously.

The proposed method is applied using cubic to quintic expressions (Appendix A) to appropriately

approximate the modal shapes at dam face. Fig. 3 compares theresults obtained using the proposed

approximate method to those of the classical formulation for a full reservoir case, i.e.Hr =Hs, and

frequency ratiosω/ω0 varying from 0 to 4, whereω0 = π Cr/(2Hr) denotes the natural frequency of

the full reservoir. As can be seen, both methods yield practically identical frequency response curves.

We also observe that once a minimum approximation order is fixed to match a given mode shape,

increasing the order of the approximation has virtually no effect on the results.

3 Practical Closed-form Expressions

The eigenvalue problem given by Eq. (21) has to be solved for eigenvaluesλn at each excitation fre-

quencyω in the range of interest. For this purpose, numerical iterative techniques such as Newton-

Raphson method have to be programmed as done in the EAGD computer code (Fenves and Chopra 1984).

Such methods also require an initial guess of the eigenvalues and would converge only after a certain

number of iterations. In this paper, closed-form expressions that can be used to directly obtain the

eigenvaluesλn are developed. The proposed formulas can be efficiently implemented in a practical

dam structural analysis without recourse to iterative solutions or complex programming. This ap-

proach also allows more insight into the relative contributions of different parameters to the overall

response of a dam-reservoir system. Once the eigenvalues are determined, practical analytical expres-

sions to evaluate complex-valued frequency response functions of the rigid and hydrodynamic parts of

hydrodynamic pressure can be developed.

Performing derivation with respect toω, we show that Eq. (21) is equivalent to the non-linear differ-
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ential equation
dλn
dω

=
λn

ω + iHr q

(
ω2 −

λ2n
q2

) (40)

We also demonstrate through numerical simulations that forlarge and moderate values of the reflection

coefficient, i.e.α > 0.5, the termω2 is relatively small compared to the other terms in Eq. (40), and that

it can be dropped without introducing significant error as will be shown later. Hence, we can assume

that under some conditions that define the range of validity of this approximation, Eq. (40) simplifies

to
dλn
dω

=
λn q

ωq − iHr λ2n
(41)

Using the rootλn(0) =
(2n− 1)π

2Hr
of Eq. (21) at frequencyω=0, and integrating Eq. (41) between 0

andω yields the approximate solution for eigenvaluesλn

λn(ω) =
(2n− 1) π

4Hr
+

√√√√(2n− 1)2 π2

(4Hr)2
+ i

ωq

Hr
(42)

Eq. (42) can then be introduced into Eqs. (22) to (24) and Eq. (27) to obtain the parametersYn, βn, κn
andI0n required to determine frequency response functionsp̄0n and p̄ (x)

0 according to Eqs. (19) and

(17), respectively.

For practical programming, we propose the following simplified expressions to evaluate frequency

response function̄p (x)
0n of the rigid part of hydrodynamic pressure at dam face

p̄
(x)
0n (0, y, ω) = −2ρra

(x)
g Hr

(
S3 + i S4

)2(
S15 + i S16

)(
S11 + i S12

)

[
Hr

(
S3

√
S0 − ω2q2

)
+ i

(
2Hr S3 S4 + ωq

)](
S7 + i S8

)

= −
2ρra

(x)
g Hr

S2
7 + S2

8

[(
S11 S20 − S12 S19

)
+ i

(
S11 S19 + S12 S20

)]
(43)

where the coefficientsSj , j = 1 . . . 20, are derived analytically as

S1 =
(2n− 1)2 π2

4H2
r

; S2 = 4

√√√√S2
1 + 16

ω2q2

H2
r

(44)

S3 =
1

2

[√
S1 +

1

4

√
2 (S2 + 4S1)

]
; S4 =

1

8

√
2 (S2 − 4S1) (45)

S5 = 4

(
S3

√
S1 −

ω2

C2

)
; S6 =

√
S2
5 + 64S2

3 S
2
4 (46)
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S7 =
1

4

√
2 (S5 + S6) ; S8 =

1

4

√
2 (S6 − S5) (47)

S9 =
[
(S3 + ωq) e−S4 y + (S3 − ωq) eS4 y

]
cos(S3 y) +

[
eS4 y − e−S4 y

]
S4 sin(S3 y) (48)

S10 =
[
(S3 + ωq) e−S4 y − (S3 − ωq) eS4 y

]
sin(S3 y) +

[
e−S4 y + eS4 y

]
S4 cos(S3 y) (49)

S11 =
S9 S3 + S10 S4

2 (S2
3 + S2

4)
; S12 =

S10 S3 − S9 S4

2 (S2
3 + S2

4)
(50)

S13 =
S3

[√
S1 sin(Hr S3) + 2S4 cos(Hr S3)

]

(S2
3 + S2

4)
2 eHr S4 (51)

S14 =
S3

[√
S1 cos(Hr S3)− 2S4 sin(Hr S3)

]

(S2
3 + S2

4)
2 eHr S4 (52)

S15 =
S13

Hr

[
S3 − ωq + ωq e−Hr S4 cos(Hr S3)

]
−
S14

Hr

[
S4 + ωq e−HrS4 sin(Hr S3)

]
(53)

S16 =
S14

Hr

[
S3 − ωq + ωq e−Hr S4 cos(Hr S3)

]
+
S13

Hr

[
S4 + ωq e−HrS4 sin(Hr S3)

]
(54)

S17 =
Hr S3

(
S3

√
S1 − ω2q2

)(
S15

√
S1 − 2S4 S16

)
+ S3

(
2Hr S3 S4 + ωq

)(
2S4 S15 + S16

√
S1

)

[
Hr

(
S3

√
S1 − ω2q2

)]2
+
(
2Hr S3 S4 + ωq

)2

(55)

S18 =
Hr S3

(
S3

√
S1 − ω2q2

)(
2S4 S15 + S16

√
S1

)
− S3

(
2Hr S3 S4 + ωq

)(
S15

√
S1 − 2S4 S16

)

[
Hr

(
S3

√
S1 − ω2q2

)]2
+
(
2Hr S3 S4 + ωq

)2

(56)

S19 = S8 S18 − S7 S17 ; S20 = S8 S17 + S7 S18 (57)

For a fully reflective reservoir bottom (α=1), the frequency responsēp (x)
0n of the rigid part of hydro-

dynamic pressure at dam face is given by

p̄
(x)
0n (0, y, ω) = −4ρra

(x)
g

(−1)n−1 cos

[
(2n− 1)π y

2Hr

]

(2n− 1) π

√
(2n− 1)2 π2

4H2
r

−
ω2

C2
r

(58)
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Having estimated frequency response functionp̄
(x)
0n according to Eq. (43) or (58), frequency response

function p̄1n of the flexible part of hydrodynamic pressure correspondingto dam fundamental mode

responseψ(x)
1 can be obtained using Eq. (39). A cubic profile as in Eq. (37) should be adopted to ap-

propriately match the fundamental mode shape at dam face. Asshown in Appendix A, eigenvaluesλn
appear in the denominators of expressionsF1n andG1n, with higher exponents as the order of the

approximation increases. Therefore, to minimize the errorintroduced by the approximations used to

obtain eigenvaluesλn, mode shape profiles of orders higher that cubic need not be considered to study

dam fundamental mode response using this simplified method.

To assess the validity and accuracy of the analytical expressions presented in this section, they are

applied to the dam-reservoir system described previously (Fig. 1). Figs. 4 to 6 illustrate the frequency

dependence of the real and imaginary parts of eigenvaluesλn and parametersβn andκn obtained for

a full reservoir case and for different values of wave reflection coefficientα. In these Figures, the

proposed closed-form formulation is compared to a numerical method based on a Newton-Raphson

resolution scheme of Eq. (21). This technique will be referred to as the “classical method” in the rest of

the paper. Results in Figs. 4 to 6 are determined for frequency ratiosω/ω0 varying from 0 to 4, where

ω0 = π Cr/(2Hr) denotes the natural frequency of the full reservoir. Figs. 4to 6 clearly show that the

proposed method gives excellent results for high reflectioncoefficientsα. The quality of the approx-

imation slightly decreases with larger reservoir bottom wave absorption. The agreement between the

two methods remains however very satisfactory even for values ofα as low as0.65. Minor discrepan-

cies are found at high frequencies larger than 2ω0 and would be less critical to typically short-period

dam-reservoir systems. Recommended values forα generally lie between 0.9 and 1.0 for new dams,

and between0.75 and0.90 for older dams. Largerα values are usually adopted for preliminary design

purposes since they generally yield conservative results.The curves also confirm that, within the fre-

quency interval of interest, the real parts of eigenvaluesλn are virtually insensitive to frequency and

reservoir bottom wave reflection as suggested by Eq. (42). The imaginary parts of the eigenvaluesλn
exhibit a linear variation, taking larger values with increasing frequency ratio and bottom wave ab-

sorption. Even for a high absorptive reservoir bottom, the approximation of the coefficientsβn andκn
is excellent over the whole frequency range of interest.

Fig. 7 illustrates the absolute value of normalized hydrodynamic pressure frequency response func-

tions p̄ (x)
0 /(ρrgHr) andp̄1/(ρrgHr) obtained at the heel of the dam for different values of wave reflec-

tion coefficientα. First, frequency response functionp̄ (x)
0n of the rigid part of hydrodynamic pressure

is determined using Eq. (43) or (58). Frequency response function p̄1n of the flexible part of hydro-

dynamic pressure due to dam vibration along its fundamentalmode shape is obtained next according

to Eq. (39). A cubic profile is chosen to approximate the first structural mode shapeψ(x)
1 resulting

from a plane stress finite element analysis of the dam cross-section carried out using the software

ADINA (2008). Eq. (37) is used accordingly and coefficientsF1n andG1n are calculated next by ap-

plying Eq. (38). Eqs. (17) and (18) are then used to compute the hydrodynamic pressure frequency

response functions̄p (x)
0 /(ρrgHr) andp̄1/(ρrgHr) including a sufficient number of reservoir modesNr.

11



As shown in Fig. 7, an excellent agreement is observed from the comparison with the results obtained

using the classical method for frequency response functions p̄ (x)
0 /(ρrgHr) corresponding to the rigid

part of hydrodynamic pressure. The quality of the approximation does not decay as wave reflection

coefficient decreases. Results for frequency response functions p̄1/(ρrgHr) corresponding to the flex-

ible part of hydrodynamic pressure are also excellent, mainly for highly reflective reservoir bottoms.

Slight discrepancies are observed for reservoirs with highreservoir bottom wave absorption, the agree-

ment between the two methods remains however excellent forω 6 ω0 and still quite reasonable for

higher frequency ratios. In all cases, the resonant frequencies are accurately predicted by the proposed

method. We note that these results do not include the coupling between the vibration of the dam up-

stream face and the pressure modes of the reservoir. This interaction will be investigated in the next

section.

4 Application to the Simplified Earthquake Analysis of Gravi ty Dams

In this section, the closed-form expressions developed above are implemented into a fundamental

mode dynamic analysis that takes account of some significantfactors influencing the seismic response

of dam-reservoir systems. Fenves and Chopra (1984, 1985, 1987) proved indeed that the earthquake re-

sponse of a dam-reservoir system can be efficiently investigated in the frequency domain through con-

struction of an Equivalent Single Degree of Freedom (ESDOF)system. The effects of dam-reservoir

interaction and reservoir bottom wave absorption are included through added frequency-dependent

force, mass and damping. Fenves and Chopra (1987) presentednumerical examples illustrating the

use of the ESDOF system representation and discussed its limitations.

Considering the fundamental mode response of the dam and a horizontal ground excitation, Eq. (5)

simplifies to

ū(x)(x, y, ω) = ψ
(x)
1 (x, y)Z

(x)
1 (ω) ; ¯̈u(x)(x, y, ω) = −ω2 ψ

(x)
1 (x, y)Z

(x)
1 (ω) (59)

Under unit horizontal harmonic ground motionẍg(t) = ei ωt, the vibrations of a dam-reservoir ESDOF

system are governed in the frequency domain by

(
− ω2M1 + i ωC1 +K1

)
Z

(x)
1 (ω) = −L1 +

∫ Hr

0
p̄(x)(0, y, ω)ψ

(x)
1 (y) dy (60)

where the generalized massM1, generalized dampingC1, generalized stiffnessK1 and participation

12



factorL1 of the ESDOF corresponding to the dam with an empty reservoirare given by

M1 =
∫ ∫

ρs(x, y)
[
ψ

(x)
1 (x, y)

]2
dxdy +

∫ ∫
ρs(x, y)

[
ψ

(y)
1 (x, y)

]2
dxdy (61)

C1 = 2M1ξ1ω1 (62)

K1 = ω2
1M1 (63)

L1 =
∫ ∫

ρs(x, y)ψ
(x)
1 (x, y) dxdy (64)

in which ρs is the mass density of the dam concrete,ξ1 is the fraction of critical damping at the fun-

damental vibration mode of the dam with an empty reservoir, andω1 its fundamental natural vibration

frequency. The integration over the area of the dam can be approximated by integration over its height,

thus simplifying Eqs. (61) and (64) to

M1 ≈
∫ Hs

0
µs(y)

[
ψ

(x)
1 (y)

]2
dy (65)

L1 ≈
∫ Hs

0
µs(y)ψ

(x)
1 (y) dy (66)

whereµs is the mass of the dam per unit height. Substituting Eq. (7) into Eq. (60) results in

[
− ω2M1 + i ωC1 +K1+ ω2

∫ Hr

0
p̄1(0, y, ω)ψ

(x)
1 (y) dy

]
Z

(x)
1 (ω) =

− L1 +
∫ Hr

0
p̄
(x)
0 (0, y, ω)ψ

(x)
1 (y) dy

(67)

which yields the generalized coordinate

Z
(x)
1 (ω) =

−L1 − B0(ω)

−ω2

(
M1 + Re

[
B1(ω)

])
+ i ω

(
C1 − ω Im

[
B1(ω)

])
+K1

(68)

in which

B0(ω) = −
∫ Hr

0
p̄
(x)
0 (0, y, ω)ψ

(x)
1 (y) dy =

Nr∑

n=1

B0n(ω) (69)

B1(ω) = −
∫ Hr

0
p̄1(0, y, ω)ψ

(x)
1 (y) dy =

Nr∑

n=1

B1n(ω) (70)

where we introduced the notation

B0n(ω) = −
∫ Hr

0
p̄
(x)
0n (0, y, ω)ψ

(x)
1 (y) dy (71)

B1n(ω) = −
∫ Hr

0
p̄1n(0, y, ω)ψ

(x)
1 (y) dy (72)

These frequency-dependent hydrodynamic parameters account for the effects of dam-reservoir inter-

action and reservoir bottom wave absorption. The termB0 can be interpreted as an added force, the

13



real part ofB1 as an added mass and the imaginary part ofB1 as an added damping (Fenves and

Chopra 1984). Using Eq. (19), we obtain

B0n(ω) = 2ρrHr
λ2n(ω)

βn(ω)

I0n(ω)

κn(ω)

∫ Hr

0
ψ

(x)
1 (y) Yn(y, ω) dy (73)

Substituting withI1n according to Eq. (30) and then Eq. (34) yields

B0n(ω) = 2ρrH
2
r
λ2n(ω)

βn(ω)

I0n(ω)

κn(ω)

[
F1n(ω)I0n(ω) +G1n(ω)

]
(74)

and using the transformation of Eq. (39)

B1n(ω) =

[
F1n(ω) +

G1n(ω)

I0n(ω)

]
B0n(ω)

= 2ρrH
2
r

λ2n(ω)

βn(ω)κn(ω)

[
F1n(ω) I0n(ω) +G1n(ω)

]2
(75)

The resulting values can be introduced into Eq. (68) to determine the generalized coordinateZ
(x)

1 and

then the displacement and acceleration frequency responsefunctions according to Eq. (59). We note

that for a fully reflective reservoir bottom (α = 1), the hydrodynamic termsB0 andB1 are real-valued,

and Eqs. (74) and (75) take the form

B0n(ω) = 4ρrHr

(−1)n−1
[
2× (−1)n−1F1n(ω) + (2n− 1) πG1n(ω)

]

(2n− 1)2 π2

√
(2n− 1)2 π2

4H2
r

−
ω2

C2
r

(76)

and

B1n(ω) = 2ρrHr

[
2× (−1)n−1F1n(ω) + (2n− 1)π G1n(ω)

]2

(2n− 1)2 π2

√
(2n− 1)2 π2

4H2
r

−
ω2

C2
r

(77)

The effectiveness of the closed-form expressions developed previously in reproducing the dynamic

response of a dam-reservoir system is investigated next. Fig. 8 presents the absolute value of the fre-

quency response function of horizontal acceleration at damcrest obtained using the classical and the

proposed methods. The responses are plotted against the frequency ratioω/ω1 whereω1 is the fun-

damental vibration frequency of the dam on rigid foundationwith an empty reservoir. This frequency

can be estimated as (Fenves and Chopra 1987)

ω1 =
2π

√
Es

0.38Hs
(78)

whereEs is expressed in MPa andHs in meters. To assess the influence of dam stiffness, two modulus

of elasticityEs=25GPa andEs=35GPa are considered. A damping ratioξ1=0.05 is adopted. Fig. 8
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clearly shows the excellent agreement between the classical formulation and the proposed method

even for highly absorptive reservoirs. The same observation applies to the absolute value of the total

hydrodynamic pressure frequency response functions at damheel as illustrated in Fig. 9. To further in-

vestigate the influence of frequency ratioω/ω1 on the accuracy of the proposed method, Fig. 10 shows

the absolute value of the total hydrodynamic pressure distributions over reservoir height, obtained for

different frequency ratiosω/ω1 and different values of reflection coefficientα. Again, we confirm the

excellent agreement between the classical formulation andthe proposed method.

An important parameter in the analysis of dam-reservoir interaction problems is the first resonant vi-

bration frequency of the combined fluid and structure subsystems. This parameter can be evaluated by

plotting the fundamental mode response functions given by Eq. (59) and identifying the frequencỹωr

corresponding to the first resonant peak. Hydrodynamic effects are known to lengthen the vibration

period of the dam-reservoir system, and that this effect becomes more important as reservoir height

and dam stiffness increase. The classical formulation and the proposed method are used to determine

the influence of reservoir height on the variation of the period ratioRr = T̃r/T1 whereT̃r = 2π/ω̃r is

the natural period of the dam-reservoir system, andT1 = 2π/ω1 is the natural period of dam with an

empty reservoir. The results obtained for two modulus of elasticity Es = 25GPa andEs = 35GPa,

different reflection coefficientsα and reservoir heightsHr > 0.5Hs are presented in Fig. 11. The pro-

posed method provides accurate predictions of the resonantvibration frequency of the dam-reservoir

system for different reservoir heights.

Estimating the damping ratiõξr of the dam-reservoir ESDOF is also of interest. Fenves and Chopra

(1984) developed an analytical expression to include the effects of an added damping due to dam-

reservoir interaction and reservoir bottom wave absorption. The damping ratiõξr of the ESDOF dam-

reservoir system can then be found based on the damping ratioξ1 of the dam with an empty reservoir

as follows

ξ̃r =
ω̃r

ω1

ξ1 −
1

2M1

(
ω̃r

ω1

)2
Im
[
B1(ω̃r)

]
(79)

Fig. 12 presents the variation of the damping ratioξ̃r of the ESDOF dam-reservoir system as a function

of reservoir heightHr > 0.5Hs. As before, different values of reflection coefficientα and two modulus

of elasticity of dam concrete are considered. The curves obtained using the classical and the proposed

method coincide for reservoirs with a high reflective bottom. As previously emphasized, very small

differences between the two sets of results are observed as reservoir bottom wave absorption increases.

The analytical expressions presented in this section can beadapted to conduct a simplified earthquake

analysis of gravity dams for purposes of preliminary design, a method initially proposed by Fenves

and Chopra (1985). As discussed previously, the fundamental vibration periodT̃r = 2π/ω̃r of the dam-

reservoir system is identified by the first resonant peak of the fundamental mode response functions

given by Eq. (59). The generalized coordinate corresponding to resonant frequencỹωr is given by
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Eq. (68)

Z
(x)
1 (ω̃r) =

−L̃1

−ω̃2
r M̃1 + i ω̃rC̃1 +K1

(80)

where the generalized mass̃M1, generalized damping̃C1, and participation factor̃L1 of the dam-

reservoir ESDOF are defined by

M̃1 =M1 + Re
[
B1(ω̃r)

]
; C̃1 = C1 − ω̃r Im

[
B1(ω̃r)

]
; L̃1 = L1 +B0(ω̃r) (81)

Maximum response of the dam-reservoir ESDOF system to a horizontal earthquake ground motion

can be approximated at each time instant by its static response under the effect of equivalent lateral

forcesf1 applied at the upstream dam face (Clough and Penzien 1975; Fenves and Chopra 1987)

f1(y) =
L̃1

M̃1

Sa

(
T̃r, ξ̃r

)[
µ̃s(y)ψ

(x)
1 (y)

]
(82)

whereSa

(
T̃r, ξ̃r

)
is the pseudo-acceleration ordinate of the earthquake design spectrum at vibration

periodT̃r and for damping ratiõξr of the dam-reservoir ESDOF system, and whereµ̃s(y) approximates

the mass of the dam per unit height including hydrodynamic effects. This added-mass can be expressed

here as

µ̃s(y) = µs(y)−
Re
[
p̄1(0, y, ω̃r)

]

ψ
(x)
1 (y)

= µs(y)−
1

ψ
(x)
1 (y)

Nr∑

n=1

Re

{
p̄
(x)
0n (0, y, ω̃r)

[
F1n(ω) +

G1n(ω)

I0n(ω)

]} (83)

in which Eq. (39) was used to determine the frequency response function of the hydrodynamic pressure

due to fundamental vibration mode. Frequency response function p̄ (x)
0n (0, y, ω̃r) can be evaluated using

Eq. (43) or (58). It is important to note that the minus sign inEq. (83) corresponds to the orientation of

the system of axes shown in Fig. 2. We also assume that the fundamental mode shapeψ(x)
1 is positive as

indicated on the same Figure. DenotingFst = ρrgH2
r /2 the total hydrostatic force exerted on dam face,

we determine the normalized equivalent lateral forcesHsf1(y)/
[
FstSa

(
T̃r, ξ̃r

)]
considering different

reservoir bottom wave absorption levels and two modulus of elasticity of the one-meter wide dam sec-

tion described previously. Fig. 13 shows that the results obtained using the classical formulation and

the proposed method are identical. We note that the value of the equivalent lateral force is null at the

dam crest because of the triangular shape of the dam monolith, this would not be the case in general.

Finally, Fenves and Chopra (1985) discussed the effects of higher vibration modes on dam earthquake

response. Using a static correction technique, this effectcan be accounted for approximately by eval-

uating the static response of the dam-reservoir ESDOF subjected to the lateral forcesfsc

fsc(y) = ẍ(max)
g

{
µs(y)

[
1−

L1

M1
ψ

(x)
1 (y)

]
−

[
p̂
(x)
0 (y) +

B̂1

M1
µs(y)ψ

(x)
1 (y)

]}
(84)

16



whereẍ(max)
g denotes the maximum ground acceleration, andp̂

(x)
0 (y) the real-valued, frequency inde-

pendent hydrodynamic pressure applied on a rigid dam subjected to unit ground acceleration, with

water compressibility neglected

p̂
(x)
0 (y) = −8ρrHr

Nr∑

n=1

(−1)n−1

(2n− 1)2 π2
cos

[
(2n− 1) π y

2Hr

]
(85)

and where the term̂B1 is given by

B̂1 = −
∫ Hr

0
p̂
(x)
0 (y)ψ

(x)
1 (y) dy

≈ 0.2
Fst

g

(
Hr

Hs

)2 (86)

The total earthquake response of the dam can then be determined by applying the SRSS rule to com-

bine response quantities associated with the fundamental and higher vibration modes.

5 Conclusions

This paper presented and validated a practical and efficientformulation to evaluate the dynamic re-

sponse of gravity dams impounding semi-infinite reservoirswith rectangular shapes. The proposed

method uses closed-form analytical expressions to relate hydrodynamic pressure due to any deflected

modal response of a 2D gravity dam on a rigid foundation to hydrodynamic pressure caused by a

horizontal rigid body motion. Effects of dam flexibility, water compressibility and wave absorption at

reservoir bottom are included in the formulation. New analytical expressions that can be easily pro-

grammed in a spreadsheet package or implemented in a dam structural analysis program were also

proposed to conduct simplified fundamental mode earthquakeanalysis of gravity dams. The assump-

tions adopted to develop the formulas were first validated, and then numerical examples illustrating

their use were presented. The proposed formulas were shown efficient to determine the frequency

response functions of hydrodynamic pressure and dam acceleration, the heightwise distributions of

hydrodynamic pressure, the dynamic properties of an equivalent dam-reservoir system and the asso-

ciated equivalent lateral forces. The results obtained were compared to classical solutions based on

iterative numerical schemes. The agreement between the twosets of results is excellent namely for

reservoirs with common high to moderate levels of reservoirbottom wave reflection. The techniques

presented in this paper can be efficiently used to provide valuable insights into the effects and rela-

tive importance of the various parameters involved in the dynamic response of dam-reservoir systems.

Although the mathematical derivations and closed-form expressions developed were applied to dam-

reservoir systems herein, they can be easily adapted to other fluid-structure interaction problems.
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Appendix A

Order of the approximation Fjn andGjn expressions

Quadratic approximation

ψ
(x)
j (y) =

2∑

k=1

ak

(
y

Hs

)k
Fjn(ω) = ψ

(x)
j (Hr)−

2

λ2nH
2
s
a2

Gjn(ω) = −
i ωq
λ2nHr

[
ψ
(x)
j (Hr)

]
−

1

λ2nHrHs
a1

Cubic approximation

ψ
(x)
j (y) =

3∑

k=1

ak

(
y

Hs

)k
Fjn(ω) = ψ

(x)
j (Hr)−

2

λ2nH
2
s
a2 −

6Hr

λ2nH
3
s
a3

Gjn(ω) = −
i ωq
λ2nHr

[
ψ
(x)
j (Hr)−

6Hr

λ2nH
3
s
a3

]
−

1

λ2nHrHs
a1 +

6

λ4nHrH3
s
a3

Quartic approximation

ψ
(x)
j (y) =

4∑

k=1

ak

(
y

Hs

)k
Fjn(ω) = ψ

(x)
j (Hr)−

2

λ2nH
2
s
a2 −

6Hr

λ2nH
3
s
a3 +

(
24

λ4nH
4
s
−

12H2
r

λ2nH
4
s

)
a4

Gjn(ω) = −
i ωq
λ2nHr

[
ψ
(x)
j (Hr)−

6Hr

λ2nH
3
s
a3 −

12H2
r

λ2nH
4
s
a4

]

−
1

λ2nHrHs
a1 +

6

λ4nHrH3
s
a3

Quintic approximation

ψ
(x)
j (y) =

5∑

k=1

ak

(
y

Hs

)k
Fjn(ω) = ψ

(x)
j (Hr)−

2

λ2nH
2
s
a2 −

6Hr

λ2nH
3
s
a3 +

(
24

λ4nH
4
s
−

12H2
r

λ2nH
4
s

)
a4

+

(
120Hr

λ4nH
5
s
−

20H3
r

λ2nH
5
s

)
a5

Gjn(ω) = −
i ωq
λ2nHr

[
ψ
(x)
j (Hr)−

6Hr

λ2nH
3
s
a3−

12H2
r

λ2nH
4
s
a4+

(
120Hr

λ4nH
5
s
−

20H3
r

λ2nH
5
s

)
a5

]

−
1

λ2nHrHs
a1 +

6

λ4nHrH3
s
a3 −

120

λ6nHrH5
s
a5
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quency ratioω/ω0 and considering different values of wave reflection coefficientα; –— Clas-

sical method; —�— Proposed method.

Fig. 7: Absolute value of frequency response functions of the rigid and flexible parts of hydrodynamic

pressure at dam heel for different values of wave reflection coefficientα; –— Classical method;

—�— Proposed method.

Fig. 8: Absolute value of frequency response functions of horizontal acceleration at dam crest for

different values of wave reflection coefficientα and two dam modulus of elasticityEs; –—

Classical method; —�— Proposed method.

Fig. 9: Absolute value of frequency response functions of total hydrodynamic pressure at dam heel

for different values of wave reflection coefficientα and two dam modulus of elasticityEs; –—

Classical method; —�— Proposed method.

Fig. 10: Absolute value of the total hydrodynamic pressure distributions over reservoir height for differ-

ent values of wave reflection coefficientα and two dam modulus of elasticityEs; –— Classical

method; —�— Proposed method.

Fig. 11: Effect of reservoir height on the variation of the period ratioT̃r/T1 for different values of wave

reflection coefficientα and two dam modulus of elasticityEs; –— Classical method; —�—

Proposed method.

Fig. 12: Effect of reservoir height on the variation of the damping ratioξ̃r for different values of wave

reflection coefficientα and two dam modulus of elasticityEs; –— Classical method; —�—

Proposed method.

Fig. 13: Equivalent lateral earthquake forces corresponding to dam fundamental mode response for

different values of wave reflection coefficientα and two dam modulus of elasticityEs; –—

Classical method; —�— Proposed method.



Figure 1. Dam-reservoir system considered.



Figure 2. Approximation of dam mode shapes.



Figure 3. Absolute value of frequency response function of the flexible part of hydrodynamic pressure at dam

heel corresponding to structural mode shapes 1 to 4, and to two values of wave reflection coefficientα=0.95

andα=0.65; –— Classical method; —�— Proposed method.



Figure 4. Variation of the real and imaginary parts of eigenvaluesλn, n = 1, 2, 3, as a function of frequency ra-

tio ω/ω0 and considering different values of wave reflection coefficientα; –— Classical method; —�— Proposed

method.



Figure 5. Variation of the real and imaginary parts of coefficientsβn, n = 1, 2, 3, as a function of frequency ra-

tio ω/ω0 and considering different values of wave reflection coefficientα; –— Classical method; —�— Proposed

method.



Figure 6. Variation of the real and imaginary parts of coefficientsκn, n = 1, 2, 3, as a function of frequency ra-

tio ω/ω0 and considering different values of wave reflection coefficientα; –— Classical method; —�— Proposed

method.



Figure 7. Absolute value of frequency response functions ofthe rigid and flexible parts of hydrodynamic pressure

at dam heel for different values of wave reflection coefficient α; –— Classical method; —�— Proposed method.



Figure 8. Absolute value of frequency response functions ofhorizontal acceleration at dam crest for different

values of wave reflection coefficientα and two dam modulus of elasticityEs; –— Classical method; —�—

Proposed method.



Figure 9. Absolute value of frequency response functions oftotal hydrodynamic pressure at dam heel for differ-

ent values of wave reflection coefficientα and two dam modulus of elasticityEs; –— Classical method; —�—

Proposed method.



Figure 10. Absolute value of the total hydrodynamic pressure distributions over reservoir height for different

values of wave reflection coefficientα and two dam modulus of elasticityEs; –— Classical method; —�—

Proposed method.



Figure 11. Effect of reservoir height on the variation of theperiod ratioT̃r/T1 for different values of wave

reflection coefficientα and two dam modulus of elasticityEs; –— Classical method; —�— Proposed method.



Figure 12. Effect of reservoir height on the variation of thedamping ratiõξr for different values of wave reflection

coefficientα and two dam modulus of elasticityEs; –— Classical method; —�— Proposed method.



Figure 13. Equivalent lateral earthquake forces corresponding to dam fundamental mode response for different

values of wave reflection coefficientα and two dam modulus of elasticityEs; –— Classical method; —�—

Proposed method.


