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Efficient Modal Dynamic Analysis
of Flexible Beam-Fluid Systems

Najib Bouaanani and Benjamin Miqued

ABSTRACT

This paper proposes an efficient simplified method to detezitie modal dynamic and earthquake re-
sponse of coupled flexible beam-fluid systems and to evalhatenatural vibration frequencies. The
methodology developed extends available analytical mmisitfor mode shapes and natural vibration
frequencies of slender beams with various boundary camdgitio include the effects of fluid-structure
interaction. The proposed method is developed for varie@esrbboundary conditions considering
lateral interaction with one or two semi-infinite fluid domgi Numerical examples are provided to
illustrate the application of the proposed method, and titained results confirm the importance of
accounting for fluid-structure interaction effects. Wewshbat the developed procedure yields excel-
lent results when compared to more advanced coupled fluidtste finite element solutions, inde-
pendently of the number of included modes, beam boundarglitimms, and number of interacting
fluid domains. The proposed simplified method can be easiplemented in day-to-day engineer-
ing practice, as it constitutes an efficient alternativeisoh considering the fluid-structure modeling
complexities and related high expertise generally invibhuaen using advanced finite elements.

Key words: Dynamic and seismic effects; Beam-fluid systems; Natuegjudencies; Simplified
methods; Fluid-Structure interaction; Finite elements.

I Professor, Department of Civil, Geological and Mining Hregiring,

Polytechnique Montréal, Montréal, QC H3C 3A7, Canada.

Corresponding author. E-mail: najib.bouaanani@polyatl.

2 Graduate Research Assistant, Department of Civil, Geoddbgind Mining Engineering,
Polytechnique Montréal, Montréal, QC H3C 3A7, Canada.



1 Introduction

Several civil engineering and industrial applicationsimre the vibrations of beam-like struc-
tures in contact with water or fluid domains, including dameyigation locks, quay walls,
break-waters, offshore platforms, drilling risers, liqstorages, nuclear reactors, oil refiner-
ies, petrochemical plants, fuel storage racks, etc. Thplao topic has attracted many re-
searchers over the last decades and various approachepraposed, varying from simpli-
fied to more complex analytical and numerical formulatidwsglecting structural flexibility,
Westergaard [1] introduced the added-mass concept anigdjigb a dam-reservoir system,
and later Jacobsen [2] and Rao [3] generalized the addedforasulation to evaluate hydro-
dynamic effects on rigid circular and rectangular piergatimg in water. Goto and Toki [4]
and Kotsubo [5] evaluated the hydrodynamic pressures gallny harmonic motions on
circular or elliptical cross-section cylindrical towerwag rigid body and deformed mode
shapes. Chopra [6, 7] showed that a dam’s flexibility infl@snsignificantly its interaction
with the impounded reservoir, and consequently the ovdyalmic and seismic responses.
Other studies also confirmed the importance of accountingtfactural flexibility and fluid-
structure interaction [8—11]. Han and Xu [12] developed aalyical model to compute the
modal properties of a slender flexible cylinder vibratingnater, and proposed a simplified
added-mass formula to compute its natural frequencieser@dsearchers studied the sensi-
tivity of the hydrodynamic response of cantilever struetuto various factors, such as: (i) a
tip mass or inertia concentrated at one end [13-16], (ii)seraged boundary condition at
the base of the beam [16—18], and (iii) non-uniformity of imeaoss-section [16,17,19].

Most of the previous studies focused on cantilever strestsurrounded by fluid. Work on
beam-like structures interacting with 2D semi-infinite didomains was mainly related to
dam monoliths impounding water reservoirs, while feweeasshers investigated the behav-
ior of slender beams subjected to hydrodynamic loading @fatter type. Xing et al. [20],
Zhao et al. [21] and Xing [22] developed analytical formidas to examine the dynamic
response of a cantilever flexible beam interacting with a @mianfinite water domain, and
discussed the effects of various boundary conditions dfdicedomain. Nasserzare et al. [23]
proposed a procedure to extract the natural frequenciesadds of a dry structure from vi-
brational data containing fluid-structure interactioreefs, and they applied the methodology
to a beam-water system. De Souza and Pedroso [24] develdjpet @lement procedure to
determine the coupled dynamic response of a Bernoulli beéenacting with a 2D acousti-
cal cavity, and they validated the vibration frequencied mrodes obtained by comparing to
other finite element and analytical solutions.

The present paper is motivated by the need to develop sietplifiethods extending results
from classical vibration beam theory to include the efferft2D hydrodynamic forces on
one or both sides of a vibrating beam. The majority of the ijprevywork and other relevant
literature addressed hydrodynamic effects on cantileeants, fully clamped or partially



restrained at the base, and little attention has been givetmer boundary conditions such as
pinned or sliding supports. Most of the previous studies Bdsused on the determination of
the modal properties of a vibrating beam interacting withuaflwhile less concern has been
devoted to the time evolution of beam'’s earthquake respimiaisxes such as displacements,
shear forces, and bending moments. These restrictionbevdddressed in this paper.

2 Modal dynamic response of a beam-fluid system
2.1 Basic assumptions and notation

Fig. 1 shows a slender beam of heightvibrating in contact with fluid on one or both sides.
We adopt a Cartesian coordinate system with origin at the bbthe beam, a horizontal axis
x and a vertical axig coincident with the axis of symmetry of the beam. The serfinite
fluid domains have a rectangular geometry with constantihegual to that of the beam.
We denote by\; the number of fluid domains in contact with the beam, and hiyaled right
side fluid domains those extending from the beam towardstvegand positiver directions,
respectively. Both configurations illustrated in Figs.ldad (b) will be investigated here,
l.e. Af=1 andA; =2, respectively. The beam will be referred to as dry when ihisantact
with one fluid domain at least, i.é\; > 0, and wet otherwise. The boundary conditions of
the beam can be Clamped-Free (CF) as shown in Fig. 1 or Clafipeed (CP), Clamped-
Sliding (CS), Clamped-Clamped (CC) or Pinned-Pinned (RH)wstrated in Fig. 2. Points
at the top, middle and base of the beam are denoted by A, B ames:ctively, as shown in
Fig. 1 (a). These points will be used later to illustrate @asi dynamic responses of the stud-
ied beams. We also assume that: (i) the beam is slender sortlyatiexural deformations
are considered, i.e. Euler-Benoulli beam theory is usedth@ beam is made of a linear,
homogenous, and isotropic elastic material; (iii) only Brdaflections normal to the unde-
formed beam axis are included; (iv) the fluid is incomprdssaimd inviscid, with its motion
irrotational and limited to small amplitudes, (v) the fluetmains in full contact with the beam
during vibration due to the assumption of small displacesyeand (vi) gravity surface waves
and non-convective effects are neglected.

2.2 Governing equations

We first assume that the beam-fluid system is subjected ta @aammonic free-field horizon-
tal ground motioniy(t) =€**, wherew denotes a forcing frequendythe time variable and i
the unit imaginary number. Using a modal superpositionyams| the frequency response
functions along beam'’s height of lateral displacemeriateral acceleratioii, bending mo-



mentM and shear forc® can be expressed as

uy,w) = Zl Ui(y) Zi(w) ; iy, w) = —w’ Zl Vi(y) Zj(w) (1)
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whereNs denotes the number of dry beam modes included in the analysfsez—component
of the j ™ vibration mode shape;, j=1... N, of the dry beamZ; the corresponding gen-
eralized coordinately the modulus of elasticity of the beam ahdhe moment of inertia of
the beam about bending neutral axis.

Based on previous studies [25-27], the veoof generalized coordinates;(w), j =
1... N, can be obtained by solving the system of equations

SZ=Q (3)

which translates the beam-fluid system’s dynamic equiliorbetween inertia, damping and
elastic forces resulting from the vibrations of the beam laydrodynamic forces generated
by the interacting fluid domain(s). The elements of maSiand vectorQ in Eqg. (3) are
obtainedforj =1... Nsandm =1... Ngas

_ H
Sjm(w) = { —w!+ (1 +in) Wﬂ M; bjm — A w2/0 Py, w) Um(y) dy 4)

and
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in which, ,,, denotes the Kronecker symbol and

— po Is the frequency response function for hydrodynamic pressxerted on the left side of
the beam due to its rigid body motion;

— p; is the frequency response function for hydrodynamic pmessxerted on the left side of
the beam due to its horizontal acceleratiofy );

— wj; is the natural frequency corresponding to jifedry beam vibration mode shape;

— nis an assumed constant hysteretic damping ratio;

— M, andL,, are respectively the generalized mass and force given by

My = [ s dy = s [ [5,0)]” = i H 0 ©

H 1 _
L= ps | () Oy = s H [ 46(3) 05 = s H L, ™

in which ys is the beam’s mass per unit height ands a function resulting from the
introduction of the change of variabje=y/H into the mode shape functiafy.



The mode shapes for slender beams were reported in mangmeéssuch as [28-31]. The
formulation given by Young and Felgar [28] and Blevins [39Jadopted here. The expres-
sions of beam mode shapes are reviewed in Appendix A for titkest beam boundary con-
ditions illustrated in Fig. 2. For each beam configuratidw, €xpressions for parametets
ando;, j=1...Ns, required to obtain beam mode shapes are provided in Tahl&Regse
parameters are computed using high precision arithmetith® first 10 beam modes, i.e.
Ns=10, and are given in Tables 1 to 7 for all the beam configuratitundied. We note that
high precision arithmetic is generally required to compriebeam modes due to round off
errors associated with the hyperbolic functions when tgeraent is large. This problem has
been discussed by several authors such as in [29, 31].

Introducing beam mode shapes into the integrals of Eqsn@)(3), we show that: (i) the
parameted/; =1, j=1...n, for all beam boundary conditions except the PP beam config-
uration which corresponds t/; = 1/2, j =1...n, and (ii) that the parametér;, can be
evaluated forn=1... Ng using the closed-form expressions

20
Ly === 8
"~ B ®)
for CF and CS boundary conditions,
. 20, sinh(f,,) sin(B,,)

L = Bm cosh(B,,) — cos(fy) ©)

for CP, PC and CC boundary conditions, and
L = _(_1)7_1 (10)

mm

for PP boundary conditions. Since the generalized massnegea)/; is independent of the
mode numbey, the subscripj can be omitted for simplicity and Eq. (6) can be rewritten as

M = ps H M* (11)
for all the modeg=1... ..

The numerical values of parametevs” and L7, j =1...10, are given in Tables 1 to 7 for
the studied beam configurations. Performing a change dofratien variable as in Egs. (6)
and (7), and expressing hydrodynamic pressures as in [R6p27show that the integrals
in Egs. (4) and (5), which represent the effects of beam-fllyidamic interaction, can be



expressed as the sum &f terms corresponding each to a modef the fluid domain
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wherep; denotes the fluid mass density, and the paramétgrare given fo=1... Nsand

n=1...N;as
= [ 4 COS[L%;W@] dy (15)

The integral in Eq. (15) can be evaluated using integratiopdts, yielding the closed-form
expressions

Lo =(—1)"' % 27(2n — 1) [cosh(ﬁe) N cos(ﬁg)]

Pf,n Ré,n
(16)
n Sinh(ﬁg) Sin(ﬁg) 1 1
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for beam configurations CF, CP, CS and CC,
I, =(—1)"" x 2w(2n — 1) ! + !
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(Be) (Be) 0
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for beam configurations PC and SC, and
45
Iy, = 1
4n Re,n ( 8)

for beam configuration PP. The functioRs, andR,,, in Egs. (16) to (18) are defined by
Pr, =46 + 7 [dn(n — 1) + 1] ; Ry, =487 — 7*(2n — 1)? (19)
fori=1...Ngandn=1... ;.

The expressions in Eqgs. (16) to (18) show that the integnasgs. (12) to (14) and corre-
sponding series are convergent. For each studied beam watity, the numerical values
of parameterd;,, defined in Egs. (12) to (14) are given in Tables 1 to 7jfer1...10 and
m=1...10. We note that high precision arithmetic was used to comghése parameters
for maximum accuracy of the results [32]. Using the relagionEqs. (12) to (14), it follows



that Egs. (4) and (5) can be rewritten under a more compact &sr
S; (w)—[—w2+(1+i Yw? | us H M* §; S WS 20
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The natural frequencies; in Eq. (20) can be obtained as [28, 30]
wj:aﬁ? forj=1...Ns (22)
where the parameteris defined as

1 EI

2.3 Frequency and time domain response solutions

To obtain the dynamic frequency response of the studied Hkadnsystems, the system of
equations (3) has first to be solved for the vedoof generalized coordinates considering
frequenciesv in the range of interest. Standard matrix analysis numlesc@&emes could be
used for that purpose. Once the generalized coordidgtes), j=1... N, are determined,
frequency domain responses along beam'’s height of latespladement:, lateral acceler-
ation i, bending momeni\ and shear forc& can be determined using Egs. (1) and (2).
The corresponding time-history responses of the beam uhdeffect of an arbitrary ground
acceleratioriig(t) of durationt,, i.e.0 < t < t,, are given by

aly.t) =30 Zi(1): (9.1 = 3 v5(0) Z1(1) @)
Mly.1) = EI'S" Z,(t) 32(;@5@/) ; V(1) = EI'Y Zj(t)aggi;gy) (25)

in which the second and third derivatives of mode shapeg =1... Ns, are given in Ap-
pendix A, and where the time-domain generalized coordsndfeare given by the Fourier
integrals

Z,(t) = — |7z igw) e do; A= ! |7 7w i) € do - (26)

") 21 )

with iig(w) denoting the Fourier transform of the ground acceleratign), given by

lig(w) = /0 - iig(t) e dt (27)



2.4 Evaluation of the natural frequencies of coupled beam-fl uid systems

The resonant frequencies of a vibrating beam-fluid systean ismmportant feature character-
izing its dynamic behavior. These frequencies can be ajppaird by the frequencies;,
j=1...Ns that maximize or make infinite the generalized coordinates-or this purpose,
simplified frequency-dependent expressions of the gamedatoordinates need to be ob-
tained first. If only the first structural beam mode is inclddethe analysis, i.e. fundamental
mode analysis, Eq. (3) simplifies to

gl,l(w) Zl(w) = Ql (28)
and the only generalized coordindfeis then given by

Zy(w) = Sf(lw) (29)

Therefore, the coupled vibration frequengy in a fundamental mode analysis can be ob-
tained by solving the equation

S11(@1) =0 (30)
which corresponds to an infinite generalized coordidatéJsing Eq. (20) with null damping

yields
L 7w us H M*

U7 T H M+ dpr A H? 07,

(31)

or according to Eq. (22)
2
o= P (32)

W 1+Co7,

. 4pfAfH
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where the parametéris defined by

¢ (33)
Eq. (32) can also be expressed in terms of the fatiof the fundamental frequencies of wet
to dry beams

Q-1 (34)

wi J1+C0r,

If two beam modes are included in the analysis, the systemuteons (3) takes the form

Gt Sl [2] =[] -



yielding the generalized coordinates

7 () — 522( )Ql 512(00)@2 _ 52,2@)7@1—&,2(7@)@2
fw) @1 1(w) 51,2(00)- S11(w)S22(w) — Siz(”) (30)
det Sl Q(CU) 52 Q(M)
= Sy 1(w) QQ - §1,2(w) Q1 . 51,1(00) QQ - §1,2(w) Q1
Za(e) -SLI(W> Sm(w)_ B 51,1(W)52,2(W) - S%z(w) (37)
det
Sl Q(CU) SQ,Q(W)

Egs. (36) and (37) imply that the first and second coupledatidm frequencies; andws,,
respectively, can be obtained by solving the equation

51,1((,0) SLQ(W)

Sio(w)  Spa(w) = S11(w) Szp(w) — ST,(w) =0 (38)

det

which corresponds to infinite generalized coordingtesnd Z,. SubstitutingS, ;, S; » and
S, by their expressions from Eqg. (20) and simplifying, Eq. (88} be transformed into the

guadratic equation
AXY*+Bx+C=0 (39)

wherey =w? and
A=1+¢(07,+035,) + ¢ [91‘,1 0o — (91‘,2)2]
B:wf+w§+é(w%‘9§2+u)§§f1)
o | (Bt +85) +C (8165, + 5367, |
C = w S 261 62

(40)

The first and second coupled vibration frequenciegndd, correspond then to the small-
esty™" and largesf (™ real positive roots of the quadratic equation (39), yiejdin

&jl = ‘/X(min) < &32 = ‘/X(max) (41)

Closed-form expressions for higher coupled vibration destries, i.e/Ns > 2, are more
difficult to obtain and cumbersome when successfully detesth These frequencies can
then be determined numerically by finding the roots of equati

det S=0 (42)

with null damping. An efficient numerical solution can beaibed by rewriting Eq. (20) with

null damping as B
TSjmw) 1 [(w] x
’ =2 1 —fr 4

4ps Af w2 H? ¢ <w2 0j.m ea,m (43)



Eq. (42) is then equivalent to
det(D —©*) =0 (44)

where®* is the N5 x Ng matrix with elementé;f,m, j=1...Nsandm=1... Ns,andD is a
diagonal matrix with elements; ;, j=1... Ns, given by

1 (w? 1 (a?B)

Edg. (44) can be solved numerically to obtain coupled vibrafrequencies;, j=1... Ns. It
is easily seen that Eqg. (44) is equivalent to Egs. (34) whénfost beam mode is considered
in the analysis and to Eq. (39) when only two beam modes aheded.

An important result brought by Eq. (44) is that the ratios= &;/w;, j =1... Ns, depend
only on: (i) the parametef, which is function of the fluid and beam material properpes
and s, the height of the bear/, the number of fluid domains in contact with the beAm
and the generalized mas$*, and (ii) the parameteis, , j, m=1... N5, which, as given
by Egs. (13), and (15) to (18), depend on the boundary camditof the studied beam.

3 lllustrative examples
3.1 Beam-fluid systems studied

In this section, we assess the effectiveness of the progoseuallation in determining the
dynamic response of beam-fluid systems. For illustratiorp@ses, we consider a beam-
water system where the beam has a heighitooh and a unit square cross-sectionlah?.

We assume that the beam can be subjected to the CF, CP, CS, BE looundary con-
ditions illustrated in Figs.1 and 2. Two beam materials ames@ered: (i) Concrete with

a mass densitys = 2440 kg/m* and a modulus of elasticityy = 25 GPa; and (ii) Steel with

a mass densitys = 7850 kg/m’ and a modulus of elasticitif = 200 GPa. A water mass den-
sity ps = 1000 kg/n? is used and the effects of one and two water domainsjj.e.1 and2,

are investigated. The proposed simplified technique pteden Section 2 was programmed
using MATLAB [0 [33] and then applied to investigate the dynamic responsefcon-
crete and steel beam-water systems. For comparison pgigosee element analyses of the
beam-water systems are also conducted using the softwaie¢Ad34], where the beam and
water domain(s) are discterized into 2-nodes beam finita@hs and 4-node potential-based
(acoustic) finite elements, respectively. The proceduesl tis obtain the dynamic response
of the beam-fluid system is known as the- U formulation since it is expressed in terms of
displacement$’ and velocity potential® as state variables in the beam and fluid domains,
respectively. Details of the — U formulation can be found elsewhere [26, 35, 36]. In these
finite element analyses, fluid-structure interaction iscaoted for through special elements
at the beam-fluid interface. Beam vibrations cause fluid omstnormal to beam-fluid inter-
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face, and the fluid induced-pressure cause additional dydeomic loads to act on the beam.
In the present case of two-dimensional analysis, the beaichifiterface elements are 2-node
line segments, which connect 2-node beam elements to atc®de potential-based fluid
elements on the fluid domain boundary. The potential andtstral degrees of freedom are
related through a compatibility boundary condition. Thefgenance of the potential-based
formulation and the fluid-structure interface elements agsessed in a previous work [26].
Semi-infinite water domain is simulated by a finite water donwath a rigid boundary con-
dition applied at a certain distance, large enough to elteimeflection of waves at the far
end of the fluid domain.

3.2 Earthquake time-history response of the beam-water sys tems

We first validate the ability of the proposed formulation t@leate earthquake time-history
responses for displacements, accelerations, shear fancesending moments. For brevity,
the results are shown only for the beam-water systems haviigmped-Free (CF) config-
uration, subjected to the horizontal acceleration compboé Imperial Valley earthquake
(1940) at El Centro illustrated in Fig. 3. Ten structural resdre included in the dynamic
analysis of the concrete and steel beam-water systems anstant hysteretic damping ra-
tion=0.1is considered. The results obtained using the proposedifegdpechnique and the
finite element method are illustrated in Figs. 4 to 7. In thiepares, time-history responses
for displacement;, and acceleratioti, at the beams’s free end, as well as shear fdige
and overturning bending momem ¢ at the base are nondimensionalized by the valdes
(prgH®)/(30E1T), peak ground acceleratidig| .., Vsi= (ps gH*) /2 and Mg = (pr gH?) /6,
respectively. As can be seen from Figs. 4 and 5 illustratiegesponses over the figxts of
the earthquake, the results of the proposed method and vhe@et! finite element technique
are in excellent agrement for both concrete and steel baadthsiystems. We can see that the
extreme values of a given response quantity are obtaindtfexedt time instants depending
on the number of water domains. For a better assessment qutigy of the predictions,
Figs. 6 and 7 provide close up views of the responses of theretsmand steel beam-fluid
systems over a short time interval betwdesnd5 s, respectively. For comparison purposes,
the time-history responses of the dry concrete and steaei®age also superposed to the pre-
vious results. These close up views confirm that the propesttod and the advanced finite
element technique yield practically identical results both concrete and steel beam-fluid
systems. They also show that the earthquake response aféaineshis clearly affected by the
fluid-structure interaction and the number of water domaireontact with the beam. When
comparing the seismic behavior of the dry and wet beams, ealglobserve the amplifi-
cation of the amplitudes of all the response quantitiesistlyjdvhich emphasizes the need
to include fluid-structure interaction effects for such laggiions. The results also confirm
that fluid-structure interaction modifies the natural vilma frequencies of the beam-fluid
systems, a phenomena that will investigated further in the two sections.
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It is also important to compare the finite element solutiod proposed method in terms
of execution CPU times. For illustration purposes, thioinfation is compared next for
the computation of time-history accelerations at point Ahef concrete beam-water system
having a CF configuration, and subjected to El Centro eadkeas described previously.
The same time step 0£005s is used in both techniques ahd beam modes are included
in the response. The CPU times are obtained using one coré.88 &Hz IntelR) Core’™

2 Duo Processor T7600, yielding0 s and1500 s for the finite element solution applied to
the beam vibrating in contact with one and two water domaesgpectively, and6 s for the
proposed method applied to the beam vibrating in contadt wiie or two water domains.
It is important to note that the previous execution timesheffinite element solution do not
include the tasks of modeling, meshing and post-processihigh can significantly add to
the computational burden associated with finite elemethist&8fore, we can clearly conclude
about the high effectiveness of the proposed method in sisgethe dynamic response of
beam-fluid systems. It is also worth mentioning that, fromnacpcal engineering standpoint,
the proposed formulation constitutes an interesting aétiare solution considering the fluid-
structure modeling complexities and related high expergenerally involved when using
advanced finite element software.

3.3 Frequency domain response of the beam-water systems

In the previous section, the response of the beam-fluid syssteas studied in the time do-
main under the effect of an earthquake having a given fregueontent. In this section, the
frequency domain response of the beam-fluid systems istige#sd. For this purpose, fre-
guency response curves of beam lateral accelerations emengieed using Eq. (1). For each
beam configuration shown in Fig. 2, frequency responsesetsgrdined over a range from
0 to 20 wy, Wherew, denotes the fundamental frequency of the correspondingehyn. The
results are shown in Fig. 8 for the CF beam configuration agd%¥or the other beam con-
figurations, respectively. Only frequency response cuo¥éise concrete beam-fluid systems
are shown for the sake of brevity. Figs. 8 and 9 also illusttia¢ results obtained using cou-
pled finite elements as well as those corresponding to theehns. It is clearly seen that the
proposed method is in excellent agreement with the finitmete solutions for all beam con-
figurations studied. The results demonstrate the shiftsmant frequencies towards lower
frequencies due to fluid-structure interaction. The amgétof frequency shift varies as a
function of the mode considered, the constitutive mateidahe beam, its boundary condi-
tions, as well as the number of interacting reservoirs. |iirthe effects of various boundary
conditions on the dynamic response of the concrete beathsyisitems can also be observed
by comparing the frequency response curves in Figs. 8 artd®inhportant however to in-
terpret these curves in terms of frequency ratigs,, keeping in mind that the fundamental
frequencyw, of the corresponding dry beam also contains the effectsufdary conditions.
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3.4 Coupled frequencies of the beam-water systems

In this section, we assess the efficiency of the proposedadétipredicting the 10 first natu-
ral frequencies of the concrete and steel beams describewpsly. The natural frequencies
are determined for all the above-described beam configunstnd the results are expressed
in terms of the frequency ratios

e @0 ey O
Q8 — : QPW _ 55 (46)

J . ! J .
Wi Wi

in which j =1...10, w; is the natural frequency of the dry beam computed using 29, (2
and&J(»FE) and&J(»PM) denote the natural frequencies of the beam-water systet@seed us-

ing finite elements (FE) and the proposed method (PM) desttiibSection 2.4, respectively.
Tables 8 and 9 contain the obtained frequency ratios forreba@and steel beam-water sys-
tems, respectively. We clearly see that the ratios predlicyethe proposed method and finite
elements are practically identical independently of thestitutive material of the beam, the
mode number and beam boundary conditions. The computeaadiney ratios also emphasize
the importance of beam-water interaction effects on therabfrequencies and consequently
the dynamic response of the system. For example, in the ¢ake &liding-Clamped (SC)
beam configuration with water on two sides, the ratio of theirah frequency of the dry
beam on the wet beam reaclie$0 and0.62 for the concrete and steel beam-water systems,
respectively. For a given mode, the frequency ratios depenthe constitutive material of
the beam, its boundary conditions and the number of fluid @asna contact with the beam.
When comparing frequency ratios obtained for the concretesteel beam-water systems,
we see that the effect of fluid-structure interaction desesavith larger beam stiffness. We
also observe that the frequency ratios tend towards unityiédher modes, implying that hy-
drodynamic effects on the natural frequencies diminishfametion of increasing vibration
modes.

4 Conclusions

A new formulation was proposed to study the modal dynamicearthquake response of
flexible beam-type structures vibrating in contact with onewo fluid domains. The method-
ology developed extends available analytical solutionsrfode shapes and natural vibration
frequencies of slender beams with various boundary camditio include the effects of fluid-
structure interaction. Simplified expressions are thereld@ed to determine the frequency-
and time-domain dynamic response of coupled beam-fluigesystind predict their natural
vibration frequencies. Two beam-fluid systems were sdaletttallustrate the application of
the proposed method and validate the results against aeldaeipled fluid-structure finite
element solutions. We showed that the proposed techniges gn excellent assessment of
(i) the earthquake and frequency responses of coupled Haahsystems, and (ii) the natu-
ral vibration frequencies independently of the mode nunalperbeam boundary conditions.
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The numerical results confirmed the importance of accogritnfluid-structure interaction
effects which may reduce by more than twice the fundamertightron frequency of the dry
beam and amplify its response quantities. From a practteaddpoint, the proposed proce-
dure offers an obvious advantage when compared to advamitecsfiements including fluid-
structure interaction capabilities. In the latter caseed] the complexity of constructing the
finite element model of the beam-fluid system is added to tkd teesatisfy convergence cri-
teria related to the number of elements or nodes in the beatkelnas well as the truncation
length of the fluid domain. The proposed method can be easiiyemented in day-to-day
practice, and can be used efficiently either to predict thdahdynamic properties and re-
sponse of beam-fluid systems for design purposes, evaluetesoperties and response for
existing beam-fluid systems, or extract dynamic propedfesdry beam based on available
modal data of a beam-fluid system. Finally, the methodolagppsed can be extended to
other types of structures for which mode shapes and natiedtion frequencies can be
evaluated or approximated using closed-form expressions.
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Appendix A

This appendix reviews the mode shapesj=1... N, of a slender beam and its derivatives
as a function of the various boundary conditions illusalateFig. 2 [28, 30]:

— For Clamped-Free (CF), Clamped-Pinned (CP), Clampedrgl{CS) and Clamped-Clamped
(CC) boundary conditions

¥;(y) = cosh (%) — cos <%> —0; [sinh <%> — sin (ﬁﬂ (A1)
O*i(y) B[ . (Biy (Biy e (BivY . (Biy
o 2 {cosh (F) + cos (F) — 0, [smh ( I ) + sin < I )1} (A2)

83(;23(34) = f]—i {sinh <%> — sin (%) — 0 [cosh <%> + cos <%>1} (A3)

where the parameteft ando; are given in Table Al for the different boundary conditions.
— For Pinned-Pinned (PP) boundary conditions

o) =sin (22 (nd)
0%t B (B

;Z)yQ(y) =~z sin (%) (A5)
0°Y; B B;

8y§y) = —p5 C08 <Fy> (A6)

where the parameters are given in Table Al.

— For Pinned-Clamped (PC) and Sliding-Clamped (SC) bounctangitions, the mode shapes
and their derivatives can be obtained by replacing the doately by (H — y) in the right
hand sides of Egs. (A4) to (A6).

The corresponding functions;, j=1... Ns, in Egs. (6), (7) and (15) are given by

— For Clamped-Free (CF), Clamped-Pinned (CP), Clampedrgl{CS) and Clamped-Clamped
(CC) boundary conditions

¥;(y) = cosh (B; ) — cos (8; ) — o [sinh (8; ) — sin (5 )] (A7)
— For Pinned-Pinned (PP) boundary conditions
v;(y) = sin (B;7) (A8)
— For Pinned-Clamped (PC) and Sliding-Clamped (SC) boundamgitions

¥;(y) = cosh [B; (1 — )] — cos [B; (1 — )]

A9
— Uj{ sinh [8; (1 — y)] —sin [B; (1 — ¢)] } )
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Table Al

Equations to determine parametersand3; for modesj=1... Vs.

Boundary conditions oj

B; is solution for:

sinh(ﬁj) — SiH(IBj)

Clamped-Free (CF) cosh(B;) + cos(B3;)

cos(p;) cosh(B;) +1 =0

Clamped-Pinned (CP) cosh(f3;) — cos ()

sinh(B;) — sin(f;)

tan(8;) — tanh(8;) = 0

Pinned-Clamped (PC) cosh(3;) — cos(3;)

sinh(8;) — sin(f;)

tan(p;) — tanh(B;) =0

sinh(B;) — sin(p;)

Clamped-Sliding (CS) cosh(B;) + cos(B;)
j J

tan(8;) + tanh(8;) = 0

Sliding-Clamped (SC) sinh(8;) — sin(8;)

cosh(B;) + cos(B))

tan(;) + tanh(8;) = 0

cosh(8;) — cos(8))

Clamped-Clamped (CC) Sinh(B;) — sin(;)
J J

cos(Bj)cosh(f;) —1 =0

Pinned-Pinned (PP) -

Bi=gm




Table 1. Modal parameters for Clamped-Free beam configaraind modeg=1... 10.

Mode j=1 j=2 j=3 j=4 j=>5 j=6 j=T7 j=8 =9 j=10

Bj 1.87510407 4.69409113 7.85475744 10.99554073 14.1391683.27875953 20.42035225 23.56194490 26.70353756 28823

oj 0.73409551 1.01846732 0.99922450 1.00003355  0.999998530000006  1.00000000  1.00000000  1.00000000  1.00000000
M; 1.00000000 1.00000000 1.00000000 1.00000000  1.0000000@M0O0AOO0OO  1.00000000  1.00000000  1.00000000  1.00000000
L 0.78299176 0.43393590 0.25442530 0.18189802  0.141470841157T4906  0.09794150 0.08488264 0.07489644 0.06701261
I'; -0.37664436 -0.45319221 -0.21267495 -0.17682201 -08Z%38 -0.11015766 -0.08674703 -0.07997306 -0.0668704206206876

07 ; 0.18737428 0.13891965 0.02306732 0.04698614  0.019001292711927  0.01480436  0.01889087 0.01199198  0.01445421
03 0.13891965 0.25471077 0.10086194  0.04923220 0.05446351033¥®742  0.03656928  0.02589163 0.02740289 0.02088616
03 ; 0.02306732 0.10086194 0.14743433 0.05443936  0.0307399334718738  0.02265145  0.02509607 0.01791674  0.01951888
05 ; 0.04698614 0.04923220 0.05443936  0.10091067  0.034286632087210 0.02404472  0.01612420 0.01824417  0.01312597
05 0.01900129 0.05446351 0.03073993 0.03428665 0.0759923923718298 0.01528846  0.01773461 0.01220999 0.01397671
05, 0.02711927 0.03399742 0.03478738 0.02087210 0.023782986045095 0.01753848 0.01169707 0.01364568  0.00958498
07 0.01480436  0.03656928 0.02265145 0.02404472  0.01528840017%B848  0.05001153  0.01352421 0.00928712  0.01086720
03 0.01889087 0.02589163 0.02509607 0.01612420 0.01773461011@P707  0.01352421  0.04251876 0.01077686  0.00756417
05, 0.01199198 0.02740289 0.01791674 0.01824417  0.0122099913@1568  0.00928712  0.01077686  0.03692034  0.00882309
07y, 0.01445421 0.02088616 0.01951888  0.01312597  0.0139767100938498  0.01086720  0.00756417  0.00882309  0.03261731




Table 2. Modal parameters for Clamped-Pinned beam configorand modeg=1...10.

Mode j=1 j=2 j=3 j=4 j=>5 j=6 j=7 j=38 7i=9 j=10

Bj 3.92660231 7.06858275 10.21017612 13.35176878 16.4833619.63495408 22.77654674 25.91813939 29.05973205 1332200

oj 1.00077731 1.00000145 1.00000000 1.00000000  1.0000000MO0AO0O00  1.00000000  1.00000000  1.00000000  1.00000000
M; 1.00000000 1.00000000 1.00000000 1.00000000  1.0000000MO0AO0O00  1.00000000  1.00000000  1.00000000  1.00000000
L 0.86000091 0.08263119 0.33438600 0.04387308 0.207005310298B386  0.14990040 0.02260141  0.11748951 0.01819138
I'; -0.57463863 -0.22387192 -0.19610132 -0.12740364 -04944 -0.08877191 -0.08379277 -0.06808364 -0.06510595055Q0717

07 ; 0.34894675 0.09636523 0.06874613  0.05303582  0.04307624€362Z8730 0.03126201 0.02748370 0.02451824  0.02212942
05 0.09636523 0.18069842  0.05207102  0.04099493  0.033609240284D662  0.02456921 0.02163183 0.01931528 0.01744349
03 ; 0.06874613 0.05207102 0.11733903  0.03252944  0.027008782299635 0.01997772 0.01763762  0.01577671  0.01426464
05 ; 0.05303582  0.04099493 0.03252944  0.08546839  0.02239573192p570 0.01679337 0.01488069  0.01334402 0.01208618
05 0.04307624 0.03360924 0.02700876  0.02239573  0.06663399164%885  0.01444871 0.01285527 0.01156183  0.01049458
05, 0.03623730 0.02840662  0.02299635 0.01922570 0.01644883543P145 0.01264531 0.01129619 0.01019113 0.00927239
07 0.03126201 0.02456921 0.01997772  0.01679337  0.014448710126%1531  0.04569814  0.01005606  0.00909966  0.00829931
03 0.02748370 0.02163183 0.01763762  0.01488069  0.01285520112Z9619  0.01005606  0.03934902  0.00820841  0.00750383
05, 0.02451824 0.01931528 0.01577671  0.01334402 0.01156183101®113 0.00909966 0.00820841  0.03449382  0.00684054
07y,  0.02212942 0.01744349  0.01426464  0.01208618  0.01049458092r239  0.00829931  0.00750383  0.00684054  0.03066917




Table 3. Modal parameters for Pinned-Clamped beam configorand modeg=1...10.

Mode j=1 j=2 j=3 j=4 j=>5 j=6 j=7 j=38 7i=9 j=10

Bj 3.92660231 7.06858275 10.21017612 13.35176878 16.4833619.63495408 22.77654674 25.91813939 29.05973205 1332200

oj 1.00077731 1.00000145 1.00000000 1.00000000  1.0000000MO0AO0O00  1.00000000  1.00000000  1.00000000  1.00000000
M; 1.00000000 1.00000000 1.00000000 1.00000000  1.0000000MO0AO0O00  1.00000000  1.00000000  1.00000000  1.00000000
L 0.86000091 0.08263119 0.33438600 0.04387308 0.207005310298B386  0.14990040 0.02260141  0.11748951 0.01819138
I'; -0.65008940 0.07630378 -0.18764735 0.06077168 -0.1G68720.04753510 -0.07134179 0.03871620 -0.05389119 0.@3288

07 ; 0.42517390 -0.05350698 0.08215456 -0.03863831 0.0482798).02921415 0.03392985 -0.02331070 0.02608839 -0.@E63

05 -0.05350698 0.16093621 -0.02220990 0.02887463 -0.0187390.01957338 -0.01235525 0.01466114 -0.01016711 0.0B167

03 ; 0.08215456 -0.02220990 0.11404365 -0.01510174 0.0231912.01179012 0.01654423 -0.00971221 0.01275610 -0.G@ER9

05 ; -0.03863831 0.02887463 -0.01510174 0.07776274 -0.04J0280.01349708 -0.00781427 0.01030195 -0.00648317 0.@2825
05 0.04827983 -0.01573978 0.02319127 -0.01002847 0.062986@.00757148 0.01130633 -0.00620408 0.00884611 -0.CG@EEB1
06, -0.02921415 0.01957338 -0.01179012 0.01349708 -0.0@B710.05001431 -0.00575588 0.00782770 -0.00473329 0.00G637

07 0.03392985 -0.01235525 0.01654423 -0.00781427 0.01B3063.00575588 0.04301687 -0.00464035 0.00679016 -0.@394

05 -0.02331070 0.01466114 -0.00971221 0.01030195 -0.0@@2040.00782770 -0.00464035 0.03654155 -0.00376882 0.00515
05, 0.02608839 -0.01016711 0.01275610 -0.00648317 0.00884640.00473329 0.00679016 -0.00376882 0.03250581 -0.CH&EL17
07y, -0.01953294 0.01167131 -0.00829536 0.00825628 -0.0@8B140.00637173 -0.00394881 0.00515097 -0.00317360  0.82368




Table 4. Modal parameters for Clamped-Sliding beam cordigum and modeg=1... 10.

Mode j=1 j=2 j=3 j=4 j=>5 j=6 j=T7 j=8 =9 j=10

Bj 2.36502037 5.49780392 8.63937983 11.78097245 14.92P5638.06415776 21.20575041 24.34734307 27.48893572 3630

oj 0.98250221 0.99996645 0.99999994  1.00000000  1.0000000MOOAOOOO0  1.00000000  1.00000000  1.00000000  1.00000000
M; 1.00000000 1.00000000 1.00000000 1.00000000  1.0000000@M0O0AOO0OO  1.00000000  1.00000000  1.00000000  1.00000000
L 0.83086152 0.36376941 0.23149808 0.16976527  0.1340252211071648  0.09431404  0.08214449  0.07275655  0.06529434
I'; -0.43286638 -0.42564791 -0.16756712 -0.18178678 -019BH -0.11405106 -0.07681829 -0.08275793 -0.0605667306482797

07 ; 0.22689238 0.14212397 0.02072279 0.05815096  0.0175538335@B476  0.01429268  0.02471378  0.01195579  0.01896470
03 0.14212397 0.25076545 0.08206426  0.05438069  0.0498042335@0995  0.03522013  0.02682757  0.02711837  0.02144159
03 ; 0.02072279 0.08206426 0.12952878 0.04471812  0.02614000296%005 0.01930793 0.02189888  0.01525828 0.01727970
05 ; 0.05815096 0.05438069 0.04471812 0.09818121  0.0297517821718165 0.02172608 0.01650675 0.01694890 0.01325951
05 0.01755383 0.04980423 0.02614002 0.02975176  0.071400482081032 0.01423315 0.01578391 0.01135808 0.01262290
05, 0.03503476  0.03590995 0.02964005 0.02178165 0.02081030591D759  0.01569605  0.01208765  0.01246242  0.00980901
07 0.01429268 0.03522013 0.01930793 0.02172608  0.0142331315@P605 0.04808431 0.01217323  0.00894149  0.00987213
03 0.02471378 0.02682757 0.02189888 0.01650675  0.01578391012@B765 0.01217323  0.04176229  0.00981895  0.00779709
05, 0.01195579 0.02711837 0.01525828 0.01694890  0.011358081246242  0.00894149  0.00981895  0.03589457  0.00805705
07y, 0.01896470 0.02144159 0.01727970 0.01325951  0.0126229(M09&D901  0.00987213  0.00779709  0.00805705  0.03209606




Table 5. Modal parameters for Sliding-Clamped beam cordigur and modeg=1... 10.

Mode j=1 j=2 j=3 j=4 j=>5 j=6 j=T7 j=8 =9 j=10

Bj 2.36502037 5.49780392 8.63937983 11.78097245 14.92P5638.06415776 21.20575041 24.34734307 27.48893572 3630

oj 0.98250221 0.99996645 0.99999994  1.00000000  1.0000000MOOAOOOO0  1.00000000  1.00000000  1.00000000  1.00000000
M; 1.00000000 1.00000000 1.00000000 1.00000000  1.0000000@M0O0AOO0OO  1.00000000  1.00000000  1.00000000  1.00000000
L 0.83086152 0.36376941 0.23149808 0.16976527  0.1340252211071648  0.09431404  0.08214449  0.07275655  0.06529434
I'; -0.68350770 -0.17189508 -0.07913826 -0.04607007 -08B®B -0.02165278 -0.01627248 -0.01271008 -0.0102237400882479

07 ; 0.49079872 0.04802871 0.02127759  0.01179377  0.0074512100512170 0.00373253 0.00283919 0.00223181 0.00180488
03 0.04802871 0.16975665 0.01534789 0.00949173  0.0063343100448987  0.00333420 0.00256760  0.00203526  0.00165744
03 ; 0.02127759 0.01534789 0.10157987 0.00743933  0.005332730395149 0.00302040 0.00237210 0.00190658  0.00155919
05 ; 0.01179377 0.00949173 0.00743933 0.07236825 0.00437216033P546  0.00268245 0.00215711 0.00176407 0.00146769
05 0.00745121 0.00633431 0.00533273 0.00437216  0.056175130287253 0.00234443 0.00193246 0.00161049 0.00135661
05, 0.00512170 0.00448987 0.00395149 0.00339546  0.002872534589287  0.00202983 0.00171330 0.00145510 0.00124530
07 0.00373253 0.00333420 0.00302040 0.00268245  0.0023444302@2983  0.03878766  0.00150988  0.00130561  0.00113294
03 0.00283919 0.00256760 0.00237210 0.00215711  0.0019324600171330 0.00150988  0.03358532 0.00116677  0.00102810
05, 0.00223181 0.00203526 0.00190658 0.00176407 0.001610490145510 0.00130561 0.00116677  0.02961224  0.00092819
67, 0.00180488 0.00165744 0.00155919 0.00146769  0.00135661001530  0.00113294  0.00102810  0.00092819  0.02648024




Table 6. Modal parameters for Clamped-Clamped beam coafigarand modeg=1.. . 10.

Mode j=1 j=2 j=3 j=4 j=>5 j=6 j=7 j=38 7i=9 j=10

Bj 4.73004074  7.85320462 10.99560784 14.13716549 17.2887520.42035225 23.56194490 26.70353756 29.84513021 32986

oj 0.98250221 1.00077731 0.99996645  1.00000145  0.99999994€00a0000 1.00000000  1.00000000  1.00000000  1.00000000
M; 1.00000000 1.00000000 1.00000000 1.00000000  1.0000000MO0AO0O00  1.00000000  1.00000000  1.00000000  1.00000000
L 0.83086152 0.00000000 0.36376941  0.00000000  0.2314980800@000  0.16976527  0.00000000  0.13402522  0.00000000
I'; -0.59868962 -0.13987318 -0.21855053 -0.09614570 -03(B# -0.07230322 -0.09122754 -0.05783276 -0.070187070480.7068

07 ; 0.37372242 0.06778702 0.08798799  0.04552238  0.05315634€337b6798 0.03774868 0.02674651  0.02919134  0.02212455
05 0.06778702 0.15976063 0.03574881 0.03706915  0.024348562570896  0.01848378  0.01946197 0.01489814  0.01560600
03 ; 0.08798799 0.03574881 0.11879885 0.02488654  0.0308892018710®745  0.02242843  0.01505866  0.01745499 0.01252814
05 ; 0.04552238 0.03706915 0.02488654  0.08161727  0.01729534019@r456  0.01329269 0.01474782  0.01079770  0.01194277
05 0.05315634 0.02434856 0.03088926  0.01729534  0.06695049132r241  0.01616154 0.01067716  0.01279461  0.00889309
05, 0.03375798 0.02570896  0.01879745  0.01907456  0.01322241053@1073  0.01024572  0.01156979  0.00836101  0.00950373
07 0.03774868 0.01848378 0.02242843  0.01329269 0.0161615401024572  0.04583325 0.00832049  0.01008492  0.00692673
03 0.02674651 0.01946197 0.01505866  0.01474782  0.010677181136979  0.00832049  0.03878603  0.00677053  0.00782252
05, 0.02919134 0.01489814 0.01745499  0.01079770 0.0127946100836101  0.01008492 0.00677053  0.03435888 0.00561147
07y,  0.02212455 0.01560600 0.01252814  0.01194277  0.00889309093D373  0.00692673  0.00782252  0.00561147  0.02965831




Table 7. Modal parameters for Pinned-Pinned beam configarabd modeg=1... 10.

Mode j=1 j=2 j=3 j=4 j=5 j=6 j=T7 j=38 j=9 j=10

Bj 3.14159265 6.28318531 9.42477796 12.56637061 15.7079638.84955592 21.99114858 25.13274123 28.27433388 312618

M7 0.50000000 0.50000000 0.50000000  0.50000000 0.500000000@0O00  0.50000000  0.50000000  0.50000000  0.50000000
L 0.63661977 0.00000000 0.21220659  0.00000000  0.1273239300@000  0.09094568  0.00000000  0.07073553  0.00000000
s -0.45071585 -0.11925463 -0.11251300 -0.06569036 -0268H -0.04530423 -0.04431800 -0.03456940 -0.0339932802704578

07 ; 0.20264237 0.04503164 0.03152215 0.02418842  0.019599481646314  0.01418643  0.01245973 0.01110584 0.01001614
05 0.04503164 0.09006327 0.01981392 0.01543942  0.012633301068283  0.00924963 0.00815278 0.00728676  0.00658589
03 0.03152215 0.01981392 0.05613944  0.01139576  0.00939231007¥B396  0.00694015 0.00613585 0.00549732  0.00497825
01 0.02418842 0.01543942 0.01139576  0.04028953  0.00749098063p410 0.00557609  0.00494253  0.00443741  0.00402531
05 0.01959948 0.01263337 0.00939231 0.00749098  0.03123378053B858 0.00466794  0.00414652  0.00372942  0.00338815
05, 0.01646314 0.01068283 0.00798396  0.00639410  0.005338582541751  0.00401713  0.00357494  0.00322029  0.00292945
07 ; 0.01418643 0.00924963 0.00694015 0.00557609  0.00466794004@ 713 0.02138386  0.00314341 0.00283535 0.00258224
03 0.01245973 0.00815278 0.00613585 0.00494253  0.0041465003%7494  0.00314341 0.01843053 0.00253352  0.00230969
05, 0.01110584 0.00728676 0.00549732 0.00443741  0.0037294200322029 0.00283535 0.00253352 0.01617910 0.00208975
7,;  0.01001614 0.00658589 0.00497825 0.00402531  0.00338813024r945  0.00258224  0.00230969  0.00208975  0.01440835




Table 8. Wet to dry frequency ratios for concrete beam-watstem.

Vibration mode number

Configuration A Ratio 1 2 3 4 5 6 7 8 9 10

CF 1 7 o071 0.69 0.78 0.83 0.86 0.88 0.90 0.91 0.92 0.93
nPM 0.71 0.69 0.78 0.83 0.86 0.89 0.90 0.91 0.92 0.93

2 nF® 058 0.58 0.67 0.73 0.77 0.81 0.83 0.85 0.86 0.88
nPM 0,58 0.58 0.67 0.73 0.78 0.81 0.83 0.85 0.87 0.88

cP 1 »® o059 073 080 085 087 089 091 092 093 0093
nPM 059 073 081 08 087 089 091 092 093 093

2 p»F9 046 061 069 075 079 082 084 086 087 0.88
»PM 046 061 070 075 079 082 084 086 087 0.88

PC 1 n»F® 055 0.74 0.81 0.85 0.88 0.90 0.91 0.92 0.93 0.94
nPM 0.56 0.74 0.81 0.85 0.88 0.90 0.91 0.92 0.93 0.94

2  nFB 043 0.61 0.70 0.75 0.79 0.82 0.84 0.86 0.87 0.88
nPM " 0.43 0.62 0.70 0.76 0.79 0.82 0.84 0.86 0.87 0.88

CS 1 nF® 0.67 0.69 0.79 0.83 0.87 0.89 0.90 0.91 0.92 0.93
nPM  0.68 0.70 0.79 0.84 0.87 0.89 0.90 0.92 0.92 0.93

2 nF® 054 0.58 0.68 0.74 0.78 0.81 0.83 0.85 0.87 0.88
nPM 0.54 0.58 0.68 0.74 0.78 0.81 0.83 0.85 0.87 0.88
SC 1 »F® 053 0.73 0.81 0.85 0.88 0.90 0.91 0.92 0.93 0.94

»PM 053 073 081 08 088 090 091 092 093  0.94

2 nFB 0.40 0.60 0.70 0.75 0.79 0.82 0.84 0.86 0.87 0.89
nPM " 0.40 0.61 0.70 0.76 0.80 0.82 0.84 0.86 0.87 0.89

CC 1 »F® 058 0.74 0.80 0.85 0.87 0.89 0.91 0.92 0.93 0.93
nPM 0,58 0.75 0.81 0.85 0.87 0.89 0.91 0.92 0.93 0.94

2 nFB 045 0.62 0.70 0.75 0.79 0.82 0.84 0.86 0.87 0.88
nPM 0.45 0.62 0.70 0.75 0.79 0.82 0.84 0.86 0.87 0.89
PP 1 »F® 056 0.73 0.80 0.85 0.88 0.89 0.91 0.92 0.93 0.94

nPM 057 073 081 08 088 090 091 092 093  0.94

2 p»F9 043 060 069 075 079 082 084 086 087 0.88
nPM 044 061 070 075 079 082 084 086 087 0.88




Table 9. Wet to dry frequency ratios for steel beam-watetesys

Vibration mode number

Configuration A Ratio 1 2 3 4 5 6 7 8 9 10

CF 1 »F® 088 0.85 0.91 0.93 0.95 0.96 0.96 0.97 0.97 0.98
nPM  0.88 0.85 0.91 0.93 0.95 0.96 0.96 0.97 0.97 0.98

2 pFB® 079 0.77 0.84 0.88 0.91 0.92 0.93 0.94 0.95 0.96
nPM 0,79 0.77 0.84 0.88 0.91 0.92 0.93 0.94 0.95 0.95

cP 1 »® 080 08 092 094 095 096 097 097 098 0098
»PM 080 088 092 094 095 096 097 097 097 098

2 p»F9 068 081 08 089 091 093 094 095 095 0.96
nPM 068 081 08 089 091 093 094 095 095 0.96

PC 1 9B 077 0.89 0.92 0.94 0.96 0.96 0.97 0.97 0.98 0.98
nPM - 0.77 0.89 0.92 0.94 0.95 0.96 0.97 0.97 0.98 0.98

2 nFB  0.65 0.81 0.86 0.90 0.92 0.93 0.94 0.95 0.95 0.96
nPM 0.65 0.81 0.86 0.90 0.92 0.93 0.94 0.95 0.95 0.96

CS 1 nF® 086 0.85 0.91 0.93 0.95 0.96 0.97 0.97 0.97 0.98
nPM 0.85 0.85 0.91 0.93 0.95 0.96 0.97 0.97 0.97 0.98

2 nFB® 0.76 0.77 0.85 0.88 0.91 0.92 0.94 0.94 0.95 0.96
nPM 0.76 0.77 0.85 0.88 0.91 0.92 0.94 0.94 0.95 0.96
SC 1 »F® 075 0.89 0.93 0.95 0.96 0.97 0.97 0.97 0.98 0.98

nPM 075 089 093 095 096 096 097 097 098  0.98

2 p»F9 062 081 087 090 092 093 094 095 096 0.96
nPM 062 081 087 090 092 093 094 095 096 0.96

CC 1 B 079 0.89 0.92 0.94 0.95 0.96 0.97 0.97 0.98 0.98
nPM 0,79 0.89 0.92 0.94 0.95 0.96 0.97 0.97 0.97 0.98

2 p»F9 067 082 08 090 092 093 094 095 095 0.96
nPM 067 082 08 090 091 093 094 095 095 0.96
PP 1 »® 078 088 092 094 096 096 097 097 098 0098

nPM 078 088 092 094 095 096 097 097 098  0.98

2 p»F9 066 080 08 090 092 093 094 095 095 0.96
nPM 066 080 086 090 092 093 094 095 095 0.96
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Figure 1. Slender beam vibrating in contact with a fluid actim: (a) one side, (b) both sides.
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Figure 2. Studied beams-fluid configurations: (a) Clampeddd (CP); (b) Pinned-Clamped (PC);

(PP).

(c) Clamped-Sliding (CS); (d) Sliding-Clamped (SC); (ea@bed-Clamped (CC); (f) Pinned-Pinned



x  05F .
_E
=0
—~—
= 0.5 ) .
’ug’maxz 0'313g
_10 5 10 15 20 25 30 35 40

Time (s)

Figure 3. Horizontal acceleration component of Imperidléyaearthquake (1940) at El Centro.
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Figure 4. Time-history responses of the concrete beam<gigtem - CF configuration: (a) and (e) Displacement
at the top; (b) and (f) Acceleration at the top; (c) and (g)&8Herce at the base; (d) and (h) Bending moment at
the base. (a) to (d) Beam in contact with water on one sidep(@)) beam in contact with water on two sides.
— Finite elements (Wet beam)._ Proposed method (Wet beam).
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Figure 5. Time-history responses of the steel beam-fluittays CF configuration: (a) and (e) Displacement at
the top; (b) and (f) Acceleration at the top; (c) and (g) SHeese at the base; (d) and (h) Bending moment at
the base. (a) to (d) Beam in contact with water on one sidep(@)) beam in contact with water on two sides.
— Finite elements (Wet beam)._ Proposed method (Wet beam).
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Figure 6. Time-history responses of the concrete beam<gigtem - CF configuration: (a) and (e) Displacement
at the top; (b) and (f) Acceleration at the top; (c) and (g)&8Herce at the base; (d) and (h) Bending moment at
the base. (a) to (d) Beam in contact with water on one sidep(@)) beam in contact with water on two sides.
— Finite elements (Wet beam)._ Proposed method (Wet beam). Proposed method (Dry beam).
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Figure 7. Time-history responses of the steel beam-fluittays CF configuration: (a) and (e) Displacement at
the top; (b) and (f) Acceleration at the top; (c) and (g) SHeese at the base; (d) and (h) Bending moment at
the base. (a) to (d) Beam in contact with water on one sidep(@)) beam in contact with water on two sides.

— Finite elements (Wet beam)._ Proposed method (Wet beam). Proposed method (Dry beam).
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Figure 8. Frequency response curves for accelerationsnofete and steel beam-fluid systems - CF configura-
tion: (a) Concrete beam in contact with water on one sideStbgl beam in contact with water on one side; (c)
Concrete beam in contact with water on two sides; (d) Stesmide contact with water on two sides._ Finite
elements (Wet beam),— Proposed method (Wet beam);. Proposed method (Dry beam).
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Figure 9. Frequency response curves for accelerationsroiret® beam-fluid systems: (a) and (g) CP config-
uration; (b) and (h) PC configuration; (c) and (i) CS configiorg (d) and (j) SC configuration; (e) and (k)
CC configuration; (f) and (I) PP configuration. (a) to (f) Beamcontact with water on one side; (g) to (I)
Beam in contact with water on two sides._ Finite elements (Wet beam),_ Proposed method (Wet beam);
_ Proposed analytical method (Dry beam).



