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ABSTRACT

A new formulation to investigate the seismic response of symmetric and asymmetric rectangular

liquid-containing structures is developed and validated in this paper. The proposed method is based

on a sub-structuring approach, where the flexible liquid-containing structure is modeled using finite

elements, while the impulsive effects of the fluid domain aremodeled analytically through interaction

forces at the fluid-structure interfaces. The technique takes account of geometrical or material asym-

metry of the liquid-containing structure, fluid compressibility, and energy dissipation through reservoir

bottom absorption. The formulation is presented in such a way that it can be easily coded into a prac-

tical and computationally efficient program and is applied to illustrative examples highlighting the

effects of geometrical and material asymmetry on the dynamic responses of liquid-containing struc-

tures. The obtained frequency- and time-domain results aresuccessfully validated against advanced

finite element analyses.
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1 Introduction

The dynamic response of liquid-containing structures has been extensively investigated since

the early works of Hoskins and Jacobsen (1934), Jacobsen (1949), Werner (1949), Jacobsen

and Ayre (1951), Graham and Rodriguez (1952), and Housner (1957, 1963). The continuous

impetus for more refined research on this topic has been sustained by severe damage to liquid-

containing structures caused by events such as the 1960 Chilean earthquakes (Steinbrugge

1963), the 1964 Alaska earthquake (Hanson 1973), the 1994 Northridge earthquake (Hall

1995), and the 1999 Turkey earthquake (Steinberg and Cruz 2004). During such events,

liquid-containing structures must be damage-proof to avoid spillage of hazardous materi-

als such as toxic chemicals and highly inflammable products.Water storage tanks are also

crucial post-earthquake lifeline structures, providing water to extinguish fires occurring in

the aftermath of earthquakes, as well as safe supplies of drinking water.

The authors of the earlier studies (Jacobsen 1949, Werner and Sundquist 1949, Jacobsen and

Ayre 1951, Housner 1957, Housner 1963) developed analytical methods to evaluate the ef-

fects of dynamic fluid pressure assuming that the containersare rigid, and that the fluid is

incompressible and inviscid, with its motion limited to small displacements. The work of

Chopra (1967, 1968, 1970) on gravity dams showed that structural flexibility influences sig-

nificantly the dam’s interaction with the impounded reservoir, and consequently the over-

all seismic response. Subsequent studies on liquid-containing structures also confirmed that

the flexibility of container walls affects considerably thecoupled dynamic response of the

fluid-container system and should thus be included in such analyses (Veletsos 1974,Veletsos

and Yang 1976, Veletsos and Yang 1977, Haroun 1980, Haroun 1983, Haroun and Housner

1981a,Haroun and Housner 1981b,Balendra et al. 1982). The dynamic fluid pressures within

liquid-containing structures are generally decomposed into: (i) a convective component gen-

erated by the sloshing of a portion of the fluid near the free surface, and (ii) an impulsive

component generated by a portion of the fluid accelerating with the container. It has been

shown that the coupling between liquid sloshing modes and container vibration modes is

weak (Veletsos 1974, Haroun 1980, Haroun and Housner 1982).Consequently, convective

and impulsive pressures can first be determined separately and their effects combined later

to obtain the total dynamic response (Kana 1979, Malhotra etal. 2000). In practice, convec-

tive pressures are determined assuming that the container is rigid, and impulsive pressures

are obtained by analyzing the interacting liquid-structure system while neglecting sloshing

effects (Veletsos 1974,Haroun and Housner 1981b).

Although significant work has been dedicated to the dynamicsof liquid-containing struc-

tures, there is no available practical analytical technique to evaluate the dynamic and seis-

mic responses of asymmetric rectangular liquid-containing structures. The non-symmetry of

a liquid-containing structure is common and may originate from various sources, such as
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different geometries of the lateral walls, i.e.geometric asymmetry, as illustrated in Fig. 1,

or their different constitutive materials, i.e.material asymmetry, due to intentional design,

asymmetric damage or asymmetric retrofitting for example. In such cases, the flexibilities of

the two lateral walls and consequently the associated fluid boundary conditions are no longer

symmetric as assumed in available analytical approaches.

In this paper, we propose an original analytical method to investigate the dynamic and seismic

responses of symmetric and asymmetric rectangular liquid-containing structures. In addition

to accounting for walls’ flexibility, the developed frequency- and time-domain solutions will

also include the effects of water compressibility as well asenergy dissipation through wave

absorption at the container’s bottom, two parameters whichdid not receive much attention in

the literature relating to liquid-containing structures.

2 Governing equations

2.1 Reservoir dynamics and boundary conditions

We consider an asymmetric liquid-containing structure as illustrated in Fig. 1. For clarity, the

terms structure and reservoir are used in this paper to referto the solid and fluid domains

of the system, respectively. We assume that: (i) the longitudinal dimension of the structure

is sufficiently large so that it can be modeled as a two-dimensional plane-strain elasticity

problem; (ii) all materials have a linear elastic behavior;(iii) the walls are flexible and have

vertical faces at the interface with the reservoir; (iv) thecontained liquid is compressible,

inviscid, with its motion irrotational and limited to smallamplitudes; (v) sediment deposits

may accumulate at the reservoir bottom, (vi) gravity surface waves and convective effects are

neglected. The reservoir is of lengthLr=2 br and heightHr as illustrated in Fig. 1. We adopt

a Cartesian coordinate system with origin at the reservoir bottom, a horizontal axisx and a

vertical axisy coincident with the axis of symmetry of the reservoir as shown in Fig. 1. We

note that the structure can have a geometric and/or materialasymmetry as described before.

Under the above-mentioned assumptions, the hydrodynamic pressurep(x, y, t) is governed

by the classical wave equation

∇2p =
1

C2
r

∂2p

∂t2
(1)

where∇2 is the Laplace differential operator,t the time variable, andCr the compression

wave velocity. Considering a unit horizontal harmonic ground accelerations̈ug(t) = eiωt,

the hydrodynamic pressure in the reservoir can be expressedin the frequency domain as

p(x, y, t) = p̄(x, y, ω) eiωt, wherep̄(x, y, ω) is a complex-valued Frequency Response Func-

tion (FRF). Introducing this transformation into Eq. (1) yields the classical Helmholtz equa-
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tion

∇2p̄+
ω2

C2
r

p̄ = 0 (2)

The empty structure is first modeled using finite elements. The dynamic equilibrium of the

structure-reservoir system can then be expressed in the frequency domain as

[

−ω2M+ (1 + i ηs)K
]

U(ω) = −M1 + F̄h(ω) (3)

whereU is a column-vector containing the FRFs of the structure’s nodal displacements rela-

tive to the ground,M andK are the structure’s mass and stiffness matrices, respectively,ηs is

the structural hysteretic damping factor assumed constant, F̄h is a column-vector containing

the FRFs of hydrodynamic pressure loads exerted at lateral walls, and1 is a column-vector

with the same dimension as the vector of nodal relative displacements, containing zeros ex-

cept along horizontal degrees of freedom which correspond to the direction of earthquake

excitation. Using modal superposition, the FRFs of relative displacement and acceleration

components at a given point of the structure with coordinates (x, y) can be expressed as

ū(x, y, ω) =
ms
∑

j=1

ψ
(x)
j (x, y) Z̄j(ω) ; ¯̈u(x, y, ω) = −ω2

ms
∑

j=1

ψ
(x)
j (x, y) Z̄j(ω) (4)

v̄(x, y, ω) =
ms
∑

j=1

ψ
(y)
j (x, y) Z̄j(ω) ; ¯̈v(x, y, ω) = −ω2

ms
∑

j=1

ψ
(y)
j (x, y) Z̄j(ω) (5)

whereū andv̄ denote the horizontal and vertical relative displacements, respectively,̄̈u and¯̈v

the horizontal and vertical accelerations, respectively,ψ
(x)
j andψ(y)

j thex– andy–components

of the j th mode shape of the empty structure,Z̄j the generalized coordinate, andms the

number of structural mode shapes included in the analysis. The hydrodynamic pressure FRFp̄

can be decomposed as (Fenves and Chopra 1984,Bouaanani and Lu 2009)

p̄(x, y, ω) = p̄0(x, y, ω)− ω2
ms
∑

j=1

Z̄j(ω) p̄j(x, y, ω) (6)

wherep̄0 is the FRF for hydrodynamic pressure due to rigid body motionof the empty struc-

ture, and wherēpj is the FRF corresponding to hydrodynamic pressure due to horizontal

accelerationsψ(x)
j (−br, y) andψ(x)

j (br, y) along structural mode shapej of the empty struc-

ture. The boundary conditions to be satisfied by FRFsp̄0 andp̄j are as follows:

– At the structure-reservoir vertical interfaces

These boundary conditions are based on compatibility between hydrodynamic pressures

and displacements at the lateral walls located atx=−br andx=br, yielding

∂p̄0
∂x

(−br, y, ω) = −ρr ;
∂p̄j
∂x

(−br, y, ω) = −ρr ψ
(x)
j (−br, y) (7)

∂p̄0
∂x

(br, y, ω) = −ρr ;
∂p̄j
∂x

(br, y, ω) = −ρr ψ
(x)
j (br, y) (8)

4



whereρr is the mass density of water.

– At reservoir free surface

Neglecting the effects of gravity waves at reservoir free surface, hydrodynamic pressures

at this location are assumed null

p̄0(x,Hr, ω) = p̄j(x,Hr, ω) = 0 (9)

– At reservoir bottom

An absorptive boundary condition introduced by Hall and Chopra (1982) to account for en-

ergy dissipation through one-dimensional partial absorption of incident compression waves

normal to the reservoir boundary

∂p̄0
∂y

(x, 0, ω) = i ωq p̄0(x, 0, ω) ;
∂p̄j
∂y

(x, 0, ω) = i ωq p̄j(x, 0, ω) (10)

whereq is a damping coefficient defined at the reservoir bottom as

q =
ρr

ρf Cf
(11)

with ρf andCf denoting the mass density and the compression wave velocitywithin the

reservoir foundation, respectively. The portion of the wave amplitude reflected back to the

reservoir is represented by the wave reflection coefficientα defined by

α =
1− q Cr

1 + q Cr
(12)

whereα generally varies from0 for high wave absorption, to1 for high wave reflection. In

the latter case, Eq. (10) simplifies to

∂p̄0
∂y

(x, 0, ω) =
∂p̄j
∂y

(x, 0, ω) = 0 (13)

2.2 New formulation for coupled vibrations of structure-re servoir systems

Using Eq. (2) and the above-mentioned boundary conditions,we show in Appendix A that

FRFsp̄0 andp̄j can be expressed as

p̄0(x, y, ω) = ρrHr

mr
∑

n=1

λ2n(ω)
[

I−0n(ω)X
−
n (x, ω)− I+0n(ω)X

+
n (x, ω)

]

βn(ω) κn(ω) sinh[brκn(ω)] cosh[brκn(ω)]
Yn(y, ω) (14)

p̄j(x, y, ω) = ρrHr

mr
∑

n=1

λ2n(ω)
[

I−j n(ω)X
−
n (x, ω)− I+j n(ω)X

+
n (x, ω)

]

βn(ω) κn(ω) sinh[brκn(ω)] cosh[brκn(ω)]
Yn(y, ω) (15)

in which the parametersβn(ω), κn(ω),X−
n (x, ω), andX+

n (x, ω) are given by Eqs. (54), (56),

(67) and (68) of Appendix A, respectively, and where the integralsI−0n(ω), I
+
0n(ω), I

−
j n(ω)
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andI+j n(ω) are obtained from Eqs. (61) and (62) of Appendix A as

I−0n(ω) = I+0n(ω) =
1

Hr

∫ Hr

0
Yn(y, ω) dy

=
i e−iHrλn(ω)

Hrλ2n(ω)

[

λn(ω)− ωq + ωqeiHrλn(ω)
]

(16)

I−j n(ω) =
1

Hr

∫ Hr

0
ψ

(x)
j (−br, y) Yn(y, ω) dy (17)

I+j n(ω) =
1

Hr

∫ Hr

0
ψ

(x)
j (br, y) Yn(y, ω) dy (18)

We note that

I−j n(ω) = 0 when the wall atx = −br is rigid (19)

I+j n(ω) = 0 when the wall atx = br is rigid (20)

Evaluating the FRFs̄p0 andp̄j at the structure’s vertical walls, i.e.x = −br andx = br, gives

p̄0(−br, y, ω) = ρrHr

mr
∑

n=1

λ2n(ω)
{

cosh[2 brκn(ω)]− 1
}

I0n(ω)

βn(ω) κn(ω) sinh[brκn(ω)] cosh[brκn(ω)]
Yn(y, ω) (21)

p̄j(−br, y, ω) = ρrHr

mr
∑

n=1

λ2n(ω)
{

I−j n(ω) cosh[2 brκn(ω)]− I+j n(ω)
}

βn(ω) κn(ω) sinh[brκn(ω)] cosh[brκn(ω)]
Yn(y, ω) (22)

and

p̄0(br, y, ω) = −p̄0(−br, y, ω) (23)

p̄j(br, y, ω) = ρrHr

mr
∑

n=1

λ2n(ω)
{

I−j n(ω)− I+j n(ω) cosh[2 brκn(ω)]
}

βn(ω) κn(ω) sinh[brκn(ω)] cosh[brκn(ω)]
Yn(y, ω) (24)

If water is assumed incompressible, Eq. (56) simplifies to

κn = λn =
(2n− 1) π

2Hr
(25)

and hydrodynamic pressuresp̄0 andp̄j become

p̄0(−br, y) =
4ρrHr

π2

mr
∑

n=1

(−1)n−1
[

cosh(2 brκn)− 1
]

(2n− 1)2 sinh(brκn) cosh(brκn)
cos(λn y) (26)

p̄j(−br, y) =
2ρrHr

π

mr
∑

n=1

[

I−j n cosh(2 brκn)− I+j n
]

(2n− 1) sinh(brκn) cosh(brκn)
cos(λn y) (27)
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and

p̄0(br, y) = −p̄0(−br, y, ω) (28)

p̄j(br, y) =
2ρrHr

π

mr
∑

n=1

[

I−j n − I+j n cosh(2 brκn)
]

(2n− 1) sinh(brκn) cosh(brκn)
cos(λn y) (29)

The FRF for total hydrodynamic pressure is given by Eq. (6) where the vector̄Z of general-

ized coordinates̄Zj, j=1 . . .ms , is obtained by solving the system of equations

S̄ Z̄ = Q̄ (30)

in which elements of matrices̄S andQ̄ are obtained forn=1 . . .ms andj=1 . . .ms as

S̄nj(ω) =
[

− ω2 +
(

1 + i ηs

)

ω2
n

]

δnj + ω2

[

∫ Hr

0
p̄j(br, y, ω)ψ

(x)
n (br, y) dy

−
∫ Hr

0
p̄j(−br, y, ω)ψ

(x)
n (−br, y) dy

]

(31)

Q̄n(ω) =−ψT
n M1+

∫ Hr

0
p̄0(br, y, ω)ψ

(x)
n (br, y) dy

−
∫ Hr

0
p̄0(−br, y, ω)ψ

(x)
n (−br, y) dy (32)

whereδ denotes the Kronecker symbol andωn is the vibration frequency corresponding to

structural mode shapeψn of the structure without water. A convergence study must be con-

ducted to determine the sufficient numbersms andmr of structural and reservoir mode shapes

to be included into each specific analysis. We note that if thecontaining structure is symmet-

ric, Eqs. (31) and (32) simplify to

S̄nj(ω) =
[

− ω2 +
(

1 + i ηs

)

ω2
n

]

δnj + 2ω2
∫ Hr

0
p̄j(br, y, ω)ψ

(x)
n (br, y) dy (33)

Q̄n(ω) =−ψT
nM1+ 2

∫ Hr

0
p̄0(br, y, ω)ψ

(x)
n (br, y) dy (34)

The structural displacement and acceleration time-history responses to a ground accelera-

tion üg(t) can be obtained as

u(x, y, t) =
ms
∑

j=1

ψ
(x)
j (x, y)Zj(t) ; ü(x, y, t) =

ms
∑

j=1

ψ
(x)
j (x, y) Z̈j(t) (35)

v(x, y, t) =
ms
∑

j=1

ψ
(y)
j (x, y)Zj(t) ; v̈(x, y, t) =

ms
∑

j=1

ψ
(y)
j (x, y) Z̈j(t) (36)
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where the time-domain generalized coordinatesZj are given by the Fourier integrals

Zj(t) =
1

2π

∫

∞

−∞

Z̄j(ω) ¯̈ug(ω) eiωt dω ; Z̈j(t) = −
1

2π

∫

∞

−∞

ω2Z̄j(ω) ¯̈ug(ω) eiωt dω (37)

in which ¯̈ug(ω) is the Fourier transform of the ground accelerationüg(t)

¯̈ug(ω) =
∫ ta

0
üg(t) e−iωt dt (38)

with ta denoting the time duration of the applied accelerogram.

Based on these relations, other quantities of interest can also be determined. For example,

the shear forces at a given horizontal cutting section at position yA of each wall can also

be obtained by expressing the dynamic equilibrium of the wall’s portion above the cutting

section, yielding

V −(yA, t) =
∫ Hr

yA

p(−br, y, t) dy −
∫ ∫

A−(yA)
ρs(x, y)

[

üg(t) + ü(x, y, t)
]

dxdy (39)

V +(yA, t) =
∫ Hr

yA

p(br, y, t) dy −
∫ ∫

A+(yA)
ρs(x, y)

[

üg(t) + ü(x, y, t)
]

dxdy (40)

whereV − andV + is the shear forces at the left and right walls of the liquid container, respec-

tively, A− andA+ are the areas of the portions located above the cutting sections of the left

and right walls, respectively, andρs is the density of the constitutive material(s) of the liquid

container.

3 Validation examples

The dynamic response of symmetric and asymmetric liquid-containing structures are inves-

tigated in this section to validate the proposed method and illustrate its application. The

description as well as the frequency- and time-domain analyses of the studied systems are

presented in the next two subsections.

3.1 Geometrically asymmetric wall-water system

In this section, we investigate the geometrically asymmetric wall-water system illustrated in

Fig. 2. The following properties are adopted for the structure’s material: modulus of elas-

ticity Es = 25GPa, Poisson’s ratioνs = 0.2, and mass densityρs = 2400 kg/m3. The reser-

voir contains water of mass densityρr = 1000 kg/m3, and has a heightHr = 20m and

a lengthLr = 20m. Water is considered compressible with a velocity of pressure waves

Cr=1440m/s. A constant structural hysteretic damping factorηs=0.1 is assumed. To obtain
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the mode shapesψj , j = 1 . . .ms, of the walls without water and corresponding modal par-

ticipation factors, the structures are discretized into 8-node plane-strain solid finite elements

using the software ADINA (2010). Fig. 3 (a) illustrates the finite element mesh used. Appli-

cation of the proposed method described in Section 2.2 reveals that frequency response con-

vergence up to20Hz requires that the first eight modes of the empty structure be included in

the analysis, i.e.ms=8. Fig. 4 illustrates the first eight mode shapes given by ADINA(2010)

as well as the corresponding frequencies and horizontal effective modal masses expressed in

percentage of total mass of the walls. As can be seen, mode 6 isa vertical mode, and can

therefore be neglected in the analysis. We also note that a wide frequency range up to20Hz

was studied for purpose of illustration although a lower cutting frequency could have been

selected considering the usual frequency content of interest under seismic excitation. The

same frequency range will be used in the next examples. To validate the results, we conduct

a finite element analysis where both the walls and the reservoir are modeled using 8-node

plane strain and 8-node potential-based finite elements programmed in ADINA (2010), re-

spectively. Fig. 3 (b) illustrates the finite element model used. In this case, dynamic interaction

between the walls and the reservoir is achieved through fluid-structure interface elements and

a potential-based formulation of the fluid domain (Everstine 1981,Bouaanani and Lu 2009).

Figure 5 shows the obtained FRFs of nondimensionalized scaled hydrodynamic pressures

|p̄/(ρrgHr)| and scaled horizontal relative displacements|ū/ust| whereust is the lateral static

displacement under the effect of hydrostatic pressure. Theresults are determined at points

A, B, and C located on the left wall, and points A’, B’ and C’ belonging to the right wall as

indicated in Fig. 3. The vertical positions of the points areyA = yA’ = 1m, yB = yB’ = 10m,

yC = 24m andyC’ = 28m. The FRFs in Fig. 5 clearly show that the results of the proposed

method are in excellent agreement with the finite element solutions over a wide frequency

range up to20Hz. The proposed method is then used to determine the FRFs including a re-

flection wave coefficientα=0.2 at reservoir’s bottom. The obtained FRFs are superposed to

those in Fig. 5 and show that, in this case, the influence of reservoir bottom absorption af-

fects mainly hydrodynamic pressures at higher frequencieslarger than10Hz. The techniques

described previously are also applied next to determine hydrodynamic pressure profiles cor-

responding to frequencies0.8 f̃1 and1.2 f̃1, wheref̃1 denotes the coupled vibration frequency

of the wall-water system. The obtained profiles presented inFig. 6 confirm that the proposed

procedure yields excellent results when compared to advanced finite element formulations.

Next, we investigate the performance of the proposed methodin assessing the seismic re-

sponse of the previously described wall-water system. Fig.7 illustrates the horizontal accel-

eration component of Imperial Valley earthquake (1940) at El Centro selected to conduct

the analyses using the proposed and finite element techniques described above. The obtained

time-histories of nondimensionalized horizontal relative displacements|u/ust| at points C and

C’ are shown in Fig. 8 (a) and (b). Fig. 8 (c) and (d) illustratethe nondimensionalized shear
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forcesV/Fstat at sections A and A’ whereFstat=ρrgH2
r /2 denotes the hydrostatic force. Fig. 8

clearly shows that the time-history responses predicted bythe proposed method are almost

identical to those from finite element analyses.

3.2 Materially asymmetric tank-reservoir system

We consider the tank-reservoir system illustrated in Fig. 9. The tank has a material asymmetry

due to the retrofitting of one of its damaged lateral walls using a high performance material.

The following properties are adopted for the structure’s materials: moduli of elasticity of the

original and reinforcing materialsE(1)
s = 25GPa andE(2)

s = 55GPa, respectively, Poisson’s

ratio νs = 0.2, and mass densityρs = 2400 kg/m3. The tank is filled with water with a mass

densityρr = 1000 kg/m3 up to a heightHr = 10m. The length of the reservoir isLr = 18m.

Water is considered compressible with a velocity of pressure wavesCr = 1440m/s. A con-

stant structural hysteretic damping factorηs = 0.1 is assumed. Fig. 10 (a) illustrates the fi-

nite element model of the empty tank used to obtain the modal properties required for the

proposed method, while Fig. 3 (b) shows the tank-reservoir system’s finite element model

constructed for comparison purposes. 8-node solid and fluidfinite elements programmed in

ADINA (2010) are used as in the previous models.

In this case, we show that the first six modes of the empty reinforced tank are to be included

in the analysis for convergence up to20Hz, i.e.ms=6. Fig. 11 presents the six mode shapes

of the empty reinforced tank obtained using ADINA (2010) as well as the corresponding fre-

quencies and horizontal effective modal masses expressed in percentage of total mass of the

empty tank. By comparing these modes to those of the originalsymmetric tank, we observe

that asymmetry affects the frequencies of modes 2, 4 and 6, aswell as the corresponding

modal masses which are now non-null.

The dynamic response of the reinforced tank-reservoir system is then studied using the pre-

viously described analytical and finite element models shown in Figs. 10 (a) and (b). Fig. 12

presents the resulting FRFs of nondimensionalized hydrodynamic pressures|p̄/(ρrgHr)| ob-

tained at points A, B, A’ and B’, as well as the nondimensionalized horizontal relative dis-

placements|ū/ust| at points C and C’. The positions of the points are illustrated in Fig. 10

and are located atyA = yA’ =0.5m, yB = yB’ =5m, andyC= yC’ =11m. Fig. 12 shows that

the agreement between the proposed method and the finite element solution is excellent over

the wide frequency range studied. The hydrodynamic pressure profiles are also determined

using the proposed and finite element methods. Fig. 13 illustrates the profiles corresponding

to frequencies0.8 f̃1 and 1.2 f̃1, wheref̃1 denotes the coupled vibration frequency of the

tank-reservoir system. These results confirm that the proposed method and advanced finite

element modeling yield almost identical hydrodynamic profiles.
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The seismic response of the tank-reservoir system is investigated next using the proposed

and finite element techniques described above. The tank-reservoir is subjected to the hori-

zontal component of the El Centro ground motion from Imperial Valley earthquake (1940)

shown in Fig. 7. Fig. 8 illustrates the obtained nondimensionalized horizontal relative dis-

placements|u/ust| at points C and C’ as well as the shear forcesV/Fstat at sections A and A’,

whereFstat=ρrgH2
r /2 denotes the hydrostatic force as previously. Again, the time-history re-

sults confirm that the proposed procedure yields excellent results when compared to advanced

finite element formulations.

4 Conclusions

This paper presented and validated an original and efficientformulation to study horizontally

accelerated symmetrical and asymmetrical liquid-containing structures. The new formulation

is based on a sub-structuring approach, where the flexible containing structure is modeled

using finite elements, while the impulsive effects of the fluid domain are modeled analyti-

cally through interaction forces at the fluid-structure interfaces. The detailed mathematical

derivations accounting for geometrical or material asymmetry of the containing structure are

developed, considering both incompressible or compressible water assumptions. The pro-

posed formulation also includes the effects of energy dissipation through reservoir bottom

absorption. The technique was programmed and its application illustrated through exam-

ples highlighting the effects of geometrical and material asymmetry on the frequency- and

time-domain dynamic responses of liquid-containing structures. It is seen that geometrical

or material asymmetry affects the dynamic behavior of liquid-containing structures, namely

in terms of frequency response functions and time history responses of various quantities

of interest. The obtained impulsive hydrodynamic pressures, displacements and shear forces

were illustrated and successfully validated against advanced finite element analyses. The pro-

posed technique is formulated in such a way that it can be easily coded into a practical and

computationally efficient program.
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Appendix A

In this appendix, we develop the equations to obtain frequency response functions̄p0 andp̄j,

j = 1 . . .ms, for hydrodynamic pressure. For clarity and brevity, the following notation is

used

p̄ℓ(x, y, ω) =

{

p̄0(x, y, ω) if ℓ = 0 (41)

p̄j(x, y, ω) if ℓ = j (42)

and

f−

0 (y) = 1 ; f+
0 (y) = 1 (43)

f−

j (y) = ψ
(x)
j (−br, y) ; f+

j (y) = ψ
(x)
j (+br, y) (44)

Throughout this appendix, subscriptℓ can take the values0 or j.

Using the technique of separation of variables, we show thathydrodynamic pressure can be

expressed as

p̄ℓ(x, y, ω) = p̄ℓ x(x, ω) p̄ℓ y(y, ω) (45)

Substitution into Eq. (2) yields two differential equations that can be solved for frequency

response functions̄pℓ x andp̄ℓ y as

p̄ℓ x(x, ω) = γ
(ℓ)
1 (ω) e−κ(ω) x + γ

(ℓ)
2 (ω) eκ(ω)x (46)

p̄ℓ y(y, ω) = γ
(ℓ)
3 (ω) e−i λ(ω) y + γ

(ℓ)
4 (ω) ei λ(ω) y (47)

in whichλ andκ are complex frequency-dependent parameters related by

κ(ω)2 = λ(ω)2 −
ω2

C2
(48)

and the coefficientsγ(ℓ)1 (ω), γ(ℓ)2 (ω), γ(ℓ)3 (ω) andγ(ℓ)4 (ω) are to be determined by imposing

appropriate boundary conditions.

Using the transformation of Eq. (45) into Eqs. (9) and (13), we obtain the boundary conditions

to be satisfied by function̄pℓ y as

dp̄ℓ y
dy

(0, ω)− iωq p̄ℓ y(0, ω) = 0 (49)

p̄ℓ y(Hr, ω) = 0 (50)

Substitutingp̄ℓ y(y, ω) by its expression in Eq. (47) into Eqs. (49) and (50) yields toa Sturm-

Liouville problem with complex-valued frequency-dependent eigenvaluesλn(ω) to be ob-
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tained by solving the characteristic equation

e2iλn(ω)Hr = −
λn(ω)− ωq

λn(ω) + ωq
(51)

and eigenvectors

Yn(y, ω) =

[

λn(ω)− ωq
]

e−iλn(ω) y +
[

λn(ω) + ωq
]

eiλn(ω) y

2λn(ω)
(52)

satisfying the orthogonality relations forn = 1 . . .mr ands = 1 . . .mr

∫ Hr

0
Ys(y, ω) Yn(y, ω) dy =

βn(ω)

2λ2n(ω)
δsn (53)

whereδ denotes the Kronecker symbol and where the parameterβn is given by

βn(ω) = Hr

[

λ2n(ω)− ω2q2
]

+ i ωq (54)

Using Eqs. (45) and (46) and the eigenvectors in Eq. (52), we show that hydrodynamic pres-

sure can be expressed as

p̄ℓ(x, y, ω) =
∞
∑

n=1

[

γ
(ℓ)
1,n(ω) e−κn(ω) x + γ

(ℓ)
2,n(ω) eκn(ω) x

]

Yn(y, ω)

≈
mr
∑

n=1

[

γ
(ℓ)
1,n(ω) e−κn(ω) x + γ

(ℓ)
2,n(ω) eκn(ω) x

]

Yn(y, ω)

(55)

in which the sum is truncated to include only the firstmr reservoir modes, and where the

frequency-dependent parameterκn is given by Eq. (48) as

κn(ω) =

√

√

√

√λ2n(ω)−
ω2

C2
r

(56)

The coefficientsγ1,n(ω) andγ2,n(ω) are obtained by substituting Eq. (55) into Eqs. (46) and (47),

yielding

mr
∑

n=1

κn(ω)
[

γ
(ℓ)
1,n(ω) eκn(ω) br − γ

(ℓ)
2,n(ω) e−κn(ω) br

]

Yn(y, ω) = ρrf
−

ℓ (y) (57)

mr
∑

n=1

κn(ω)
[

γ
(ℓ)
1,n(ω) e−κn(ω) br − γ

(ℓ)
2,n(ω) eκn(ω) br

]

Yn(y, ω) = ρrf
+
ℓ (y) (58)

Adding Eqs. (57) to (58) gives

mr
∑

n=1

2
[

γ
(ℓ)
1,n(ω)− γ

(ℓ)
2,n(ω)

]

κn(ω) cosh[brκn(ω)] Yn(y, ω) = ρr

[

f−

ℓ (y) + f+
ℓ (y)

]

(59)
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Multiplying Eq.(59) by eigenvectorsYn(y, ω), s = 1 . . .mr, integrating over reservoir height

Hr and using trigonometric orthogonality relationships yields for each reservoir moden

γ
(ℓ)
2,n(ω) = γ

(ℓ)
1,n(ω)−

ρrHrλ
2
n(ω)

[

I+ℓ n(ω) + I−ℓ n(ω)
]

βn(ω) κn(ω) cosh[brκn(ω)]
(60)

where the parametersI−ℓ n(ω) andI+ℓ n(ω) are given by

I−ℓ n(ω) =
1

Hr

∫ Hr

0
f−

ℓ (y) Yn(y, ω) dy (61)

I+ℓ n(ω) =
1

Hr

∫ Hr

0
f+
ℓ (y) Yn(y, ω) dy (62)

Substituting Eq. (60) into Eq. (58) yields

mr
∑

n=1

κn(ω)







− 2 γ
(ℓ)
1,n(ω) sinh[brκn(ω)]

+
ρrHrλ

2
n(ω)

[

I+ℓ n(ω) + I−ℓ n(ω)
]

βn(ω) κn(ω) cosh[brκn(ω)]
ebrκn(ω)







Yn(y, ω) = ρrf
+
ℓ (y)

(63)

Multiplying Eq.(63) by eigenvectorsYn(y, ω), s = 1...mr, integrating over reservoir height

Hr and using trigonometric orthogonality relationships, gives for each reservoir moden

γ
(ℓ)
1,n(ω) =

ρrHrλ
2
n(ω)

[

I−ℓ n(ω) ebrκn(ω) − I+ℓ n(ω) e−brκn(ω)
]

2 βn(ω) κn(ω) sinh[brκn(ω)] cosh[brκn(ω)]
(64)

and using Eq. (60)

γ
(ℓ)
2,n(ω) =

ρrHrλ
2
n(ω)

[

I−ℓ n(ω) e−brκn(ω) − I+ℓ n(ω) ebrκn(ω)
]

2 βn(ω) κn(ω) sinh[brκn(ω)] cosh[brκn(ω)]
(65)

Substituting Eqs. (64) and (65) into Eq. (55) leads to the following expressions of hydrody-

namic pressures within the vibrating reservoir

p̄ℓ(x, y, ω) = ρrHr

mr
∑

n=1

λ2n(ω)
[

I−ℓ n(ω)X
−
n (x, ω)− I+ℓ n(ω)X

+
n (x, ω)

]

βn(ω) κn(ω) sinh[brκn(ω)] cosh[brκn(ω)]
Yn(y, ω) (66)

in which

X−

n (x, ω) = cosh
[

(x− br) κn(ω)
]

(67)

X+
n (x, ω) = cosh

[

(x+ br) κn(ω)
]

(68)
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Figure 1. General geometry of the studied geometrically or materially asymmetric liquid containing
structures.



Figure 2. Geometry of the studied geometrically asymmetricwall-water system.



Figure 3. Geometry of the studied geometrically asymmetricwall-water system.



Figure 4. First eight mode shapes and corresponding frequencies and effective modal masses of the
walls without water.



Figure 5. Nondimensionalized hydrodynamic pressures and displacements for the geometrically asym-
metric wall-water system: (a) and (b) hydrodynamic pressures, (c) displacements. Continuous lines :
Points A, B and C. Dotted lines : Points A’, B’ and C’. Finite element solution; Proposed
solution withα=1.0; Proposed solution withα=0.2.



Figure 6. Nondimensionalized hydrodynamic pressure profiles on the walls of the asymmetric wal-
l-water system. Continuous lines : Left wall. Dotted lines :Right wall. Finite element solution;

Proposed solution.



Figure 7. Horizontal acceleration component of Imperial Valley earthquake (1940) at El Centro.



Figure 8. Time-history response of the geometrically asymmetric wall-water system: (a) Nondimensionalized displace-
ment at point C; (b) Nondimensionalized displacement at point C’; (c) Nondimensionalized shear force at section A; (d)
Nondimensionalized shear force at section A’. Finite element solution; Proposed solution.



Figure 9. Geometry of the studied materially asymmetric tank-reservoir system.



Figure 10. Finite elements models: (a) Retrofitted tank and analytical model for hydrodynamic pressure; (b)
Retrofitted tank-water system.



Figure 11. First six mode shapes and corresponding frequencies and effective modal masses of the
asymmetrical tank.



Figure 12. Nondimensionalized hydrodynamic pressures anddisplacements for the materially asym-
metric tank-reservoir system: (a) and (b) hydrodynamic pressures, (c) displacements. Continuous lines
: Points A, B and C. Dotted lines : Points A’, B’ and C’. Finite element solution; Proposed
solution.



Figure 13. Nondimensionalized hydrodynamic pressure profiles on the walls of the materially asym-
metric tank-teservoir system. Continuous lines : Left wall. Dotted lines : Right wall. Finite element
solution; Proposed solution.



Figure 14. Time-history response of the materially asymmetric tank-reservoir system: (a) Nondimensionalized displace-
ment at point C; (b) Nondimensionalized displacement at point C’; (c) Nondimensionalized shear force at section A; (d)
Nondimensionalized shear force at section A’. Finite element solution; Proposed solution.


