
Web Log Session Analyzer:
Integrating Parsing and Logic Programming Into a Data Mart Architecture

Michel C. Desmarais1

École Polytechnique de Montréal
Computer Engineering

C.P. 6079, succ. Centre-Ville, Montréal Qúebec, Canada, H3C 3A7
michel.desmarais@polymtl.ca

Abstract

Navigation and interaction patterns of Web users can be
relatively complex, especially for sites with interactive ap-
plications that support user sessions and profiles. We de-
scribe such a case for an interactive virtual garment dress-
ing room. The application is distributed over many web
sites, supports personnalization and user profiles, and the
notion of a multi-site user session. It has its own data log-
ging system that generates approximately 5GB of complex
data per month. The analysis of those logs requires more
sophisticated processing than is typically done using a re-
lational language. Even the use of procedural languages
and DBMS can prove tedious and inefficient. We show an
approach to the analysis of complex log data based on a
stream processing architecture and the use of specialized
languages, namely a grammatical parser and a logic pro-
gramming module, that offers an efficient, flexible, and pow-
erful solution.

1. Introduction

MVM Inc. developed a virtual dressing room that allows
a user to create her own personalized virtual model and al-
lows one to try on garments from a retailer over that model
(seewww.mvm.com and the example in Figure 1). The
personal virtual model can be made to resemble as close as
possible to the user’s own body, namely her body measure-
ments, but also including hair style, skin colour, etc. A Web
questionnaire of about 12 items allows the user to tailor her
model to her will (see Figure 2).

This application is sold to garment retailers such as
Lands’End and Sears Inc. However, personal attributes of
the user is kept by a central server managed by MVM, such

1Formely at MVM Inc., 80 Queen St Suite 502 Montreal, Quebec,
Canada H3C 2N5.

Figure 1. A virtual model.

that the user can register and create his/her model once and
retrieve it for every retailer once logged in.

MVM developed a data collection system that logs rel-
evant usage information. Here are a few examples of the
questions we want the system to be able to answer:

• How many users visited Lands’End during the month
and how many garments did they try on?

• What is the breakdown of the number of MVM net-
work retailer sites visited by registered users this
month?

• What proportion of users stop the registration process
and at which step is the highest dropout rate? How
many times do they modify their model during cre-
ation? How many times an unfulfilled field error is
reported per model creation process?

• What garment is most often tried on with a specific
garment? What is the ratio of garments tried on over

Figure 2. Virtual model creation question-
naire.

garments bought? In what coulour is this garment most
often bought?

These questions are critical to many departments, namely
the marketing people, the user experience group, and even
the accounting department because some billing informa-
tion relies on the data collection system.

The questions impose a number of challenges to the data
collection and analysis system:

Multi-site: Sessions can start on MVM’s portal server
(where the questionnaire is hosted) and continue over
one to many retailer sites (servers are sometimes
hosted by the client site themselves).

Large number of events: To accommodate the diverse
amount and sometimes changing information that
needs to be collected, many types of events need to
be collected. Different versions also need to coexist.

Representational power and flexibility: In order to re-
create the full user experience, some of the information
stored requires flexible representations such as embed-
ded lists (eg. the list of garments currently worn by the
model, or the list of answers provided, both of which
are not fixed numbers). Moreover, Because the appli-
cation evolves and the data collection requirements are
not fixed, the data collection scheme needs to accom-
modate many changes over time. It has to be flexible.

Time Event Site User Sess. Seq. Data
stamp Type ID ID ID #
__
[ts] Start vmis GUEST [sid] 0 {|}
[ts] LocSes vmis GUEST [sid] 1 {|sid=MVM022154533728|}
[ts] Out vmis GUEST [sid] 2 {|}
[ts] Star vmis GEN [sid] 3 {|s=F|}
[ts] GetVM vmis GEN [sid] 4 {|p=F|}
[ts] Body vmis GEN [sid] 5 {|v=02HDL|}
[ts] Out vmis GEN [sid] 6 {|}
[ts] CreaVM vmis GUEST [sid] 7 {|p=F|}
[ts] Quest vmis GUEST [sid] 8 {|d=F|qs=A|}
[ts] Quest vmis GUEST [sid] 9 {|d=F|qs=A|}
[ts] Quest vmis GUEST [sid] 10 {|d=F|qs=A|}
[ts] Quest vmis GUEST [sid] 11 {|d=F|qs=A|}
[ts] ModMV vmis GUEST [sid] 12 {|a={LipShape=2902,

DOMAIN=F,
QUESTION_SET=A,
[...]
HairStyle_F_40=2119}|}

[ts] GetVM vmis GUEST [sid] 13 {|p=F|}
[ts] Body vmis GUEST [sid] 14 {|v=06HDL|}
[ts] Quest vmis GUEST [sid] 15 {|d=AU|qs=UP|}
[ts] LocSes vmis GUEST [sid] 16 {|sid=MVM022154533728|}
[ts] Quest vmis GUEST [sid] 17 {|d=F|qs=A|}
[ts] ModMV vmis GUEST [sid] 18 {|a={FudgeFactor=4902,

[...]
HairStyle_F_40=2119}|}

[ts] ModMV vmis GUEST [sid] 19 {[...]}
[...]
[ts] Fai vmis GUEST [sid] 47 {|fd=le nom moon

[...]
|e=SignInCreate|}

[ts] Fai vmis GUEST [sid] 48 {|fd=User exists [...]
[...]
|e=SignInCreate|}

[ts] End vmis GUEST [sid] 49 {|}

Figure 3. Raw data example.

2. Log Data

Figure 3 provides a sample excerpt from a user session.
Although it has a fixed number of fields (7), the last field
(Data) allows the logging of structured data. The fields are
describe below:

Time Stamp: Time in milliseconds

Event Type: The type of the event. About 50 different
event types are defined.

Site ID: The ID of the site where the event is recorded.

User ID: The user ID of registered users (GUEST for un-
registered users)

Session ID: A unique session ID that is global across sites.

Sequence ID: The sequence number of the event for that
unique session.

Data: A structured data field that extends the event’s spe-
cific data to be collected. The data field can contain
any number of sub-fields. Some events contain up to
10 fields and some fields can contain list structured
data such as question answers or garment lists.

3. Data Mart Challenges

The data collection system can easily answer the relevant
questions if the data is correctly aggregated and detailed ac-
cordingly. This is the essence of a data mart: Aggregating
data into specialized repositories [1]. For example, many
questions require the data to be aggregated on a global ses-
sion basis with all relevant information stored in the corre-
sponding fields and in a proper relational scheme. In our
data mart, thesessiontable contains 41 fields. Another ta-
ble is theusertable which contains about the same number
of fields for answering questions in relation to the registered
user aggregation perspective.

However, processing the raw data of Figure 3 directly
into such tables poses three challenges:

1. The algorithms are non trivial. For example, classify-
ing a user session into about 10 types (eg.new user
complete, new user incomplete at step 2, registered
failed, , etc.), involves approximately 30 rules.

2. Performance is important. Monthly analysis involves
about 5GB of data and 50M user sessions. Data access
and memory usage must be optimized.

3. Flexibility is required. In any new application, require-
ments are bound to change frequently and new ques-
tions will appear. The system must adapt to frequent
changes and be flexible enough to accommodate them.

These challenges can be difficult to meet with standard
approaches. Much like telecommunication and credit card
transaction data, Web logs can be considered as stream data.
Storing this type of data in a database for further processing
is known to cause difficulties. For example, Dobra et al. [2]
note that:

“In most such applications, the data stream is
actually accumulated and archived in the DBMS
of a (perhaps, off-site) data warehouse, often
making access to the archived data prohibitively
expensive”.

Some of the difficulties stem the use of a standard proce-
dural language, such as PL/SQL, that involves a relatively
laborious implementation task for non trivial algorithms.
Also, much care must be taken to organize the data and the
algorithms for performance. Finally, in a context of fre-
quent changes, program code rewriting and schema data re-
engineering can prove tedious and slow.

4. Stream processing architecture

The approach that we adopted is to use a stream process-
ing architecture with specialized programming languages

Lex and yacc
analysis

Logical
analysis

Raw data
file 1

Raw data
file 2

...

Merge
sort

Relational
output

Figure 4. Data flux.

for the different phases of processing. Stream processing
can be thought of as a sequence of programs joined through
what is known aspipesin a UNIX environment: The output
of a program is directly fed into the input of the following
program. Our approach takes advantage of stream process-
ing to aggregate data efficiently before storing the aggre-
gated results into a data mart, thereby avoiding the problems
of accumulating of raw data into a DBMS as noted by [2].
The stream architecture is described in Figure 4.

The raw input files are collected from the server sites.
Records (one per line) are sorted by the global session ID
key. A merge sort is performed, using the standardsort
utility, as the first step of the stream processing sequence.
The merge sort has the advantage of having an order of
growth O(n), linear with the number of recordsn, and a
constant memory size.

The second step is a lexical and grammatical analysis
program that parses the input stream into a sequence of tree
structured records (in fact, a doubly linked list in the syntax
of Prolog lists), one for each record (line). This program is
written with a combination of the standardlex andyacc
(bison in fact) parsing utilities available in UNIX.lex
generates a C program that represents a finite state automa-
ton and corresponds to a set of regular expressions defined
with lex . yacc generates an efficient C implementation
for a grammar description of an LALR context-free gram-
mar. The result of the parsing process is a transformation of
the raw data into Prolog predicates, which are equivalent to
relational tuples.

The third step is a Prolog program that sequentially reads
the predicates (tuples). There is one predicate per record
(which corresponds to a raw log file input line). Prolog has
the advantage of combining a high level logic programming
language with database relational operations that makes the
implementation of the algorithms very efficient and con-
densed. Any programmer who has programmed both Pro-
log and PL/SQL can appreciate the elegance of Prolog for
quickly implementing logic rules over relational data.

As an example of the convenience of Prolog to imple-
ment logic rules, consider Figure 5 which contains a tree
structured list of events that is used for classifying user
sessions. It is relatively straightforward to write a small

[seq,
[event ’Start’, [], droupout0],
[seq,

[event, ’CreaVM’, [], droupout1],
[event, ’ModVM’, []], dropout2],
[or,

[event, ’CreaAcc’, [], complete1],
[seq,

[event, ’Fai’, [e=’SignInCreate’], error1],
[event, ’End’, [], dropout3]]],

[seq, ...], ...]

Figure 5. A Prolog decision tree session clas-
sifier (partial).

Prolog routine that traverses this tree to verify the ordered
presence of the events, including tests of some event prop-
erties in the Data section, and returns the corresponding
session type. For example, a session will be classified as
droupout3 if the session contains the events (in that or-
der) Start , CreaVM, ModVM, not CreaAcc , Fai , and
End, and if the eventFai has the property-value condition
e=SignInCreate . Such succint and flexible represen-
tation of decision tree-like structures make the analysis of
data highly flexible and simple to implement.

The output of the Prolog program is a flat file that rep-
resents tuples. It can be readily exported to a DBMS and
provide the necessary data mart information. There is one
tuple for the user session aggregation analysis, and another
one for the user profile aggregation.

5. Performance

The complete analysis of a 5Mb month data set can be
done on a standard Pentium IV workstation with 512Mb of
RAM memory in about 2 hours. As we discuss below,
we were able to compare this performance with a standard
PL/SQL with an Oracle 8i database and estimated that the
stream implementation was approximately 5 times faster
than the database implementation. We did not investigate
the reasons, but we can presume that it was due to the se-
quential disk access that the stream approach entails, and
potentially also the high speed of the C program for parsing
the raw data (usinglex andyacc for C code generation).
The use of constant memory of the stream architecture may
also be a factor.

6. Conclusion

However, the most interesting quality of the approach is
not so much in its performance, but in its facility for rapid
implementation and the resulting flexibility. That quality

was the decisive factor in deciding to use this approach in-
stead of the traditional DBMS data mart architecture.

In fact, the stream approach was first used as a prototype
before the implementation of a standard data mart architec-
ture. It was not intended to become the final approach. Its
design and implementation took about 5 months for a sin-
gle programmer. After this first prototype, a prototype of
standard data mart implementation was started by a DBMS
specialist. After about three months, about only half of the
modules were implemented, even though all the design had
been done for the first prototype. Meanwhile, a full team
of 4 DBMS specialists started the design and implementa-
tion of what was envisioned as the full data mart. After four
months, the DBMS data mart project was canned because
it was deemed too expensive. The stream prototype, that
meanwhile provided marketing and the other departments
with the analyzed data, ended up as the final operational
data mart!

However, the stream approach is not without drawbacks,
the most important of which is undoubtedly the difficulty of
finding people who could support the Prolog and thelex
andyacc code. Not only is it difficult to find experts in
both fields, but it also has been difficult to bring the two
cultures together. The company did face some resistance in
introducing other Artificial Intelligence technologies in its
products, such as a recommender system for garment size fit
and a Prolog engine for implementing a rule based system
for the garment mix and match process, but the strongest re-
sistance was found in introducing Prolog and formal parsing
techniques for data processing. There appears to be a strong
divide between the world of AI and data warehousing!

Nevertheless, the interesting finding here is that we
stepped aside the mainstream data mart/warehouse indus-
trial approach, which relies mostly on database processing,
and introduced a stream processing architecture that allows
the integration of heterogeneous and specialized technolo-
gies such as parsers and logic programming to better tackle
specific subproblems. The experience showed that it can be
highly efficient both in processing and in implementation
time and effort.

References

[1] S. Chaudhuri and U. Dayal. An overview of data warehousing
and olap technology.SIGMOD Records, 26(1), 1997.

[2] A. Dobra, M. Garofalakis, J. Gehrke, and R. Rastogi. Pro-
cessing complex aggregate queries over data streams. In
M. Franklin, B. Moon, and A. Ailamaki, editors,Proceed-
ings of the ACM SIGMOD International Conference on Man-
agement of Data, June 3–6, 2002, Madison, WI, USA, pages
61–72, New York, NY 10036, USA, 2002. ACM Press.

