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A novel scheme for large deflection analysis of suspended
cables made of linear or nonlinear elastic materials
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Abstract: This paper presents a new approach to investigate the stapionse of horizontal and inclined sus-
pended cables with deformable cross-section, made of gidimerar or nonlinear elastic materials, and subjected
to vertical concentrated and distributed loads. The pregdschnique also includes large sag and extensibility
effects, and is based on an original finite difference scheomebined to a nonlinear least squares numerical
solution. The mathematical formulation is developed fatows loading cases, and an innovative computational
strategy is used to transform the resulting nonlinear sysi€equations into a scaled nonlinear least squares
problem. The numerical scheme is programmed and its apiplicdlustrated through examples highlighting
the effects of coupling between the tension in a cable andi¢fiermation of its cross-section as well as the
use of cables made of neo-Hookean materials. The resuliinebtare in excellent agreement with analytical
solutions when available. The proposed technique can lig pasgrammed and constitutes a valuable tool for
large deflection analysis of suspended cables made of eanlelastic materials.
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1 Introduction

Cables are widely used as structural components and thstigagon of their structural response
has attracted numerous researchers for many centurief Me8t of these contributions accounted
only for simplified loading cases and focused on validathrgyparabolic or catenary cable solutions
amenable to hand calculations. With the advent of digitatjgoters, advanced analytical and numer-
ical techniques emerged as practical solutions to studiesalnder various loading cases, such as
in [3—13] and more recently in [14-22]. Existing finite elamaoftware packages that solve cable
problems generally use truss or beam elements includigg ldisplacement capabilities, i.e. geo-
metrical nonlinearity. Such elements are highly effectiglitions that avoid recourse to cumbersome
cable modeling using 3D solid finite elements. However, thetand beam formulations programmed
into readily available finite element softwares are gemerasktricted to linear elastic Hookean mate-
rials, and do not allow for straightforward implementatmfingeneral constitutive nonlinear material
models to account for hyper-elastic or rubber-like materfaurthermore, these classical formulations
do not account for coupling between the tension in a cabletlaadleformation of its cross-section
which is assumed to remain rigid as the loads are appliedhisrpper, we propose alternative finite
difference solutions that waive these restricting assionpt Finite difference modeling of cables was
indeed shown very effective in many cable applications sicttansmission lines, marine cables and
cable-supported bridges [23—-32]. Such studies showedinitatdifference schemes can be easily pro-
grammed to yield robust numerical solutions and that thesris particularly justified when discretized
nondimensional equations are to be solved systematicallyrbblem parameters varying over a wide
range. However, the available finite difference formulasiéor cables also employ a simplifying rigid
cross-section kinematic assumption and are limited t@liokean materials.

The objective of this work is to develop an original and picadtfinite difference scheme to investigate
the static response of horizontal and inclined suspendelé<avith deformable cross-section, made
of general linear or nonlinear elastic materials, and stbgeto most common loads of gravitational
type, generally originating from self-weight, ice accuatidn or various attachements. The proposed
formulation also includes large sag and extensibilityefehat were shown sufficiently important to
include in the analysis of cables when large spans and/affisignt loads are involved such as for
applications described in [33-38].

2 Mathematical and numerical formulations
2.1 Cable static response under self-weight

2.1.1 Mathematical formulation

In this section, we derive the Cartesian equations exprgdbe static profile of a suspended cable
hanging under its self-weight as illustrated in Fig. 1. Gdesng a Cartesian system of axgsy, z),



the cable is assumed to deflect within the plane:). We note(xa, ya, 2a) and(xg, ys, 28) the co-
ordinates of the two cable supports A and B, respectivehallgviate the notation, we may assume
without loss of generality that support A coincides with tregin of axes, i.exa =ya =24 =0. The
chord connecting the supports A and B makes an afiglith the z-axis. We noteS the unstrained
arc-length of the cable, andg its weight per unit unstrained arc-length with g repreisgrthe gravity
constant. The Lagrangian coordinate of a point of the cabitsiunstrained configuration is denoted
by 5. The static strained geometrical configuration is obtawbén the cable deforms under self-
weight. We noteS the strained arc-length of the cabigg the weight of the cable per unit strained
arc-length and the Lagrangian coordinate of a point of the cable in the séGhiconfiguration.

Fig. 1 (a) illustrates the strained geometrical configoratf the suspended cable and the forces ap-
plied to an elementary segment of the cable with infinitesiane-length d&. Let F' denote the ten-
sion force at a point with Lagrangian coordinatand Cartesian coordinate At coordinates + ds
andz + dz, the tension force i§' +dF'. The horizontal and vertical projections of the cable tensf
andF + dF are designated bif, V, I/ + dH andV + dV as illustrated in Fig. 1 (a). The equilibrium
of the elementary segment yields

dH =0 (1)

1% . dz\?

7 v—o ©)
dz

Eq. (1) shows that horizontal tensidhis constant along cable arc-length, and the last two reistio

yield
Hz" +mgy1+ (2)* =0 (4)

where the notations’ = dz/dz andz” = d’z/dz? are used to alleviate the text. The tension fofte

can be decomposed as
~  ~ o~ ~dz ~dz
F=Hcosp+Vsing=H—+V — (5)
ds ds
in which ¢ is the angle between the tangent to the cable profile and admal axis as illustrated in
Fig. 1 (a). Using Egs. (1) to (3) and (5), we obtain

L _dp o mdaNdE -

The masses: andm are distributed per unit unstrained and strained arc-tengespectively, and are

related by

m:mj_ (7)



and axial deformation can be characterized along cabléeagth by

ds —ds _
& =) ®)
in which R -
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and whereA is the area of the cable cross-sectighis the modulus of elasticity and is a general
constitutive function characterizing cable axial defotima For exampleC can be expressed in the
simple case of a Hookean material as

C(T)=7 (10)
More complex expressions Gfwill be investigated later in Section 3 of this paper.
Using Eq. (8), EqQ. (7) becomes

o m
C1+C(F)

o~

m

(11)

Substituting Egs. (11) and (6) into Eq. (4) yields the nogdindifferential equation governing the static
profile of the cable including extensibility and large saigets

_ mgy/1+ (27)°
H =0 (12)
1+ C(ﬁ 1+ (2')2>

wherej is a nondimensional parameter given by

—

H

= FA (13)

Eq. (12) accounts for large sag, extensibility and matéédlavior effects while expressing the non-
linear static profile of a suspended cable in Cartesian coates instead of Lagrangian coordinates
used in most formulations reported in the literature. Tarsfulation will be used to develop the finite
difference scheme presented next.

2.1.2 Finite difference discretization

A finite difference scheme will be used to solve Eq. (12) nuoadly for the static deflections and
horizontal component of cable tensiéh Prior to discretization, an appropriate scaling must be ap
plied to ensure a well-conditioned system and numericalemence as will be discussed later. For
that purpose, we introduce the nondimensional parameters

—~

X = ; _ mgL

7= = = 14
o= (14)

Y

~ &
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and rewrite Eqg. (12) as

2

. 8fo\/1+(2")
7"+ =0 (15)

1+C<§ 1+ (2') )
fo
where gl
m

C=3ma (16)

The suspended cable is then discretized ivigequal length finite difference elements corresponding
ton= Ne—1 interior nodes as illustrated in Fig. 1 (b). Using a centratdidifference scheme, Eq. (15)
is transformed into a system afnonlinear equations expressed at each interior nodel .. .n, as

n; = b; + 8f0\/h_f =0 (a7)
14 Ci( fo)
where the coefficients;, b;, h; andC; are defined at nodeof the finite difference mesh as
a; = %(n +1)(Zisr — Zia) (18)
b= (n+1) (Zia — 22+ Zi1) (19)
hi=1+a; (20)

() = i) (21)

in which Z; denotes the nondimensional static deflection at riod&e values of these parameters at
nodes; =1 and: = n of the finite difference mesh are obtained by imposing thenbdaty conditions
at both ends of the cable, yielding

%(nﬂ) Zy (22)
an =5 (n+1) (tan 0~ Z,) (23)
=( +1)(2:-22) (24
( )2(‘5&110—22 + Z 1) (25)

Egs. (17) are not sufficient to determine cable responsessihlarizontal tensio is known, which is
not the case in general. Eqgs. (17) have then to be complecheyi@n additional relation involvin@

to uniquely define the cable’s static profile. This relatisrobtained here by equating the computed
unstrained arc-length of the cable to the given initial taised arc-lengttd, yielding the nondimen-



sional constraint equation

1 i /14+kF g
7]n+1:n+1j:1 1+e —EZO (26)
whereforj =1...n+1
ky=(n+1)(Z - Z;) (27)
and .
€5 = B [Cj—l (fo) +C; (ﬁ)ﬂ (28)
with

Co(fo) = ( ﬁo) (29)

<
0
n+1 fO - ( n—i—l) (30)

in which coefficients, to h,, .1 are obtained from Eq. (20) considering

ap = (n+1) Z (31)
tny1 = (n+1)(tand - Z,) (32)
by =0 (33)
b1 =0 (34)

We note that the strained arc-length of the cable can be sx@deas

n+1

n+1ZV (35)

Egs. (17) and (26) can be solved numerically to find deflestini=1. . . n, and the nondimensional
parameteg?o. Eg. (14) can then be used to obtain the horizontal ten?H:loAIthough the above equa-
tions could be solved directly fdd without scaling througlfo in theory, this process generally affects
the well-conditioning and therefore the convergence ofin@erical scheme because of large differ-
ences in the magnitudes of the variablesi=1....n, H and their derivatives. The scaling introduced
is efficient since cable deflections and sag are generallyeofame order of magnitude.

§:

Classical Newton-Raphson or shooting method algorithmmsbeaused to solve Egs. (17) and (26)
numerically. In this work, another innovative computatibstrategy is used where the equations are
first transformed into a nonlinear least squares (NLS) mmbtonsisting of finding the vectoy of
unknownsZ;, i=1...n, andf,

x=[2.2.....2... 2. Js] (36)



that minimizes the sum )
n—+ 2
>~ u2 = (IInll) @7)
=1

where||.||, denotes the Euclidian vector norm and where the vegisrgiven by

n= {771’77%'"777i>--->77na77n+1}—r (38)

in which functionsn; to 7, are defined by Egs. (17), while functiop ., is given by Eg. (26). The
resulting NLS problem is solved herein by applying a Gausssin algorithm. Staring with an initial
guess vectox?), incremental solutions are obtained at iteration 1 as

—1
x“ =X - {J;w) an)] I n® (39)

in which vectorsy ) andn®) correspond to iteratiofy and whereJ, (, denotes thén + 1) x (n -+ 1)
Jacobian matrix of)® with respect tox“), given by

r l l 4 £) 1
oS’ oS’ ont”  onl”
AR 02" ez aflY
4 4 J4 4
o’ oS’ ons’  om}”
0z 0zl ozl o
on” o’ on”  on”
I =1 970 070 " 970 97O (40)
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The proposed procedure consisting of transforming cabletemns to a NLS problem and solving
it numerically by applying a Gauss—Newton algorithm is meffective than the Newton-Raphson
technique since only first-order derivatives are neededmstcuct the Jacobian matrjbg,(g). We also

show that the Gauss—Newton algorithm satisfies local gtiadranvergence when applied to a zero-
residual problem as in the present case [40]. Furthermloeenon-null terms of the Jacobian matrix

can be obtained easily using the analytical expressiormoged in Appendix A.



2.2 Effect of additional distributed and concentrated load S

Fig. 2 illustrates a suspended cable subjected to: (i)veeifht, and (ii) vertical load€)*), k =
1... Ny, uniformly distributed per unit arc-length between no«pﬁ@%andqém with 1< q%k) < qék) <n,
and (iii) vertical concentrated load¥*), k= 1... Np, applied at nodes®) with 1 < p*) <n. Ateach
interior nodei, we define a nondimensional paramefer

L | _ ®7 k) ~ - (k)
<77 7ng+—2 ifi=q, Ori=q (41)
z L
_ ) L W] ) ()
fi i {mg +Q } if g’ <i<q (42)
mglL .
@ otherwise (43)
8H

We also introduce the nondimensional paramf@er

o= = (9+ Q) (44)

Ng
where@ = >~ QW,
k=1

We show that the nonlinear equations resulting from finiteecence discretization can now be ex-
pressed at each interior nofle=1...n, as

8f vl
1+C; (]?Q)

8(n+1) fo P®
+

L (ﬁg + Q)

8fivhi
1+C; (]?Q)

QQ@):C<§¥¢E> (47)

fo

bi +

=0 if i=p® (45)

i

b; + =0 otherwise (46)

in which

Egs. (45) and (46) must be complemented by Eq. (26) in which

3 [ea(Fa) +6,(Fa)] 48)

€; =



with

(7o) =¢( 5 Vi) (49)

Q
Crir(fa) =C (Jé \/hnﬂ) (50)
Q
in which coefficients, to h,, 1 are obtained from Eqgs. (20), (22)-(23) and (31)-(32).

Egs. (45), (46) and (26) can be transformed into a NLS prolaletescribed before through Egs. (36)
to (38), and a Gauss—Newton algorithm can be applied [EG¥af®d (40)]. To avoid bad-conditioning,
the NLS problem has to be solved for the vector

~ o~ ~ ~ ~ 71T
X =212, %, Zn, fo| (51)

which is the same as the solution vector in Eg. (36) but Wimpbrametefo replaced by the parame-
teer obtained from Eq. (44). Also, the Jacobian mafkjx, is obtained from Eq. (40) but replacirfg
by the parametefQ. The analytical expressions of the non-null terms of theld&an matrixJ, ., are
given in Appendix B.

3 Numerical implementation and validation examples
3.1 Numerical implementation

The developed mathematical formulations and finite difieeeschemes described above were pro-
grammed using MATLABI] [39]. The flowchart in Fig. 3 illustrates the proposed metilody and
the different steps to investigate the static responsesgended cables subjected to self-weight, and
vertical concentrated and uniformly distributed loads. ¢tarity, the flowchart refers to equation num-
bers from the previous sections. When the cable is subjectgdo self-weight, the flowchart in Fig. 3
can be applied using*) =0, Q=0 and replacingz?Q by fo.

The starting guess solution of an iterative numerical seéhengenerally based on a reasonable es-
timate of the solution by the analyst. Non-dimensionatizine problem as described previously not
only adresses bad-scaling effects due to widely differirgnitudes of the variables and their deriva-
tives, but it also confines the solutions and therefore thgisg initial guess around relatively small
values corresponding to commonly encountered deflectiomaalized by cable span [3,13]. The con-
vergence of the numerical model can be verified by selectieyyasmall upper-bound valdo L of

the infinity norm||n|| . = max |n;|, and ending the iterations whém||.. < 7°O L. Other convergence
criteria based on the minimization of the error on cable défies and horizontal tension can also be
implemented easily in the computational scheme.



To illustrate the application of the methodology and the am@nt aspects of the proposed compu-
tational model, the following examples investigate thelm@ar static response of horizontal and in-
clined suspended cables subjected to self-weight and ticaeroncentrated and uniformly distributed

loads. The results obtained are validated against analyidutions when available.

3.2 Application to the analysis of Hookean cables including cross-sectional deforma-
tions

The analysis of suspended cables is generally conducteenass that their cross-section remains
rigid and therefore neglecting the effect of cross-seetideformations on the cable’s deflected profile
and tension. Some authors waived this assumption by imgiitie contraction of cable’s cross-section
due to Poisson’s effect [14,17,41]. In this case, we showkia@ke’s law can be expressed in terms
of Poisson’s ratiar and the functior® in EqQ. (8) as

F=EA[l-ve®)| C@7) (52)
or using Eq. (9) , \
c) —2w(cH)| +v*[cr)| =7 (53)

which can be solved fo€ (7) numerically or analytically using Cardano’s formula. Biféntiating
Eq. (53) with respect t&, f, andf,, gives

aC(7) o7

A (54)
aC(T) _ (s o7 55
8ﬁ) (7) a]?o (55)
aC(T) . o7
—— =1'(7) — 56
o7 (7) o7 (56)
in which .
I'(7) = 2 (57)
1—4vC(7) + 302 [C(7)]
Then, using Egs. (9), (14) and (44), we obtain the derivative
aC; ( fe (F ,
(Afo):crl(f(ﬁ a\/Ah_’ fori,j=1...n (58)
0Z; fo 0Z;
%.(1) :—Cri(f‘))\/i fori=0..n+1 (59)

9fo 77
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required to determine the Jacobian matrix given in AppeAdiand the derivatives

oCi(Ja) _ (Tilfo) 0V

e fori,j=1... 60

9Z; fo 97 " b )
ac;( fe (7

gQ)z—CF’gQ)\/E fori—0...n+1 (61)
an fQ

required to determine the Jacobian matrix given in AppeidiXhe functiond’; in Egs. (58) to (61)
are given by
1
~ ~ 12
1 —4v Cz(fO) + 31/2 |:Cl(f0):|
N 1

Ii(fq) = -~ K (63)
1 —4vCi(fg) + 3v? [Cz(fQ)}

Fz‘(f()) =

(62)

For illustration purposes, we apply the proposed finiteedéhce model to the example presented by
Huddleston etal. (1994), consisting of a suspended calalenspg a horizontal distande = 100 m

and having an unstrained arc-lengdth- L as illustrated in Fig. 4 (a). The cable is subjected to its own
weightmg per unit unstrained arc-length. The flowchart in Fig. 3 ipligal usingP*) =0, Q =0

and repIacinng by f,. The cable is then discretized into 100 finite differencenelets and the NLS
problem is solved for the vectoy given by Eq. (36) as detailed in Section 2.1.2. Although asera
discretization with fewer finite difference elements wouyldld satisfactory results at the nodes, a
more refined mesh density corresponding to 1-m length finiterdnce cable elements is adopted to
ensure an accurate static response along the whole caHknath. SinceS = L, we consider initial
cable deflections!” =0, i =1...n, yielding the first» elements of the starting vectgf?). Taking
account of the scaling discussed previously, the last elefyeof vectory(® can be selected to have
the same order of magnitude as the fitstlements of the same vector. For practical guidance, we
recommend using the horizontal tension in a Hookean califenwgid cross-section as a initial guess
of horizontal tension and corresponding paramﬂ;eﬂ'his initial horizontal tension can be obtained
either: (i) using available analytical expressions whely self-weight or simple loading cases are
involved [3, 13], (ii) or by applying the flowchart in Fig. 3 thi constitutive functiorC(7) = 7. In

this case, the latter strategy is employed, and a horizoemaionH = 1.82kN in a Hookean cable
with rigid cross-section is first obtained using an initi@rizontal tensiond © = 10*°kN chosen
intentionally high to illustrate the effectiveness of theite difference scheme in converging to a
much lower value of horizontal cable tension. The new ihti@izontal tensiond @ = 1.82 kN and
corresponding parametégz 0.342 are then used as starting values for the analysis of the vathle
deformable cross-section. The cable’s static profilesiobtausing the proposed method are presented
in Fig.5 forv = 0.0, » = 0.2 andrv = 0.4. It can be seen that the obtained results are in excellent
agreement with those reported by Huddleston etal. (19®4¢haracterize the maximum deflection of
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the cable with respect to its chord, we define the nondimeasaeflection indexeﬁmax

max ‘ zZ— E(Ch)‘

L

fmax -

(64)

in which z denotes a vector containing the coordinaigs = 1. ..n, of the interior finite difference
nodes of the deflected cable, and” a vector containing the coordinatégh), i =1...n, of the
vertical projections of the nodes on the chord of the cabldasrated in Fig. 1 (b). The computed
horizontal tensiong?, strained arc-length§ and deflection indexefna are presented in Table 1.
To investigate the influence of chord inclination and addial loads, we apply the proposed method
to determine the profiles of the previous cables along thineat configuration shown in Fig. 4 (b).
In this case, we assume that the unstrained arc-length=is /1002 + 502 = 111.80 m. We also
consider initial cable deflectior‘%o) = EZ(Ch), i1 =1...n, yielding the firstn elements of the starting
vector x(¥). As previously, the initial horizontal tensioA © and corresponding parametgr are
first estimated based on the response of a Hookean inclirsggesded cable determined using the
flowchart in Fig. 3 with constitutive functio@(7) =7, zg = 50m, P = 1kN and Q") = 0.1 kN/m.
Fig. 6 illustrates the obtained results highlighting theeets of cross-sectional deformation on the
static response of the cable hanging under self-weight @ity 6 (a)) as well as under self-weight
combined with concentrated and uniformly distributed B&gig. 6 (b)). The horizontal tensiots,
strained arc-length§ and deflection indexeﬁnax are also included in Table 1. Figs. 5-6 and Table 1
reveal that: (i) a higher Poisson’s ration corresponds twedsing horizontal tension and increasing
arc-length as well as deflection index, and (ii) the effearots-section deformation is more important
as the cable is inclined and then as vertical loads are applie

3.3 Application to the analysis of cables made of neo-Hookea n materials

As mentioned previously, most formulations in the literattocused on the behavior of cables made
of Hookean materials, while cables made of nonlinear elaséterials such as rubber and rubber-like
materials were rarely studied. To illustrate the verdstof the proposed method, we apply it next to
study the response of suspended cables made of a neo-Hookeanal, one of the most common
constitutive models for rubber. In this case, we show thakecgension can be expressed as

F=GA {1+C(?)w} (65)

in which G is the cable shear modulus which can be approximately celatehe elastic modulus
by G=FE/3[42,43]. Then using Eq. (9), Eq. (65) becomes

1 1
L S L 66
3{*” [Hm]} (60)
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which can be solved numerically or analytically using Cals formula. Following the same deriva-
tions as in the previous section, we show that Egs. (54) td 466 Eqgs. (58) to (61) apply with the
functionsI” andI’; now given by

L 1+e)

P =1"371 C(7) (67)
" Jo [1+Ci(Jo)]

Ti(fy) = — Sl N 68
(o) fo—2¢Vhi + foCi( fo) (69)
N J? 1+C; ]?

Ti(fo) o[ +C(Jo)] (69)

N fo —2CVhi + foCi(fo)

The proposed technique is applied to examples presentedalgnié (2006) who developed ana-
lytical expressions of the symmetric catenary of horizbstspended cables made of neo-Hookean
materials and hanging under self-weight as the one illtesdran Fig. 7 (a). The static profiles of hor-
izontal suspended cables made of a neo-Hookean materiadmeicted to self-weight only are de-
termined first using the proposed method and consideringained arc-lengttt = L and elastic
moduli £ =mgL/(2A) and E = mgL/(4A). For purpose of comparison, the static response of ca-
bles made of Hookean materials with the same elastic modellaiso illustrated. As previously, a
mesh density corresponding to 1-m length finite differenalele elements is adopted to ensure an
accurate static response along the whole cable arc-lefg#refore, the cables are discretized into
200 finite difference elements and the flowchart in Fig. 3 igliap usingP*) =0, @ = 0 and re-
placing fQ by f,. The values of the starting vectgt? of the algorithm are selected using the same
technique as described in the previous example. Fig. 7 Ieteat the obtained static profiles are
identical to those given by the analytical method develdpe®aliente (2006). The effects of chord
inclination and loading are illustrated next by applying firoposed technique to determine the static
response of the inclined cable shown in Fig. 7 (b). In thisecage assume that the unstrained arc-
length isS = v/200% + 50% = 206.15m and that initial cable deflections azf’ = 2" i=1...n.
The flowchart in Fig. 3 is applied using = 50 m, P =500kN, Q) =10 kN/m and an initial start-
ing vectory(?) estimated based on the response of a Hookean inclined slespeable as described
previously. The results obtained are presented in Fig. @k&n the cable is subjected to self-weight
only, and Fig. 9 (b) when the cable is subjected to concesdrand distributed loads in addition to self-
weight. The horizontal tensiong, strained arc-length§ and deflection indexeﬁnaX obtained for the
Hookean and neo-Hookean cables studied are given in TaltlesXlear from Figs. 8-9 and Table 2
that the differences between both types of cables are signtfand become even more important as
the cable is inclined and as vertical loads are applied. Wethat these case studies are given here for
illustration purposes assuming that the materials behatoakean or neo-Hookean up to maximum
deflection. For each particular case, the analyst has téywbat the computed strains are within the
limits of applicability of Hookean, neo-Hookean or othenhoear elastic behavior.

13



4 Conclusions

An original and practical formulation and finite differenseheme were developed to investigate the
static response of horizontal and inclined cables with che&dle cross-section, made of general lin-
ear or nonlinear elastic materials, and subjected to \&@rticncentrated and distributed loads. The
proposed formulation also includes large sag and extditgibffects. Considering various loading
cases, we showed that the resulting nonlinear system otieqaaan be transformed into a nonlin-
ear least squares problem that can be solved efficientlyteyrd@e the nonlinear static response of
suspended cables made of nonlinear elastic materials. ropeged technique was programmed and
its application was illustrated through examples hightiigpthe effects of coupling between the ten-
sion in a cable and the deformation of its cross-section disas¢he use of a neo-Hookean material.
The obtained results were successfully validated agairadyacal solutions when available. The pro-
posed technique can be easily programmed and presentsadblaand effective alternative to finite
element analysis when implementation of general constgumonlinear elastic material models is not
straightforward and recourse to cumbersome 3D cable magahbing solid finite elements is to be
avoided.

Acknowledgements

The authors would like to acknowledge the financial suppbotti® Natural Sciences and Engineering
Research Council of Canada (NSERC).

14



Appendix A

In this Appendix, we propose analytical expressions tordate the the non-zero elements of the Jacobian
matriceJ n® given by Eq. (40). The superscrit is omitted herein to alleviate the text.

O — (n+1)° - 4(”+1A)f0a" - 8f°\/? 28Ci(f0) for i=2...n (A1)

SZJ =—2(n+1)° - [ 8f°‘/_'] aC(ZfO) fori=1...n (A2
@ 1+C fo i

@:(nﬂ At D)o 8f0\/? 28Ci(f0) fori=1...n—1 (A3)

0711 { C(fo)}\/_i [1 +Ci(fo)} 0Zi1

i _ 87‘/}7’; 1- fo % (fo) fori=1...n  (A4)
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Appendix B

In this Appendix, we propose analytical expressions tordate the non-zero elements of the Jacobian ma-
trlceJ o when the effects cable self-weight are combined with comated and distributed loads as discussed
in Sectlon 2.2. The superscrift is omitted herein to alleviate the text.
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Table 1

Effect of cross-sectional deformability on the static @sge of horizontal and inclined suspended cables sub-
jected to vertical loads.

Self-weight Self-weight
only and vertical loads
Poisson’s Horizontal cable Inclined cable Inclined cable
ratio HKN) S(M) foax  H®KN) SM)  foax  HK&N) S(M)  froax
r=0.0 1.82 122.92 0.317 1.62 138.89 0.394 2.41 156.57 0.518
v=0.2 1.74 12475 0.331 1.55 141.34 0.413 2.18 165.38 0.576

v=0.4 1.64 127.51 0.352 1.42 146.71 0.453 1.94 176.61 0.647




Table 2

Static response of horizontal and inclined suspended sahéle of a neo-Hookean material and subjected to
vertical loads.

Self-weight Self-weight and
only vertical loads
Modulus Horizontal cable Inclined cable Inclined cable

of elasticity HKN) SM)  fmax HKN) SM)  fax HKN) SM)  fnax

Hookean cable
E=mgL/(2A) 366.42 329.71 0.599 355.96 342.69 0.634 448.01 419.30 0.855

E=mgL/(4A) 242.46 430.76 0.893 235.89 449.73 0.944 283.55 600.88 1.350

Neo-Hookean cable
E=mgL/(2A) 268.81 412.88 0.845 260.43 432.60 0.898 284.17 630.59 1.432

E=mgL/(4A) 149.85 674.56 1.556 14530 711.89 1.653 151.30 1146.55 12.77
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Figure 1. Static response of a suspended cable: (a) Uredraind strained geometrical configurations and

equilibrium of an elementary segment of the cable; (b) Eidifference mesh.
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Figure 2. Suspended cable subjected to self-weight andticaleconcentrated and uniformly distributed loads.
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Figure 3. Flowchart illustrating the application of the fendifference scheme to suspended cables subjected to
self-weight, and vertical concentrated and uniformlyritistted loads.
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Figure 4. Suspended cables with deformable cross-se¢tiphtorizontal cable hanging under self-weight only;
(b) Inclined cable hanging under self-weight, concentrated distributed loads.



0 T
mglL
Te” _ o5
\ FA
RNTASEE N .
2 -02Lf AR 1
RN v=0.0
\.f‘:\. 0.9
oD V=
03L1 PR .
v=04 = .; '''''' W -
S
-04L ‘ ‘ ‘ ‘
0 0.1L  02L  03L  04L  05L
T

Figure 5. Effect of cross-sectional deformability on thetistresponse of a horizontal suspended cable hanging
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Figure 6. Effect of cross-sectional deformability on tregistresponse of inclined suspended cables: (a) hanging
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Figure 7. Suspended cables made of a Neo-Hookean matajiddo¢izontal cable hanging under self-weight
only; (b) Inclined cable hanging under self-weight, coricatied and distributed loads.
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Figure 8. Static response of horizontal suspended cablee miaHookean and Neo-Hookean materials and
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Figure 9. Static response of inclined suspended cables ofdtisokean and Neo-Hookean materials: (a) hang-
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