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Abstract: This paper presents a new approach to investigate the staticresponse of horizontal and inclined sus-

pended cables with deformable cross-section, made of general linear or nonlinear elastic materials, and subjected

to vertical concentrated and distributed loads. The proposed technique also includes large sag and extensibility

effects, and is based on an original finite difference schemecombined to a nonlinear least squares numerical

solution. The mathematical formulation is developed for various loading cases, and an innovative computational

strategy is used to transform the resulting nonlinear system of equations into a scaled nonlinear least squares

problem. The numerical scheme is programmed and its application illustrated through examples highlighting

the effects of coupling between the tension in a cable and thedeformation of its cross-section as well as the

use of cables made of neo-Hookean materials. The results obtained are in excellent agreement with analytical

solutions when available. The proposed technique can be easily programmed and constitutes a valuable tool for

large deflection analysis of suspended cables made of nonlinear elastic materials.
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1 Introduction

Cables are widely used as structural components and the investigation of their structural response

has attracted numerous researchers for many centuries [1–3]. Most of these contributions accounted

only for simplified loading cases and focused on validating the parabolic or catenary cable solutions

amenable to hand calculations. With the advent of digital computers, advanced analytical and numer-

ical techniques emerged as practical solutions to study cables under various loading cases, such as

in [3–13] and more recently in [14–22]. Existing finite element software packages that solve cable

problems generally use truss or beam elements including large displacement capabilities, i.e. geo-

metrical nonlinearity. Such elements are highly effectivesolutions that avoid recourse to cumbersome

cable modeling using 3D solid finite elements. However, the truss and beam formulations programmed

into readily available finite element softwares are generally restricted to linear elastic Hookean mate-

rials, and do not allow for straightforward implementationof general constitutive nonlinear material

models to account for hyper-elastic or rubber-like materials. Furthermore, these classical formulations

do not account for coupling between the tension in a cable andthe deformation of its cross-section

which is assumed to remain rigid as the loads are applied. In this paper, we propose alternative finite

difference solutions that waive these restricting assumptions. Finite difference modeling of cables was

indeed shown very effective in many cable applications suchas transmission lines, marine cables and

cable-supported bridges [23–32]. Such studies showed thatfinite difference schemes can be easily pro-

grammed to yield robust numerical solutions and that their use is particularly justified when discretized

nondimensional equations are to be solved systematically for problem parameters varying over a wide

range. However, the available finite difference formulations for cables also employ a simplifying rigid

cross-section kinematic assumption and are limited to linear Hookean materials.

The objective of this work is to develop an original and practical finite difference scheme to investigate

the static response of horizontal and inclined suspended cables with deformable cross-section, made

of general linear or nonlinear elastic materials, and subjected to most common loads of gravitational

type, generally originating from self-weight, ice accumulation or various attachements. The proposed

formulation also includes large sag and extensibility effects that were shown sufficiently important to

include in the analysis of cables when large spans and/or significant loads are involved such as for

applications described in [33–38].

2 Mathematical and numerical formulations

2.1 Cable static response under self-weight

2.1.1 Mathematical formulation

In this section, we derive the Cartesian equations expressing the static profile of a suspended cable

hanging under its self-weight as illustrated in Fig. 1. Considering a Cartesian system of axes(x, y, z),
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the cable is assumed to deflect within the plane(x, z). We note(xA, yA, zA) and(xB, yB, zB) the co-

ordinates of the two cable supports A and B, respectively. Toalleviate the notation, we may assume

without loss of generality that support A coincides with theorigin of axes, i.e.xA = yA = zA =0. The

chord connecting the supports A and B makes an angleθ with thex-axis. We noteS̃ the unstrained

arc-length of the cable, and̃mg its weight per unit unstrained arc-length with g representing the gravity

constant. The Lagrangian coordinate of a point of the cable in its unstrained configuration is denoted

by s̃. The static strained geometrical configuration is obtainedwhen the cable deforms under self-

weight. We noteŜ the strained arc-length of the cable,m̂g the weight of the cable per unit strained

arc-length and̂s the Lagrangian coordinate of a point of the cable in the strained configuration.

Fig. 1 (a) illustrates the strained geometrical configuration of the suspended cable and the forces ap-

plied to an elementary segment of the cable with infinitesimal arc-length d̂s. Let F̂ denote the ten-

sion force at a point with Lagrangian coordinateŝ and Cartesian coordinatêx. At coordinateŝs + dŝ

andx+dx, the tension force iŝF +dF̂ . The horizontal and vertical projections of the cable tensionsF̂

andF̂ + dF̂ are designated bŷH, V̂ , Ĥ + dĤ andV̂ + dV̂ as illustrated in Fig. 1 (a). The equilibrium

of the elementary segment yields

dĤ = 0 (1)

dV̂
dx̂

= −m̂g

√

1 +
(dẑ

dx̂

)2
(2)

Ĥ
dẑ
dx̂

− V̂ = 0 (3)

Eq. (1) shows that horizontal tension̂H is constant along cable arc-length, and the last two relations

yield

Ĥẑ ′′ + m̂g
√
1 + (ẑ ′)2 = 0 (4)

where the notationŝz ′ = dẑ/dx̂ andẑ ′′ = d2ẑ/dx̂2 are used to alleviate the text. The tension forceF̂

can be decomposed as

F̂ = Ĥ cos φ̂+ V̂ sin φ̂ = Ĥ
dx̂
dŝ

+ V̂
dẑ
dŝ

(5)

in which φ̂ is the angle between the tangent to the cable profile and a horizontal axis as illustrated in

Fig. 1 (a). Using Eqs. (1) to (3) and (5), we obtain

F̂ = Ĥ
dx̂
dŝ

+
(
Ĥ

dẑ
dx̂

) dẑ
dŝ

= Ĥ
√
1 + (ẑ ′)2 (6)

The masses̃m andm̂ are distributed per unit unstrained and strained arc-lengths, respectively, and are

related by

m̂ = m̃
ds̃
dŝ

(7)
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and axial deformation can be characterized along cable arc-length by

dŝ− ds̃
ds̃

= C(τ̂ ) (8)

in which

τ̂ =
F̂

EA
=

Ĥ

EA

√
1 + (ẑ ′)2 (9)

and whereA is the area of the cable cross-section,E is the modulus of elasticity andC is a general

constitutive function characterizing cable axial deformation. For example,C can be expressed in the

simple case of a Hookean material as

C(τ̂ ) = τ̂ (10)

More complex expressions ofC will be investigated later in Section 3 of this paper.

Using Eq. (8), Eq. (7) becomes

m̂ =
m̃

1 + C(τ̂ ) (11)

Substituting Eqs. (11) and (6) into Eq. (4) yields the nonlinear differential equation governing the static

profile of the cable including extensibility and large sag effects

Ĥ ẑ ′′ +
m̃g

√
1 + (ẑ ′)2

1 + C
(
µ̂
√
1 + (ẑ ′)2

) = 0 (12)

whereµ̂ is a nondimensional parameter given by

µ̂ =
Ĥ

EA
(13)

Eq. (12) accounts for large sag, extensibility and materialbehavior effects while expressing the non-

linear static profile of a suspended cable in Cartesian coordinates instead of Lagrangian coordinates

used in most formulations reported in the literature. This formulation will be used to develop the finite

difference scheme presented next.

2.1.2 Finite difference discretization

A finite difference scheme will be used to solve Eq. (12) numerically for the static deflectionŝz and

horizontal component of cable tension̂H. Prior to discretization, an appropriate scaling must be ap-

plied to ensure a well-conditioned system and numerical convergence as will be discussed later. For

that purpose, we introduce the nondimensional parameters

X̂ =
x̂

L
; Ẑ =

ẑ

L
; f̂0 =

m̃gL

8Ĥ
(14)
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and rewrite Eq. (12) as

Ẑ
′′

+
8f̂0

√
1 +

(
Ẑ ′

)2

1 + C
(
ζ

f̂0

√
1 +

(
Ẑ ′

)2
) = 0 (15)

where

ζ =
m̃gL
8EA

(16)

The suspended cable is then discretized intoNe equal length finite difference elements corresponding

ton=Ne−1 interior nodes as illustrated in Fig. 1 (b). Using a central finite difference scheme, Eq. (15)

is transformed into a system ofn nonlinear equations expressed at each interior nodei, i=1 . . . n, as

ηi = bi +
8f̂0

√
hi

1 + Ci
(
f̂0
) = 0 (17)

where the coefficientsai, bi, hi andCi are defined at nodei of the finite difference mesh as

ai =
1

2

(
n+ 1

)(
Ẑi+1 − Ẑi−1

)
(18)

bi =
(
n + 1

)2(
Ẑi+1 − 2 Ẑi + Ẑi−1

)
(19)

hi = 1 + a2i (20)

Ci
(
f̂0
)
= C

(
ζ

f̂0

√
hi

)
(21)

in which Ẑi denotes the nondimensional static deflection at nodei. The values of these parameters at

nodesi=1 andi=n of the finite difference mesh are obtained by imposing the boundary conditions

at both ends of the cable, yielding

a1 =
1

2

(
n+ 1

)
Ẑ2 (22)

an =
1

2

(
n + 1

)(
tan θ − Ẑn−1

)
(23)

b1 =
(
n+ 1

)2(
Ẑ2 − 2 Ẑ1

)
(24)

bn =
(
n + 1

)2(
tan θ − 2 Ẑn + Ẑn−1

)
(25)

Eqs. (17) are not sufficient to determine cable response unless horizontal tension̂H is known, which is

not the case in general. Eqs. (17) have then to be complemented by an additional relation involvinĝH

to uniquely define the cable’s static profile. This relation is obtained here by equating the computed

unstrained arc-length of the cable to the given initial unstrained arc-length̃S, yielding the nondimen-
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sional constraint equation

ηn+1 =
1

n+ 1

n+1∑

j=1

√
1 + κ2

j

1 + εj
− S̃

L
= 0 (26)

where forj = 1 . . . n+ 1

κj =
(
n+ 1

)(
Ẑj − Ẑj−1

)
(27)

and

εj =
1

2

[
Cj−1

(
f̂0
)
+ Cj

(
f̂0
)]

(28)

with

C0
(
f̂0
)
= C

(
ζ

f̂0

√
h0

)
(29)

Cn+1

(
f̂0
)
= C

(
ζ

f̂0

√
hn+1

)
(30)

in which coefficientsh0 to hn+1 are obtained from Eq. (20) considering

a0 =
(
n+ 1

)
Ẑ1 (31)

an+1 =
(
n+ 1

)(
tan θ − Ẑn

)
(32)

b0 = 0 (33)

bn+1 = 0 (34)

We note that the strained arc-length of the cable can be expressed as

Ŝ =
L

n+ 1

n+1∑

j=1

√
1 + κ2

j (35)

Eqs. (17) and (26) can be solved numerically to find deflections Ẑi, i=1 . . . n, and the nondimensional

parameter̂f0. Eq. (14) can then be used to obtain the horizontal tensionĤ. Although the above equa-

tions could be solved directly for̂H without scaling througĥf0 in theory, this process generally affects

the well-conditioning and therefore the convergence of thenumerical scheme because of large differ-

ences in the magnitudes of the variablesẐi, i=1 . . . n, Ĥ and their derivatives. The scaling introduced

is efficient since cable deflections and sag are generally of the same order of magnitude.

Classical Newton-Raphson or shooting method algorithms can be used to solve Eqs. (17) and (26)

numerically. In this work, another innovative computational strategy is used where the equations are

first transformed into a nonlinear least squares (NLS) problem consisting of finding the vectorχ of

unknownsẐi, i=1 . . . n, andf̂0

χ =
[
Ẑ1, Ẑ2, . . . , Ẑi, . . . , Ẑn, f̂0

]T
(36)
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that minimizes the sum
n+1∑

i=1

η2i =
(
‖η‖2

)2
(37)

where‖.‖2 denotes the Euclidian vector norm and where the vectorη is given by

η =
[
η1, η2, . . . , ηi, . . . , ηn, ηn+1

]T
(38)

in which functionsη1 to ηn are defined by Eqs. (17), while functionηn+1 is given by Eq. (26). The

resulting NLS problem is solved herein by applying a Gauss–Newton algorithm. Staring with an initial

guess vectorχ(0), incremental solutions are obtained at iterationℓ+ 1 as

χ
(ℓ+1) = χ

(ℓ) −
[
J

T
η(ℓ) Jη(ℓ)

]
−1

J
T
η(ℓ) η

(ℓ) (39)

in which vectorsχ(ℓ) andη(ℓ) correspond to iterationℓ, and whereJ
η(ℓ) denotes the(n+ 1)× (n+1)

Jacobian matrix ofη(ℓ) with respect toχ(ℓ), given by

J
η(ℓ) =




∂η
(ℓ)
1

∂Ẑ
(ℓ)
1

. . .
∂η

(ℓ)
1

∂Ẑ
(ℓ)
i

. . .
∂η

(ℓ)
1

∂Ẑ
(ℓ)
n

∂η
(ℓ)
1

∂f̂
(ℓ)
0

∂η
(ℓ)
2

∂Ẑ
(ℓ)
1

. . .
∂η

(ℓ)
2

∂Ẑ
(ℓ)
i

. . .
∂η

(ℓ)
2

∂Ẑ
(ℓ)
n

∂η
(ℓ)
2

∂f̂
(ℓ)
0

...
. . .

...
. . .

...
...

∂η
(ℓ)
i

∂Ẑ
(ℓ)
1

. . .
∂η

(ℓ)
i

∂Ẑ
(ℓ)
i

. . .
∂η

(ℓ)
i

∂Ẑ
(ℓ)
n

∂η
(ℓ)
i

∂f̂
(ℓ)
0

...
. . .

...
. . .

...
...

∂η(ℓ)n

∂Ẑ
(ℓ)
1

. . .
∂η(ℓ)n

∂Ẑ
(ℓ)
i

. . .
∂η(ℓ)n

∂Ẑ
(ℓ)
n

∂η(ℓ)n

∂f̂
(ℓ)
0

∂η
(ℓ)
n+1

∂Ẑ
(ℓ)
1

. . .
∂η

(ℓ)
n+1

∂Ẑ
(ℓ)
i

. . .
∂η

(ℓ)
n+1

∂Ẑ
(ℓ)
n

∂η
(ℓ)
n+1

∂f̂
(ℓ)
0




(40)

The proposed procedure consisting of transforming cable equations to a NLS problem and solving

it numerically by applying a Gauss–Newton algorithm is moreeffective than the Newton-Raphson

technique since only first-order derivatives are needed to construct the Jacobian matrixJη(ℓ). We also

show that the Gauss–Newton algorithm satisfies local quadratic convergence when applied to a zero-

residual problem as in the present case [40]. Furthermore, the non-null terms of the Jacobian matrix

can be obtained easily using the analytical expressions proposed in Appendix A.
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2.2 Effect of additional distributed and concentrated load s

Fig. 2 illustrates a suspended cable subjected to: (i) self-weight, and (ii) vertical loadsQ(k), k =

1 . . .NQ, uniformly distributed per unit arc-length between nodesq
(k)
1 andq(k)2 with 16 q

(k)
1 < q

(k)
2 6n,

and (iii) vertical concentrated loadsP (k), k= 1 . . . NP , applied at nodesp(k) with 16 p(k) 6n. At each

interior nodei, we define a nondimensional parameterf̂i

f̂i =





L

8Ĥ

[
m̃g+

Q(k)

2

]
if i = q

(k)
1 or i = q

(k)
2 (41)

L

8Ĥ

[
m̃g+Q(k)

]
if q(k)1 < i < q

(k)
2 (42)

m̃gL

8Ĥ
otherwise (43)

We also introduce the nondimensional parameterf̂Q

f̂Q =
L

8Ĥ

(
m̃g+Q

)
(44)

whereQ =
NQ∑

k=1

Q(k).

We show that the nonlinear equations resulting from finite difference discretization can now be ex-

pressed at each interior nodei, i=1 . . . n, as

ηi =





bi +
8f̂i

√
hi

1 + Ci
(
f̂Q
)

+
8 (n + 1) f̂Q P (k)

L
(
m̃g+Q

) = 0 if i = p(k) (45)

bi +
8f̂i

√
hi

1 + Ci
(
f̂Q
) = 0 otherwise (46)

in which

Ci
(
f̂Q
)
= C

(
ζ

f̂Q

√
hi

)
(47)

Eqs. (45) and (46) must be complemented by Eq. (26) in which

εj =
1

2

[
Cj−1

(
f̂Q
)
+ Cj

(
f̂Q
)]

(48)
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with

C0
(
f̂Q
)
= C

(
ζ

f̂Q

√
h0

)
(49)

Cn+1

(
f̂Q
)
= C

(
ζ

f̂Q

√
hn+1

)
(50)

in which coefficientsh0 to hn+1 are obtained from Eqs. (20), (22)-(23) and (31)-(32).

Eqs. (45), (46) and (26) can be transformed into a NLS problemas described before through Eqs. (36)

to (38), and a Gauss–Newton algorithm can be applied [Eqs. (39) and (40)]. To avoid bad-conditioning,

the NLS problem has to be solved for the vectorχ

χ =
[
Ẑ1, Ẑ2, . . . , Ẑi, . . . , Ẑn, f̂Q

]T
(51)

which is the same as the solution vector in Eq. (36) but with the parameter̂f0 replaced by the parame-

ter f̂Q obtained from Eq. (44). Also, the Jacobian matrixJη(ℓ) is obtained from Eq. (40) but replacinĝf0
by the parameter̂fQ. The analytical expressions of the non-null terms of the Jacobian matrixJ

η(ℓ) are

given in Appendix B.

3 Numerical implementation and validation examples

3.1 Numerical implementation

The developed mathematical formulations and finite difference schemes described above were pro-

grammed using MATLAB [39]. The flowchart in Fig. 3 illustrates the proposed methodology and

the different steps to investigate the static response of suspended cables subjected to self-weight, and

vertical concentrated and uniformly distributed loads. For clarity, the flowchart refers to equation num-

bers from the previous sections. When the cable is subjectedonly to self-weight, the flowchart in Fig. 3

can be applied usingP (k)=0, Q=0 and replacingf̂Q by f̂0.

The starting guess solution of an iterative numerical scheme is generally based on a reasonable es-

timate of the solution by the analyst. Non-dimensionalizing the problem as described previously not

only adresses bad-scaling effects due to widely differing magnitudes of the variables and their deriva-

tives, but it also confines the solutions and therefore the starting initial guess around relatively small

values corresponding to commonly encountered deflections normalized by cable span [3,13]. The con-

vergence of the numerical model can be verified by selecting avery small upper-bound valueTOL of

the infinity norm‖η‖∞=max
i

|ηi|, and ending the iterations when‖η‖∞6TOL. Other convergence

criteria based on the minimization of the error on cable deflections and horizontal tension can also be

implemented easily in the computational scheme.
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To illustrate the application of the methodology and the important aspects of the proposed compu-

tational model, the following examples investigate the nonlinear static response of horizontal and in-

clined suspended cables subjected to self-weight and to vertical concentrated and uniformly distributed

loads. The results obtained are validated against analytical solutions when available.

3.2 Application to the analysis of Hookean cables including cross-sectional deforma-
tions

The analysis of suspended cables is generally conducted assuming that their cross-section remains

rigid and therefore neglecting the effect of cross-sectional deformations on the cable’s deflected profile

and tension. Some authors waived this assumption by including the contraction of cable’s cross-section

due to Poisson’s effect [14, 17, 41]. In this case, we show that Hooke’s law can be expressed in terms

of Poisson’s ratioν and the functionC in Eq. (8) as

F̂ = EA
[
1− ν C(τ̂ )

]2 C(τ̂ ) (52)

or using Eq. (9)

C(τ̂ )− 2ν
[
C(τ̂)

]2
+ ν2

[
C(τ̂ )

]3
= τ̂ (53)

which can be solved forC(τ̂) numerically or analytically using Cardano’s formula. Differentiating

Eq. (53) with respect tôZ, f̂0 andf̂Q gives

∂C(τ̂ )
∂Ẑ

= Γ(τ̂)
∂τ̂

∂Ẑ
(54)

∂C(τ̂ )
∂f̂0

= Γ(τ̂)
∂τ̂

∂f̂0
(55)

∂C(τ̂ )
∂f̂Q

= Γ(τ̂)
∂τ̂

∂f̂Q
(56)

in which

Γ(τ̂) =
1

1− 4ν C(τ̂) + 3ν2
[
C(τ̂ )

]2 (57)

Then, using Eqs. (9), (14) and (44), we obtain the derivatives

∂Ci
(
f̂0
)

∂Ẑj

=
ζ Γi(f̂0)

f̂0

∂
√
hi

∂Ẑj

for i, j = 1 . . . n (58)

∂Ci
(
f̂0
)

∂f̂0
= −ζ Γi(f̂0)

f̂ 2
0

√
hi for i = 0 . . . n+ 1 (59)
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required to determine the Jacobian matrix given in AppendixA, and the derivatives

∂Ci
(
f̂Q
)

∂Ẑj

=
ζ Γi(f̂Q)

f̂Q

∂
√
hi

∂Ẑj

for i, j = 1 . . . n (60)

∂Ci
(
f̂Q
)

∂f̂Q
= −ζ Γi(f̂Q)

f̂ 2
Q

√
hi for i = 0 . . . n+ 1 (61)

required to determine the Jacobian matrix given in AppendixB. The functionsΓi in Eqs. (58) to (61)

are given by

Γi(f̂0) =
1

1− 4ν Ci(f̂0) + 3ν2
[
Ci(f̂0)

]2 (62)

Γi(f̂Q) =
1

1− 4ν Ci(f̂Q) + 3ν2
[
Ci(f̂Q)

]2 (63)

For illustration purposes, we apply the proposed finite difference model to the example presented by

Huddleston etal. (1994), consisting of a suspended cable spanning a horizontal distanceL = 100m

and having an unstrained arc-lengthS̃=L as illustrated in Fig. 4 (a). The cable is subjected to its own

weight m̃g per unit unstrained arc-length. The flowchart in Fig. 3 is applied usingP (k) = 0, Q = 0

and replacingf̂Q by f̂0. The cable is then discretized into 100 finite difference elements and the NLS

problem is solved for the vectorχ given by Eq. (36) as detailed in Section 2.1.2. Although a coarser

discretization with fewer finite difference elements wouldyield satisfactory results at the nodes, a

more refined mesh density corresponding to 1-m length finite difference cable elements is adopted to

ensure an accurate static response along the whole cable arc-length. SinceS̃ =L, we consider initial

cable deflectionŝz(0)i = 0, i= 1 . . . n, yielding the firstn elements of the starting vectorχ(0). Taking

account of the scaling discussed previously, the last element f̂0 of vectorχ(0) can be selected to have

the same order of magnitude as the firstn elements of the same vector. For practical guidance, we

recommend using the horizontal tension in a Hookean cable with rigid cross-section as a initial guess

of horizontal tension and corresponding parameterf̂0. This initial horizontal tension can be obtained

either: (i) using available analytical expressions when only self-weight or simple loading cases are

involved [3, 13], (ii) or by applying the flowchart in Fig. 3 with constitutive functionC(τ̂ ) = τ̂ . In

this case, the latter strategy is employed, and a horizontaltensionĤ = 1.82 kN in a Hookean cable

with rigid cross-section is first obtained using an initial horizontal tension̂H(0) = 1040 kN chosen

intentionally high to illustrate the effectiveness of the finite difference scheme in converging to a

much lower value of horizontal cable tension. The new initial horizontal tension̂H(0) = 1.82 kN and

corresponding parameter̂f0=0.342 are then used as starting values for the analysis of the cablewith

deformable cross-section. The cable’s static profiles obtained using the proposed method are presented

in Fig. 5 for ν = 0.0, ν = 0.2 andν = 0.4. It can be seen that the obtained results are in excellent

agreement with those reported by Huddleston etal. (1994). To characterize the maximum deflection of
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the cable with respect to its chord, we define the nondimensional deflection indexeŝfmax

f̂max =
max

∣∣∣ ẑ− ẑ
(ch)
∣∣∣

L
(64)

in which ẑ denotes a vector containing the coordinatesẑi, i= 1 . . . n, of the interior finite difference

nodes of the deflected cable, andẑ(ch) a vector containing the coordinatesẑ(ch)
i , i = 1 . . . n, of the

vertical projections of the nodes on the chord of the cable asillustrated in Fig. 1 (b). The computed

horizontal tensionŝH, strained arc-lengthŝS and deflection indexeŝfmax are presented in Table 1.

To investigate the influence of chord inclination and additional loads, we apply the proposed method

to determine the profiles of the previous cables along the inclined configuration shown in Fig. 4 (b).

In this case, we assume that the unstrained arc-length isS̃ =
√
1002 + 502 = 111.80m. We also

consider initial cable deflectionŝz(0)i = ẑ
(ch)
i , i = 1 . . . n, yielding the firstn elements of the starting

vectorχ(0). As previously, the initial horizontal tension̂H(0) and corresponding parameterf̂0 are

first estimated based on the response of a Hookean inclined suspended cable determined using the

flowchart in Fig. 3 with constitutive functionC(τ̂) = τ̂ , zB = 50m, P (1) = 1 kN andQ(1) = 0.1 kN/m.

Fig. 6 illustrates the obtained results highlighting the effects of cross-sectional deformation on the

static response of the cable hanging under self-weight only(Fig. 6 (a)) as well as under self-weight

combined with concentrated and uniformly distributed loads (Fig. 6 (b)). The horizontal tensionŝH,

strained arc-lengthŝS and deflection indexeŝfmax are also included in Table 1. Figs. 5-6 and Table 1

reveal that: (i) a higher Poisson’s ration corresponds to decreasing horizontal tension and increasing

arc-length as well as deflection index, and (ii) the effect ofcross-section deformation is more important

as the cable is inclined and then as vertical loads are applied.

3.3 Application to the analysis of cables made of neo-Hookea n materials

As mentioned previously, most formulations in the literature focused on the behavior of cables made

of Hookean materials, while cables made of nonlinear elastic materials such as rubber and rubber-like

materials were rarely studied. To illustrate the versatility of the proposed method, we apply it next to

study the response of suspended cables made of a neo-Hookeanmaterial, one of the most common

constitutive models for rubber. In this case, we show that cable tension can be expressed as

F̂ = GA




1 + C(τ̂ )− 1

[
1 + C(τ̂)

]2





(65)

in which G is the cable shear modulus which can be approximately related to the elastic modulus

byG=E/3 [42,43]. Then using Eq. (9), Eq. (65) becomes

τ̂ =
1

3




1 + C(τ̂ )− 1

[
1 + C(τ̂ )

]2





(66)
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which can be solved numerically or analytically using Cardano’s formula. Following the same deriva-

tions as in the previous section, we show that Eqs. (54) to (56) and Eqs. (58) to (61) apply with the

functionsΓ andΓi now given by

Γ(τ̂) =
1 + C(τ̂ )

1− 2 τ̂ + C(τ̂) (67)

Γi(f̂0) =
f̂0
[
1 + Ci(f̂0)

]

f̂0 − 2 ζ
√
hi + f̂0 Ci(f̂0)

(68)

Γi(f̂Q) =
f̂Q
[
1 + Ci(f̂Q)

]

f̂Q − 2 ζ
√
hi + f̂Q Ci(f̂Q)

(69)

The proposed technique is applied to examples presented by Valiente (2006) who developed ana-

lytical expressions of the symmetric catenary of horizontal suspended cables made of neo-Hookean

materials and hanging under self-weight as the one illustrated in Fig. 7 (a). The static profiles of hor-

izontal suspended cables made of a neo-Hookean material andsubjected to self-weight only are de-

termined first using the proposed method and considering unstrained arc-length̃S = L and elastic

moduliE = m̃gL/(2A) andE = m̃gL/(4A). For purpose of comparison, the static response of ca-

bles made of Hookean materials with the same elastic moduli are also illustrated. As previously, a

mesh density corresponding to 1-m length finite difference cable elements is adopted to ensure an

accurate static response along the whole cable arc-length.Therefore, the cables are discretized into

200 finite difference elements and the flowchart in Fig. 3 is applied usingP (k) = 0, Q = 0 and re-

placingf̂Q by f̂0. The values of the starting vectorχ(0) of the algorithm are selected using the same

technique as described in the previous example. Fig. 7 reveals that the obtained static profiles are

identical to those given by the analytical method developedby Valiente (2006). The effects of chord

inclination and loading are illustrated next by applying the proposed technique to determine the static

response of the inclined cable shown in Fig. 7 (b). In this case, we assume that the unstrained arc-

length isS̃ =
√
2002 + 502 = 206.15m and that initial cable deflections areẑ(0)i = ẑ

(ch)
i , i = 1 . . . n.

The flowchart in Fig. 3 is applied usingzB =50m,P (1)=500 kN, Q(1)=10 kN/m and an initial start-

ing vectorχ(0) estimated based on the response of a Hookean inclined suspended cable as described

previously. The results obtained are presented in Fig. 9 (a)when the cable is subjected to self-weight

only, and Fig. 9 (b) when the cable is subjected to concentrated and distributed loads in addition to self-

weight. The horizontal tensionŝH, strained arc-lengthŝS and deflection indexeŝfmax obtained for the

Hookean and neo-Hookean cables studied are given in Table 2.It is clear from Figs. 8-9 and Table 2

that the differences between both types of cables are significant and become even more important as

the cable is inclined and as vertical loads are applied. We note that these case studies are given here for

illustration purposes assuming that the materials behave as Hookean or neo-Hookean up to maximum

deflection. For each particular case, the analyst has to verify that the computed strains are within the

limits of applicability of Hookean, neo-Hookean or other nonlinear elastic behavior.
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4 Conclusions

An original and practical formulation and finite differencescheme were developed to investigate the

static response of horizontal and inclined cables with deformable cross-section, made of general lin-

ear or nonlinear elastic materials, and subjected to vertical concentrated and distributed loads. The

proposed formulation also includes large sag and extensibility effects. Considering various loading

cases, we showed that the resulting nonlinear system of equations can be transformed into a nonlin-

ear least squares problem that can be solved efficiently to determine the nonlinear static response of

suspended cables made of nonlinear elastic materials. The proposed technique was programmed and

its application was illustrated through examples highlighting the effects of coupling between the ten-

sion in a cable and the deformation of its cross-section as well as the use of a neo-Hookean material.

The obtained results were successfully validated against analytical solutions when available. The pro-

posed technique can be easily programmed and presents a valuable and effective alternative to finite

element analysis when implementation of general constitutive nonlinear elastic material models is not

straightforward and recourse to cumbersome 3D cable modeling using solid finite elements is to be

avoided.
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Appendix A

In this Appendix, we propose analytical expressions to determine the the non-zero elements of the Jacobian

matriceJ
η(ℓ) given by Eq. (40). The superscript(ℓ) is omitted herein to alleviate the text.

∂ηi

∂Ẑi−1

=
(
n+ 1

)2 − 4
(
n+ 1

)
f̂0 ai[

1 + Ci
(
f̂0
)]√

hi
− 8 f̂0

√
hi[

1 + Ci
(
f̂0
)]2

∂Ci
(
f̂0
)

∂Ẑi−1

for i = 2 . . . n (A1)

∂ηi

∂Ẑi

= −2
(
n+ 1

)2 − 8 f̂0
√
hi[

1 + Ci
(
f̂0
)]2

∂Ci
(
f̂0
)

∂Ẑi

for i = 1 . . . n (A2)

∂ηi

∂Ẑi+1

=
(
n+ 1

)2
+

4
(
n+ 1

)
f̂0 ai[

1 + Ci
(
f̂0
)]√

hi
− 8 f̂0

√
hi[

1 + Ci
(
f̂0
)]2

∂Ci
(
f̂0
)

∂Ẑi+1

for i = 1 . . . n− 1 (A3)

∂ηi

∂f̂0
=

8
√
hi[

1 + Ci
(
f̂0
)]



1− f̂0[

1 + Ci
(
f̂0
)]

∂Ci
(
f̂0
)

∂f̂0



 for i = 1 . . . n (A4)

∂ηn+1

∂Ẑi

=
1(

n+ 1
)

i+3∑

j=i−2

1(
1 + εj

)


 κj√

1 + κ2j

∂κj

∂Ẑi

−

√
1 + κ2j(
1 + εj

) ∂εj

∂Ẑi


 for i = 3 . . . n− 2 (A5)

∂ηn+1

∂Ẑ1

=
1(

n+ 1
)

3∑

j=1

1(
1 + εj

)


 κj√

1 + κ2j

∂κj

∂Ẑ1

−

√
1 + κ2j(
1 + εj

) ∂εj

∂Ẑ1


 (A6)

∂ηn+1

∂Ẑ2

=
1(

n+ 1
)

4∑

j=1

1(
1 + εj

)


 κj√

1 + κ2j

∂κj

∂Ẑ2

−

√
1 + κ2j(
1 + εj

) ∂εj

∂Ẑ2


 (A7)

∂ηn+1

∂Ẑn−1

=
1(

n+ 1
)

n+1∑

j=n−3

1(
1 + εj

)


 κj√

1 + κ2j

∂κj

∂Ẑn−1

−

√
1 + κ2j(
1 + εj

) ∂εj

∂Ẑn−1


 (A8)

∂ηn+1

∂Ẑn

=
1(

n+ 1
)

n+1∑

j=n−2

1(
1 + εj

)


 κj√

1 + κ2j

∂κj

∂Ẑn

−

√
1 + κ2j(
1 + εj

) ∂εj

∂Ẑn


 (A9)

∂ηn+1

∂f̂0
= − 1

2
(
n+ 1

)
n+1∑

j=1

√
1 + κ2j

(
1 + εj

)2

[
∂Cj−1

(
f̂0
)

∂f̂0
+

∂Cj
(
f̂0
)

∂f̂0

]
(A10)
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Appendix B

In this Appendix, we propose analytical expressions to determine the non-zero elements of the Jacobian ma-

triceJ
η(ℓ) when the effects cable self-weight are combined with concentrated and distributed loads as discussed

in Section 2.2. The superscript(ℓ) is omitted herein to alleviate the text.

∂ηi

∂Ẑi−1

=
(
n+ 1

)2 − 4
(
n+ 1

)
f̂i ai[

1 + Ci
(
f̂Q
)]√

hi
− 8 f̂i

√
hi[

1 + Ci
(
f̂Q
)]2

∂Ci
(
f̂Q
)

∂Ẑi−1

for i = 2 . . . n (B1)

∂ηi

∂Ẑi

= −2
(
n+ 1

)2 − 8 f̂i
√
hi[

1 + Ci
(
f̂Q
)]2

∂Ci
(
f̂Q
)

∂Ẑi

for i = 1 . . . n (B2)

∂ηi

∂Ẑi+1

=
(
n+ 1

)2
+

4
(
n+ 1

)
f̂i ai[

1 + Ci
(
f̂Q
)]√

hi
− 8 f̂i

√
hi[

1 + Ci
(
f̂Q
)]2

∂Ci
(
f̂Q
)

∂Ẑi+1

for i = 1 . . . n− 1 (B3)

∂ηi

∂f̂Q
=

8
√
hi[

1 + Ci
(
f̂Q
)]



1− f̂i[

1 + Ci
(
f̂Q
)]

∂Ci
(
f̂Q
)

∂f̂Q



 for i = 1 . . . n

(B4)

+
8 (n+ 1)P (k)

L
(
m̃g+Q

) if i = p(k)

∂ηn+1

∂Ẑi

=
1(

n+ 1
)

i+3∑

j=i−2

1(
1 + εj

)


 κj√

1 + κ2j

∂κj

∂Ẑi

−

√
1 + κ2j(
1 + εj

) ∂εj

∂Ẑi


 for i = 3 . . . n− 2 (B5)

∂ηn+1

∂Ẑ1

=
1(

n+ 1
)

3∑

j=1

1(
1 + εj

)


 κj√

1 + κ2j

∂κj

∂Ẑ1

−

√
1 + κ2j(
1 + εj

) ∂εj

∂Ẑ1


 (B6)

∂ηn+1

∂Ẑ2

=
1(

n+ 1
)

4∑

j=1

1(
1 + εj

)


 κj√

1 + κ2j

∂κj

∂Ẑ2

−

√
1 + κ2j(
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) ∂εj
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∂ηn+1

∂Ẑn−1

=
1(

n+ 1
)
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j=n−3

1(
1 + εj

)


 κj√

1 + κ2j

∂κj

∂Ẑn−1

−

√
1 + κ2j(
1 + εj

) ∂εj

∂Ẑn−1


 (B8)

∂ηn+1

∂Ẑn

=
1(

n+ 1
)
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j=n−2

1(
1 + εj
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 κj√

1 + κ2j

∂κj
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(
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Table 1

Effect of cross-sectional deformability on the static response of horizontal and inclined suspended cables sub-

jected to vertical loads.

Self-weight Self-weight

only and vertical loads

Poisson’s Horizontal cable Inclined cable Inclined cable

ratio Ĥ (kN) Ŝ (m) f̂max Ĥ (kN) Ŝ (m) f̂max Ĥ (kN) Ŝ (m) f̂max

ν=0.0 1.82 122.92 0.317 1.62 138.89 0.394 2.41 156.57 0.518

ν=0.2 1.74 124.75 0.331 1.55 141.34 0.413 2.18 165.38 0.576

ν=0.4 1.64 127.51 0.352 1.42 146.71 0.453 1.94 176.61 0.647



Table 2

Static response of horizontal and inclined suspended cables made of a neo-Hookean material and subjected to

vertical loads.

Self-weight Self-weight and

only vertical loads

Modulus Horizontal cable Inclined cable Inclined cable

of elasticity Ĥ (kN) Ŝ (m) f̂max Ĥ (kN) Ŝ (m) f̂max Ĥ (kN) Ŝ (m) f̂max

Hookean cable

E=m̃gL/(2A) 366.42 329.71 0.599 355.96 342.69 0.634 448.01 419.30 0.855

E=m̃gL/(4A) 242.46 430.76 0.893 235.89 449.73 0.944 283.55 600.88 1.350

Neo-Hookean cable

E=m̃gL/(2A) 268.81 412.88 0.845 260.43 432.60 0.898 284.17 630.59 1.432

E=m̃gL/(4A) 149.85 674.56 1.556 145.30 711.89 1.653 151.30 1146.55 2.771
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Figure 1. Static response of a suspended cable: (a) Unstrained and strained geometrical configurations and

equilibrium of an elementary segment of the cable; (b) Finite difference mesh.



Figure 2. Suspended cable subjected to self-weight and to vertical concentrated and uniformly distributed loads.



Figure 3. Flowchart illustrating the application of the finite difference scheme to suspended cables subjected to

self-weight, and vertical concentrated and uniformly distributed loads.



Figure 4. Suspended cables with deformable cross-section:(a) Horizontal cable hanging under self-weight only;

(b) Inclined cable hanging under self-weight, concentrated and distributed loads.



Figure 5. Effect of cross-sectional deformability on the static response of a horizontal suspended cable hanging

under self-weight only. , , : Proposed method;� , � : Results from Huddleston etal. (1994).



Figure 6. Effect of cross-sectional deformability on the static response of inclined suspended cables: (a) hanging

under self-weight only; (b) hanging under self-weight, concentrated and distributed loads.



Figure 7. Suspended cables made of a Neo-Hookean material: (a) Horizontal cable hanging under self-weight

only; (b) Inclined cable hanging under self-weight, concentrated and distributed loads.



Figure 8. Static response of horizontal suspended cables made of Hookean and Neo-Hookean materials and

hanging under self-weight only. , : Proposed method (Hookean material); , : Proposed method

(Neo-Hookean material); � , � : Results from Valiente (2006) (Neo-Hookean material).



Figure 9. Static response of inclined suspended cables madeof Hookean and Neo-Hookean materials: (a) hang-

ing under self-weight only; (b) hanging under self-weight,concentrated and distributed loads. , : Pro-

posed method (Hookean material); , : Proposed method (Neo-Hookean material).


