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ABSTRACT

A new formulation to investigate the seismic response ofraginic and asymmetric rectangular
liquid-containing structures is developed and validatethis paper. The proposed method is based
on a sub-structuring approach, where the flexible liquidtaiming structure is modeled using finite
elements, while the impulsive effects of the fluid domainraoeleled analytically through interaction
forces at the fluid-structure interfaces. The techniquedalccount of geometrical or material asym-
metry of the liquid-containing structure, fluid compredgiy and energy dissipation through reservoir
bottom absorption. The formulation is presented in suchathat it can be easily coded into a prac-
tical and computationally efficient program and is appliedliustrative examples highlighting the
effects of geometrical and material asymmetry on the dyoasgponses of liquid-containing struc-
tures. The obtained frequency- and time-domain resultsaceessfully validated against advanced
finite element analyses.
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1 Introduction

The dynamic response of liquid-containing structures le@nlextensively investigated since
the early works of Hoskins and Jacobsen (1934), Jacobsd®)1®erner (1949), Jacobsen
and Ayre (1951), Graham and Rodriguez (1952), and Hous®&7(11963). The continuous
impetus for more refined research on this topic has beenisedtay severe damage to liquid-
containing structures caused by events such as the 1968aGhelarthquakes (Steinbrugge
1963), the 1964 Alaska earthquake (Hanson 1973), the 19%thitge earthquake (Hall
1995), and the 1999 Turkey earthquake (Steinberg and CrQ2)20uring such events,
liquid-containing structures must be damage-proof to gwgpillage of hazardous materi-
als such as toxic chemicals and highly inflammable prodWtger storage tanks are also
crucial post-earthquake lifeline structures, providingtev to extinguish fires occurring in
the aftermath of earthquakes, as well as safe suppliesridg water.

The authors of the earlier studies (Jacobsen 1949, WerdeSamdquist 1949, Jacobsen and
Ayre 1951, Housner 1957, Housner 1963) developed analytiethods to evaluate the ef-
fects of dynamic fluid pressure assuming that the contaisersigid, and that the fluid is
incompressible and inviscid, with its motion limited to dhdisplacements. The work of
Chopra (1967, 1968, 1970) on gravity dams showed that straldtexibility influences sig-
nificantly the dam'’s interaction with the impounded resarvand consequently the over-
all seismic response. Subsequent studies on liquid-congastructures also confirmed that
the flexibility of container walls affects considerably tbeupled dynamic response of the
fluid-container system and should thus be included in sualyses (Veletsos 1974, Veletsos
and Yang 1976, Veletsos and Yang 1977, Haroun 1980, Haro88, Haroun and Housner
1981a,Haroun and Housner 1981b, Balendra et al. 1982). yirenaic fluid pressures within
liquid-containing structures are generally decompos#al {ii) a convective component gen-
erated by the sloshing of a portion of the fluid near the fraéasa, and (ii) an impulsive
component generated by a portion of the fluid acceleratirig thie container. It has been
shown that the coupling between liquid sloshing modes amdaazer vibration modes is
weak (Veletsos 1974, Haroun 1980, Haroun and Housner 1@8#t)sequently, convective
and impulsive pressures can first be determined separatdlyhair effects combined later
to obtain the total dynamic response (Kana 1979, Malhoted €000). In practice, convec-
tive pressures are determined assuming that the contaimgyid, and impulsive pressures
are obtained by analyzing the interacting liquid-struetsystem while neglecting sloshing
effects (Veletsos 1974, Haroun and Housner 1981Db).

Although significant work has been dedicated to the dynamidgjuid-containing struc-

tures, there is no available practical analytical techaitpuevaluate the dynamic and seis-
mic responses of asymmetric rectangular liquid-contgistnuctures. The non-symmetry of
a liquid-containing structure is common and may originatef various sources, such as



different geometries of the lateral walls, igeometric asymmetry, as illustrated in Fig. 1,
or their different constitutive materials, i.material asymmetry, due to intentional design,
asymmetric damage or asymmetric retrofitting for exampileuch cases, the flexibilities of
the two lateral walls and consequently the associated fluichdary conditions are no longer
symmetric as assumed in available analytical approaches.

In this paper, we propose an original analytical methodvestigate the dynamic and seismic
responses of symmetric and asymmetric rectangular ligardaining structures. In addition
to accounting for walls’ flexibility, the developed frequgn and time-domain solutions will
also include the effects of water compressibility as weleasrgy dissipation through wave
absorption at the container’s bottom, two parameters wilidimot receive much attention in
the literature relating to liquid-containing structures.

2 Governing equations
2.1 Reservoir dynamics and boundary conditions

We consider an asymmetric liquid-containing structurdlastrated in Fig. 1. For clarity, the
terms structure and reservoir are used in this paper to tefére solid and fluid domains
of the system, respectively. We assume that: (i) the lodgitl dimension of the structure
is sufficiently large so that it can be modeled as a two-dinograd plane-strain elasticity
problem; (ii) all materials have a linear elastic behav(or) the walls are flexible and have
vertical faces at the interface with the reservoir; (iv) tmatained liquid is compressible,
inviscid, with its motion irrotational and limited to smalmplitudes; (v) sediment deposits
may accumulate at the reservoir bottom, (vi) gravity siefaaves and convective effects are
neglected. The reservoir is of length=2 b, and heightH, as illustrated in Fig. 1. We adopt
a Cartesian coordinate system with origin at the resenattiom, a horizontal axis and a
vertical axisy coincident with the axis of symmetry of the reservoir as shawFig. 1. We
note that the structure can have a geometric and/or massyaimetry as described before.

Under the above-mentioned assumptions, the hydrodynaressprep(x, y,t) is governed
by the classical wave equation
2 1 9%p
P=cz o (1)
whereV? is the Laplace differential operatarthe time variable, and’, the compression
wave velocity. Considering a unit horizontal harmonic grdwaccelerationsig(t) = €=,
the hydrodynamic pressure in the reservoir can be expraaste: frequency domain as
p(z,y,t) = p(z,y,w) €+, wherep(x, y,w) is a complex-valued Frequency Response Func-
tion (FRF). Introducing this transformation into Eq. (1glds the classical Helmholtz equa-



tion
2

p=
02
The empty structure is first modeled using finite element& dynamic equilibrium of the
structure-reservoir system can then be expressed in thedney domain as

V3 + — 0 (2)

[—w? M+ (1 +in) K| T(w) = —M1 + Fy(w) 3)

whereU is a column-vector containing the FRFs of the structuretahdisplacements rela-
tive to the groundM andK are the structure’s mass and stiffness matrices, respgtjyis
the structural hysteretic damping factor assumed condfgris a column-vector containing
the FRFs of hydrodynamic pressure loads exerted at latexiéd, veandl is a column-vector
with the same dimension as the vector of nodal relative dtgrhents, containing zeros ex-
cept along horizontal degrees of freedom which corresporiti¢ direction of earthquake
excitation. Using modal superposition, the FRFs of retatiisplacement and acceleration
components at a given point of the structure with coordm@atey) can be expressed as

W) = S0 2@ e = e 40 @
(@, y,w) = f@bﬁ-y)(:r,y) Zj(w); i,y w QZW (z,9) Zj(w)  (5)

wherei ando denote the horizontal and vertical relative displacemeaspectively;; and
the horizontal and vertical accelerations, respecti\z@fﬁ), andzp](-y) thexz— andy—components
of the ;™ mode shape of the empty structut, the generalized coordinate, and; the
number of structural mode shapes included in the analyBshydrodynamic pressure FRF
can be decomposed as (Fenves and Chopra 1984, Bouaanani 2069)

ﬁ(xayaw) :ﬁO(wayaw) —w2§zj(w)pj(x7y,w) (6)

wherep, is the FRF for hydrodynamic pressure due to rigid body modiothe empty struc-
ture, and wherg, is the FRF corresponding to hydrodynamic pressure due tzdraal
accelerationsbj(-x)(—br, Y) andzp](-x)(br, y) along structural mode shapgeof the empty struc-
ture. The boundary conditions to be satisfied by FRFandp, are as follows:

— At the structure-reservoir vertical interfaces
These boundary conditions are based on compatibility bEtwedrodynamic pressures
and displacements at the lateral walls located-at-b, andx =¥, yielding

op, op; .
by w) = —prs H—by,w) = —p N (—by) (@)
Op, op x
apo(br,y, w) = —pr; apj(br,y, )——prw§)(br,y) (8)



wherep; is the mass density of water.

— Atreservoir free surface
Neglecting the effects of gravity waves at reservoir fredage, hydrodynamic pressures
at this location are assumed null

ﬁO(xath):ﬁj(xaHl’aw) =0 (9)

— At reservoir bottom
An absorptive boundary condition introduced by Hall and gtagq1982) to account for en-
ergy dissipation through one-dimensional partial absongaif incident compression waves
normal to the reservoir boundary
dpo p;

a—y(m, 0,w) =iwqpo(z,0,w); a—y(x, 0,w) =iwgp;(z,0,w) (10)

whereq is a damping coefficient defined at the reservoir bottom as

Pr

- 11
=25 (11)
with ps and C denoting the mass density and the compression wave veloiityn the
reservoir foundation, respectively. The portion of the amplitude reflected back to the
reservoir is represented by the wave reflection coefficietefined by

I
o =
14+qC

(12)

wherea generally varies frond for high wave absorption, tofor high wave reflection. In
the latter case, Eq. (10) simplifies to

Op p;
5y (5 0:0) = 52, 0,0) =0 (13)
2.2 New formulation for coupled vibrations of structure-re servoir systems

Using Eq. (2) and the above-mentioned boundary conditiesshow in Appendix A that
FRFsp, andp, can be expressed as

e N2 (w) [ (@) X (2, 0) = I (@) X, (2,0)]
Bn(w) Kp(w) sinh|brk, (w)] cosh[brk, (w)]

]50($7y7w) - err Yn(va) (14)

n=1

e N2 (W) [ I (@) Xy (2, 0) = L (w) X (2, 0))

Bn(w) kp(w) sinh[brk, (w)] cosh[brr, (w)]

]jj(xayaw) = err Yn(y7w) (15)

n=1
in which the parameters, (w), k,(w), X,, (z,w), and X" (z,w) are given by Egs. (54), (56),
(67) and (68) of Appendix A, respectively, and where thegrdaés I, (w), I, (w), I;,,(w)

1 jn



andI;, (w) are obtained from Egs. (61) and (62) of Appendix A as

Hr
I50) = ) = 57 [ Wiy
i e—lHr)\n(w) o
— _ rAn(w)
() [An(w) wq + wqe (16)
1 i,
L) = g7 [ 047 (Sbey) Vil ) dy (17)
+
Fe) = 57 [0 0) V) (18)
We note that
I;,(w) =0 when the wall at- = —b; is rigid (19)
I, (w) =0 when the wall at: = b is rigid (20)

Evaluating the FRFg, andp; at the structure’s vertical walls, i.e.= —b, andx = b;, gives

me )\%(w){ cosh[2 bk, (w)] — 1} Ipn(w)

Po(=br,y,w) = PrHrn; n(w) in(w) sinh{br, (w)] coshlbrrn (w)]

) me A2 (w) { I, (w) cosh[2 bn ()] — I, (w) }
pi(=by,w) = peHy nz:l (W) K (w) sinh bk, (w)] coshlbrk, (w)]

=~

(Y, w) (21)

Yo(y, w) (22)

and
ﬁO(bl’ayaw) - _ﬁO(_bhy?w) (23)

) - e A2 (w) { I (w) = I, (w) cosh[2 bk (w)]}
Pi(bes ) = errnz::l Bn(w) Kn(w) sinh[bek, (w)] cosh|brk, (w)]

Yaly,w)  (24)

If water is assumed incompressible, Eq. (56) simplifies to

. @n—-1)n
Fn = Ao = — i (25)
and hydrodynamic pressurgsandp, become

B 4err mr (_1)1171 [COSh(2 brﬁn) - ].:|
~bry) = A 26
Po(=br,y) 2 ;::1 (2n — 1)2 sinh (b)) cosh(brre,) cos(A, y) (26)

B 2 Hy I [[;n cosh(2 byk,) — I;rn}

(= y) = A 27
pj(=br.y) nzz:l (2n — 1) sinh(brky,) cosh(beky,) c0s(Any) (27)



and

ﬁo(bhy) = _ﬁo(—braij) (28)

,(b ) _ 2err i [[jin — [;rn COSh(2 br/{,n)}
PO Y (2n — 1) sinh(byk,,) cosh(bky,)

n=1

cos(A, ) (29)

The FRF for total hydrodynamic pressure is given by Eq. (6¢stthe vectoZ of general-
ized coordinates’;, j=1...ms, is obtained by solving the system of equations

SZ=Q (30)

in which elements of matricés andQ are obtained fon=1...msandj=1...msas

Hy
Snj(w) :[ - Ld2 + (1 + [ 775) wi:|6nj + Cd2 [/0 ﬁj(bl’a Y, UJ) wr(zx)(bh y) dy

Hy
— [ pibyw) v by dy| (BD)

Hy
Qule) = = WIM L+ [ ol y,0) v br, ) oy
Hy
= [ Bo(=br, ) 0 (e ) ly (32)

where) denotes the Kronecker symbol ang is the vibration frequency corresponding to
structural mode shapeg,, of the structure without water. A convergence study mustdre c
ducted to determine the sufficient numbersandm, of structural and reservoir mode shapes
to be included into each specific analysis. We note that i€timaining structure is symmet-
ric, Egs. (31) and (32) simplify to

Hy

H
Qu(w) = —WIML+2 [ polbry,w) v (b y) dy (34)

The structural displacement and acceleration time-histesponses to a ground accelera-
tion iig(¢) can be obtained as

ey t) = S50 0) Z4(0) i) = ) 40 (@9
o et) = S0 0,) Z1(0); o) = S 40 (39



where the time-domain generalized coordindesre given by the Fourier integrals

Z;(t) ! /OO Z;i(w) tig(w) € dw ; Z;(t) = ! /OO wW?Z;(w) iig(w) €% dw  (37)

T ) 21 o

in which ig(w) is the Fourier transform of the ground acceleratig(t)

_ ta .
fig(w) = / iig(t) € dt (38)
0
with ¢, denoting the time duration of the applied accelerogram.

Based on these relations, other quantities of interest Isanbe determined. For example,
the shear forces at a given horizontal cutting section aitipnsy, of each wall can also
be obtained by expressing the dynamic equilibrium of thd’svabrtion above the cutting
section, yielding

H,

V= (yast) Z/

YA

p(~br,y, 1) dy — //A—@A) ps(2, y) [ﬁg(t) + ﬂ(x,y,t)] dedy  (39)

H

V7 (ya, t) Z/

YA

Py )ty = [ puoy)|iglt) +iCe.p.0) | drdy (@40)

whereV/~ andV* is the shear forces at the left and right walls of the liquidtemer, respec-
tively, A~ and A" are the areas of the portions located above the cuttingossatif the left
and right walls, respectively, and is the density of the constitutive material(s) of the liquid
container.

3 Validation examples

The dynamic response of symmetric and asymmetric liquittaining structures are inves-
tigated in this section to validate the proposed method #Husiriate its application. The
description as well as the frequency- and time-domain aeslpf the studied systems are
presented in the next two subsections.

3.1 Geometrically asymmetric wall-water system

In this section, we investigate the geometrically asymioetall-water system illustrated in
Fig. 2. The following properties are adopted for the streetumaterial: modulus of elas-
ticity Fs = 25 GPa, Poisson’s ratios = 0.2, and mass densitys = 2400 kg/m’. The reser-
voir contains water of mass density = 1000 kg/n?, and has a height/, = 20m and
a length L, = 20 m. Water is considered compressible with a velocity of pressvaves
Cy=1440 m/s. A constant structural hysteretic damping factoet 0.1 is assumed. To obtain



the mode shapes;, j =1...ms, of the walls without water and corresponding modal par-
ticipation factors, the structures are discretized intw8e plane-strain solid finite elements
using the software ADINA (2010). Fig. 3 (a) illustrates thatk element mesh used. Appli-
cation of the proposed method described in Section 2.2 Ietleat frequency response con-
vergence up t@0 Hz requires that the first eight modes of the empty structaratluded in
the analysis, i.ens=38. Fig. 4 illustrates the first eight mode shapes given by ADI([R810)

as well as the corresponding frequencies and horizonedtafe modal masses expressed in
percentage of total mass of the walls. As can be seen, moda &astical mode, and can
therefore be neglected in the analysis. We also note thatla frequency range up &b Hz
was studied for purpose of illustration although a lowetingtfrequency could have been
selected considering the usual frequency content of istteneder seismic excitation. The
same frequency range will be used in the next examples. Tdatalthe results, we conduct
a finite element analysis where both the walls and the resesmw® modeled using 8-node
plane strain and 8-node potential-based finite elementr@mamed in ADINA (2010), re-
spectively. Fig. 3 (b) illustrates the finite element modsdl In this case, dynamic interaction
between the walls and the reservoir is achieved through-fitrictture interface elements and
a potential-based formulation of the fluid domain (Eversti®81, Bouaanani and Lu 2009).

Figure 5 shows the obtained FRFs of nondimensionalizesgtddaydrodynamic pressures
|p/(prgH,)| and scaled horizontal relative displacemenis.s;| whereus; is the lateral static
displacement under the effect of hydrostatic pressure.rébelts are determined at points
A, B, and C located on the left wall, and points A, B’ and C’ beging to the right wall as
indicated in Fig. 3. The vertical positions of the points gke=yx = 1M, yg = yg = 10 M,

yc = 24m andyc = 28 m. The FRFs in Fig. 5 clearly show that the results of the psedo
method are in excellent agreement with the finite elemenitigois over a wide frequency
range up t&0 Hz. The proposed method is then used to determine the FREgling a re-
flection wave coefficient = 0.2 at reservoir's bottom. The obtained FRFs are superposed to
those in Fig.5 and show that, in this case, the influence @rves bottom absorption af-
fects mainly hydrodynamic pressures at higher frequentargsr thanl0 Hz. The techniques
described previously are also applied next to determineddyhamic pressure profiles cor-
responding to frequenci@ss f; and1.2 f;, wheref, denotes the coupled vibration frequency
of the wall-water system. The obtained profiles presentédgn6 confirm that the proposed
procedure yields excellent results when compared to adbintite element formulations.

Next, we investigate the performance of the proposed meihadsessing the seismic re-
sponse of the previously described wall-water system.7Higustrates the horizontal accel-
eration component of Imperial Valley earthquake (1940) laCéntro selected to conduct
the analyses using the proposed and finite element teclstpseribed above. The obtained
time-histories of nondimensionalized horizontal relativsplacements: /us at points C and
C’ are shown in Fig.8(a) and (b). Fig. 8 (c) and (d) illustrdte nondimensionalized shear



forcesV/ Fyqrat sections A and A’ wheréy= p,gH?2 /2 denotes the hydrostatic force. Fig. 8
clearly shows that the time-history responses predictethéyroposed method are almost
identical to those from finite element analyses.

3.2 Materially asymmetric tank-reservoir system

We consider the tank-reservoir system illustrated in Figh® tank has a material asymmetry
due to the retrofitting of one of its damaged lateral wallsigsi high performance material.
The following properties are adopted for the structure’semals: moduli of elasticity of the
original and reinforcing materialg{!) = 25 GPa andt(?) = 55 GPa, respectively, Poisson’s
ratio vs = 0.2, and mass densitys = 2400 kg/m’. The tank is filled with water with a mass
densityp, = 1000 kg/n? up to a heightt, = 10 m. The length of the reservoir &, = 18 m.
Water is considered compressible with a velocity of pressuavesC; = 1440 m/s. A con-
stant structural hysteretic damping factgr= 0.1 is assumed. Fig. 10 (a) illustrates the fi-
nite element model of the empty tank used to obtain the modgdesties required for the
proposed method, while Fig. 3 (b) shows the tank-reserwatesn’s finite element model
constructed for comparison purposes. 8-node solid andfihiié elements programmed in
ADINA (2010) are used as in the previous models.

In this case, we show that the first six modes of the emptyoetetl tank are to be included
in the analysis for convergence up2oHz, i.e.ms=6. Fig. 11 presents the six mode shapes
of the empty reinforced tank obtained using ADINA (2010) adlas the corresponding fre-
quencies and horizontal effective modal masses expresgezté¢entage of total mass of the
empty tank. By comparing these modes to those of the origyraimetric tank, we observe
that asymmetry affects the frequencies of modes 2, 4 and Welsas the corresponding
modal masses which are now non-null.

The dynamic response of the reinforced tank-reservoiegyss then studied using the pre-
viously described analytical and finite element models shmwFigs. 10 (a) and (b). Fig. 12
presents the resulting FRFs of nondimensionalized hydraayc pressure®/(p9H,)| ob-
tained at points A, B, A and B’, as well as the nondimensia&l horizontal relative dis-
placementsu/us| at points C and C’. The positions of the points are illustidateFig. 10
and are located atx =yx =0.5m, yg=yg =5m, andyc =yc = 11 m. Fig. 12 shows that
the agreement between the proposed method and the finiter@lsoiution is excellent over
the wide frequency range studied. The hydrodynamic pregsufiles are also determined
using the proposed and finite element methods. Fig. 13riéltest the profiles corresponding
to frequencie®).8 f; and 1.2 f;, where f; denotes the coupled vibration frequency of the
tank-reservoir system. These results confirm that the meghonethod and advanced finite
element modeling yield almost identical hydrodynamic pesfi
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The seismic response of the tank-reservoir system is iigatetl next using the proposed
and finite element techniques described above. The taekvas is subjected to the hori-
zontal component of the El Centro ground motion from Imgevaley earthquake (1940)
shown in Fig.7. Fig. 8 illustrates the obtained nondimemsiiczed horizontal relative dis-
placementsu/ug| at points C and C’ as well as the shear foregg i, at sections A and A,
whereF = prgH? /2 denotes the hydrostatic force as previously. Again, the-fistory re-
sults confirm that the proposed procedure yields excelésutits when compared to advanced
finite element formulations.

4 Conclusions

This paper presented and validated an original and effiGdentulation to study horizontally
accelerated symmetrical and asymmetrical liquid-coitgistructures. The new formulation
is based on a sub-structuring approach, where the flexislearong structure is modeled
using finite elements, while the impulsive effects of thedldomain are modeled analyti-
cally through interaction forces at the fluid-structureenfeices. The detailed mathematical
derivations accounting for geometrical or material asymnynaf the containing structure are
developed, considering both incompressible or compriessibater assumptions. The pro-
posed formulation also includes the effects of energy piasin through reservoir bottom
absorption. The technique was programmed and its applicatustrated through exam-
ples highlighting the effects of geometrical and matersirametry on the frequency- and
time-domain dynamic responses of liquid-containing dtres. It is seen that geometrical
or material asymmetry affects the dynamic behavior of tigeontaining structures, namely
in terms of frequency response functions and time histospaoases of various quantities
of interest. The obtained impulsive hydrodynamic pressutessplacements and shear forces
were illustrated and successfully validated against ack@finite element analyses. The pro-
posed technique is formulated in such a way that it can béyeamied into a practical and
computationally efficient program.
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Appendix A

In this appendix, we develop the equations to obtain frequessponse functions, andp;,
j = 1...ms, for hydrodynamic pressure. For clarity and brevity, thiofeing notation is
used

(g0 = { po(z,y,w) if £=0 (41)
PASDEI T piwyw) i L= (42)
and
fo () =1; foy) =1 (43)
£ (y) = 08 (<br, ) £ (y) = 057 (+r, ) (44)

Throughout this appendix, subscripptan take the valuesor j.

Using the technique of separation of variables, we showtthdtodynamic pressure can be
expressed as

ﬁ€($7y7w) = ]3[$(I',W) ﬁfy(y7w) (45)
Substitution into Eg. (2) yields two differential equatsothat can be solved for frequency
response functionsy, andp,, as

Pra(z,w) = 10 (W) €@ 4 0 () g2 (46)
Poy(y,w) = 7 (w) €MDY 4O () dr)v (47)

in which A andx are complex frequency-dependent parameters related by

2

K(W)Q = )\(W)Q T2

(48)

and the coefficients.” (w), {0 (w), AP (w) and~." (w) are to be determined by imposing
appropriate boundary conditions.

Using the transformation of Eq. (45) into Egs. (9) and (13 oltain the boundary conditions
to be satisfied by functiop,, as

dp )
gzy (0,w) —iwgpey(0,w) =0 (49)
Pey(Hr,w) =0 (50)

Substitutingp, , (y, w) by its expression in Eq. (47) into Egs. (49) and (50) yielda ®turm-
Liouville problem with complex-valued frequency-dependeigenvalues\,(w) to be ob-
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tained by solving the characteristic equation

i An(w) — wgq
2@ H _ _ W) 7 WG -
)\n(UJ) + wq ( )
and eigenvectors
[An(w) — wq} e i@y 4 [)\n(w) + wq}ei)\n(w)y
Yol )= ) (52)

1...mfands=1...m

[V Ve dr = Jrs, 53

satisfying the orthogonality relations far=

whered denotes the Kronecker symbol and where the paransetesrgiven by
(54)

Bn(w) = H,; {)\i(w) — w2q2} +iwg
Using Egs. (45) and (46) and the eigenvectors in Eqg. (52),heeshat hydrodynamic pres-

sure can be expressed as

() = 3 [ €07 a0 ) €] Vi)
" (55)

~ > () €T L) (w) €97 Y, (y,w)
in which the sum is truncated to include only the first reservoir modes, and where the
frequency-dependent parametgris given by Eq. (48) as

Ra(w) = || B(W) = 5 (56)

The coefficients, ,,(w) andvy, ,(w) are obtained by substituting Eq. (55) into Egs. (46) and,(47)

yielding
3" i) i (w) @@ — ) (w) e U] Y, (y,w) = pify (y) (57)
> k) M) €O )N V() = ) (68)
Adding Egs. (57) to (58) gives
f_fz[%?)( ) = Yon (@) | Kn(w) coshlberin ()] Yaly, w) = pr [ () + £ ()] (59)
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Multiplying Eq.(59) by eigenvectors, (y,w), s = 1...m;,, integrating over reservoir height
H, and using trigonometric orthogonality relationships ggsfor each reservoir mode

AHN W) [T (@) + I ()]

() — 0
o) = ) = g ) coshlbe, (] )
where the parameters, (w) andl,;, (w) are given by
Hr
@) = 5 [ 0 ) Vil ) dy (61)
I, () = g J () Yaly ) dy (62)
Substituting Eqg. (60) into Eq. (58) yields
gr: mn(w){ -2 %Q(w} sinh[byk, (w)]
" (63)

pH X2 () [T, (@) + I @)] - o
B (w) K (w) cosh[br, (w)] € Yy, w) = pefi (y)

Multiplying Eq.(63) by eigenvector¥,, (y,w), s = 1...my, integrating over reservoir height
H, and using trigonometric orthogonality relationshipsegiYor each reservoir mode

PrHr)\i(W) [[Zn(w) ghrrn(w) _ [jn(w) e—brnn(w)}

Ow) = 64
() 2 B, (w) Kp(w) sinh[brk, (w)] cosh[bky, (w)] (64)
and using Eq. (60)

0 () = PN ) i) €7 — I (w) ] 5

2 B, (w) Kp(w) sinh[brk, (w)] cosh[bky, (w)]

Substituting Egs. (64) and (65) into Eq. (55) leads to theovahg expressions of hydrody-
namic pressures within the vibrating reservoir

me A2 (w) |1, (w) X, — I} (W) X (z,w
o) — o S 2(w) [T () X (2, 0) = I (w) X (2, )]

— Bu(w) kp(w) sinh[bes, (w)] cosh[ber, (w)] Yo (y,w) (66)

in which

X, (z,w) = cosh [(x —by) nn(w)} (67)
X H(z,w) = cosh [(x + br) /ﬁn(w)} (68)
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