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Abstract. The application of user-expertise modeling for adaptive interfaces is confronted with a
number of difficult challenges,namely, efficiency and reliability, the cost-benefit ratio, and the practi-
cal usability of user modeling techniques. We argue that many of these obstacles can be overcome by
standard, automatic means of performing knowledge assessment. Within this perspective, we present
the basis of a probabilistic user modeling approach, the POKS technique, which could serve as a
standard user-expertise modeling tool.
The POKS technique is based on the cognitive theory ofknowledge structures: a formalism for the
representation of the order in which we learn knowledge units (KU). The technique permits the
induction of knowledge structures from a small number of empirical data cases. It uses an evidence
propagation scheme within these structures to infer an individual’s knowledge state from a sample
of KU. The empirical induction technique is based, in part, on statistical hypothesis testing over
conditional probabilities that are determined by the KUs’ learning order.
Experiments with this approach show that the technique is successful in partially inferring an indi-
vidual’s knowledge state, either through the monitoring of a user’s behavior, or through a selective
questioning process. However, the selective process, based on entropy minimization, is shown to
be much more effective in reducing the standard error score of knowledge assessment than random
sampling.
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1. Introduction

Among the different attributes that can be included in a user model, the level
of knowledge, or the expertise in a given domain, is of fundamental importance.
It allows the use of an adequate level of detail and the appropriate choice of
vocabulary in the dialogue with the user. In particular, help given to the user should
adapt to the user’s knowledge level, whether it corresponds to standard on-line
help text, or to something more advanced as coaching, tutoring, or cues given to
the user.
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However, in spite of these apparent benefits that can be achieved with a user-
expertise model, and in spite of a number of research prototypes, no adaptive inter-
faces based on user-expertise modeling have been deployed so far in large-scale,
real-life applications. Of course, it takes a long time to go from a research prototype
to an operational application, but given that some user-expertise techniques have
been around for more than a decade, such as the simple novice/expert stereotyping
techniques, it is legitimate to ask ourselves why the apparent benefits of adapting
the user interface to user-expertise are not being exploited in real-life applications.
We will consider potential obstacles to the application of user-expertise models in
adaptive interfaces before presenting the POKS technique and discussing how it
addresses some of these obstacles.

1.1. CHALLENGES TO USER-EXPERTISE MODELING

Efficiency and reliability

The need for assessing expertiseefficiently and reliablyis an essential requirement
of a user-expertise model. It is a task that humans are particularly good at, as
we can rapidly assess someone’s state of knowledge in a domain with only a few
questions, or after a short discussion, if we know this domain well enough ourselves.
This same efficiency is what we expect from a user-expertise model. Failure to
assess effectively and efficiently the user knowledge state would generally result
in unacceptable behaviors in the user interface, such as going through a long
series of redundant questions? with the user prior to building a reliable model, or
taking inappropriate actions based on an inexact model. Moreover, we cannot rely
upon asking the user directly whether he belongs to the expert/novice category
in a domain of knowledge, because self-assessment of this type is known to be
unreliable, and the domain may involve different sub-domains in which one can
be novice in one and an expert in another.

Cost-effective means

User-expertise modeling is, at its best, still in the early state of craftsmanship,
as opposed to being a routine procedure that can be reproduced at will, and by
anyone with minimal training. Consequently, it is a costly process. Moreover, user-
expertise modeling does not generate any benefit by itself. Only through adaptive
interfaces will this information be put to profit, which involves yet another phase
of complex user interface design in which few people have any experience. Finally,
the precise assessment of the benefit of an adaptive interface is difficult and still
being debated.

? Note that a question will beperceivedas redundant if it is an easy question administered after a
success at more difficult questions, or vice-versa, even though they really are two different questions.
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Usability and standardization

Another obstacle, closely linked to cost-effective means, is the usability and stan-
dardization of the tools for performing user-expertise modeling, and for designing
interfaces based on such models. It is a logical conclusion that cost-effectiveness
requires standard and easy-to-use expertise assessment tools in order to generate
applications that will use this information,but it is worth stressing that the complex-
ity of using such tools for building adaptive interfaces may well be overwhelming.
Even with good user-expertise assessment modules, it still is a complex task to
design adaptive help or tutoring tools, for example. Hence, great efforts must be
devoted to providing user-expertise models that are designed to facilitate their use
by interface designers.

Thus it is crucial to deliver a reliable, cost-effective means for user-expertise
modeling. If an efficient, "off-the-shelf" and easy-to-use tool were available for this
purpose, then the attractiveness of designing adaptive interfaces based on expertise
models might increase considerably.

1.2. PERSPECTIVE ON THE CURRENT APPROACH

The above challenges to user-expertise modeling have remained central consider-
ations in the choice of the current approach and throughout its development. It is
thus important to position this approach, as well as alternative approaches, with
respect to these considerations.

In particular, the questions of efficiency and usability of user-expertise modeling
are important aspects that are generally overlooked in scientific investigations.
They are, nevertheless, very relevant for reasons of impact and viability that user-
expertise modeling can have in the "real world".

Although this statement is subject to discussion, we can assume, for example,
that the popularity of the “stereotypes” approach to user modeling (Benyon et al.,
1987; Chin, 1989; Kay, 1994; Rich, 1979; Takeuchi and Otsuki, 1988) stems
directly from the simplicity to understand, to implement, and to build adaptive
interfaces upon this type of model. It is a very "usable" theory. Unfortunately, it
can prove inefficient in some contexts due to its coarse granularity. For example,
the expert/novice categorization, coupled with inference rules designed to put a
user into one of the two categories, will generally not suffice for applications that
cover many dimensions of expertise and a large span of user-expertise. Even if the
model were reliable in classifying a user in the right category, the actual use of this
information could be unreliable because of its imprecision.

Of course, one could choose to have more categories to divide the expert/novice
scale, each having their own inference rules to categorize the user. In addition, it is
possible to have one scale for each of the sub-domains of expertise, ensuring that
each scale does cover a single dimension of expertise. Hierarchical organizations
of user models have also been proposed by Rich (1979; see also Kobsa, 1992) to
allow inferences within hierarchies of stereotypes. In doing so, we resolve the lack
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of preciseness of the model, thus making it potentially more effective, but we also
introduce the problem of complexity, both in designing the model, and in using
it.

Overlay models of user-expertise (Goldstein, 1982) constitute an alternative to
stereotypes. An overlay model is based on the simple principle of defining a given
user model as a subset of a global set of knowledge units (KU). This means of user
modeling is much more precise and flexible, allowing forCn number of different
user-models instantiations, wheren is the number of KU in the knowledge domain,
andC is the number of states each KU can take (eg. "mastered", "not-mastered").
But with this advantage comes the drawback that it constitutes a much more
complex and costly model to design and to use. For example, assessing directly
each KU by a single question requiresn questions. To overcome this difficulty,
overlay models generally include relations among KU that simplify the task of
assessing someone’s knowledge state. Relations such as "if you knowKUa, then
you also knowKUb", allow inferences to be made in the knowledge assessment
process and can greatly reduce the effort involved. Nevertheless, with a large
number of KU, it becomes very impractical and error prone to build the complete
network of potential relationships among KU by hand.

In fact, a parallel can be drawn between overlay models and stereotypes, to
the extent that stereotypes can be considered as subsets of KU. Relations can
be defined among stereotypes, thus allowing some types of inferences like those
found in overlay models. Hybrid models of this type could prove useful, as they can
take advantage of both the stereotypes and the overlay approaches. However, the
tradeoff between the granularity and the representative power of a user model, and
its complexity and practical utility is still present. In general, the more powerful a
model is, the more complex it is to build and to use, be it closer to the stereotypical
or to the overlay approach.

The answer thus relies on the automation of the whole process. Indeed, we
strongly believe that the most promising way to provide powerful enough user
models, such as overlay models paired with inference relations, while making their
construction and their use cost-effective and easy-to-use, is through automatic tools
both for building user models and for assessing a specific knowledge state.

This is probably the most important advantage of the current approach to exper-
tise modeling: it builds a network of implication relations among KU from a small
sample of user data sets, and it uses this induced network to assess more efficiently
someone’s knowledge state with a limited number of observations, or questions.
Because this process is totally automated, it limits the job of the interface designer
to the following two essential steps:

� to define what is a proper set of KU that correctly characterizes the knowledge
domain;
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� to define what are the interface’s adaptivity features based on a specific user
knowledge state?.

In essence, the knowledge assessment modeling and assessing process is, by itself,
reduced to a simple data gathering procedure, granted that the other steps can be
automated.

However, we must remember that cost-effectiveness and usability of user-
expertise modeling are not the sole challenges that must be met. The user-expertise
model must also be valid and reliable in assessing someone’s knowledge state.

The question of validity and reliability has many facets to it. First and foremost,
it involves testing whether the approach performs well in assessing user knowl-
edge. This is the subject of section 6. Second, validity also involves the notion of
generalization across different contexts of application, and across different knowl-
edge domains. Moreover, it also involves the notion of scalability: how well does
the approach lend itself to improvements and generalization? This type of validity
cannot be demonstrated by a few empirical experiments, but it has to rely instead on
an analysis of its theoretical foundations. We will refer to the theory of knowledge
spaces (Falmagne et al., 1990) to show the approach’s cognitive foundations. The
argument is that if the approach is well grounded in solid cognitive foundations,
that is, if the model does accurately reflect the psychological reality of expertise, it
has a better chance of being generalizable and scalable.

2. Overlay models, knowledge structures, and related work

The model presented here can be considered as a kind of overlay model of user-
expertise representation. The user’s knowledge state is represented as a subset of
a global set of KU. In addition, the global set of KU is inter-connected with a
number of implication relations. These relations, sayA) B, allow inferences of
the type "if A is known, then B must be known" and "if B is unknown, then A
is unknown". With a strongly connected structure of KU, the process of assessing
someone’s knowledge state can be highly efficient, such that only a few KU need
to be known in order to draw conclusions about the complete knowledge state.

This structure of implicationsamong KU is determined by the order in which we
learn concepts, or acquire competencies, and it constitutes one of the most impor-
tant characteristics of the general learning process. It is a well-known phenomenon
in education (for example, see Gagné, 1966, and the concepts of "knowledge hierar-
chies") and in psychology. In particular, the work of Falmagne, Doignon, and their
colleagues (Falmagne et al., 1990) onknowledge structuresandknowledge spaces
was a significant contribution to the formal representation of the interdependencies
among KU.

Falmagne et al. have shown that the constraints on the order in which we
learn KU can be entirely represented by what is known in the field of Artificial
Intelligence as AND/OR graphs. This is equivalent to stating that, for every two

? Mind you, this can still represent a considerable task!
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potential knowledge states that a user can reach, the union of these two states is
also a potential knowledge state. Using the terminology of set theory, this condition
corresponds to the definition of a closure in the space of knowledge states under
the union operator,[.

In terms of inference rules, AND/OR graphs can be specified with the following
two rules:
1. "if A is known, then B, and C, ... and N are known",
2. "if A is known, then either B, or C,..., or N, isknown",

where each rule has only one antecedent and one or more consequents. For each
consequent, there is an arc from the antecedent to the consequent, representing
the ordering constraint. The second rule, involving alternative consequents, is
obviously the one that can be achieved via the ‘OR’ operator in the ‘AND/OR’
graph representation. This type of rule is found in cases where a given knowledge
state can be reached through a number of alternative knowledge states. For example,
creating a loop in the “C” programming language requires mastery of the “for”,
“while”, or “do” constructs, but only one of them is required to reach a knowledge
state that contains the ability to create loops.

While AND/OR graphs can represent a set of rules of the two types listed above,
another type of graph, namely partial orders, or directed acyclic graphs (DAG),
can be used to represent ordering constraints involving the first type of rules only.
Referring again to set theory terminology, partial orders imply that the space of
knowledge states they represent is closed under both the union,[, and intersection
operators,\. For example, closure under both[ and\ could be violated in the
above example. Indeed, it is possible to have a programmer that succeeds in an
exercise involving loops but knows only the “for” construct, and someone else who
also succeeds at the same exercise but only knows the “while” loop. The union of
these two knowledge states represents a subject who can solve a problem involving
loops without knowledge of any of the corresponding syntactic constructs. It is
impossible to represent this type of disjunctive relationship among KU with partial
orders where closure under[ and\ is assumed.

Although partial orders are simpler and less powerful formalisms than AND/OR
graphs, they are nevertheless very useful and have played a much greater role in user
modeling. They were used by a number of researchers to represent the implication
relations among KU (eg. Goldstein, 1982; Burton, 1982; Bretch and Jones, 1988).
More recently, some researchers have used partial orders in conjunction with
Bayesian network propagation theory to assess user knowledge states (De Rosis
et al., 1992; Lukas and Albert, 1993; Mislevy and Gitomer, 1995).

3. Partial order knowledge structures, POKS

We will focus on the knowledge structures closed under union and intersection, that
is, partial order knowledge structures (POKS) which have the formal properties
of DAG. Although POKS do not have the ability to represent alternative means
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of reaching a given knowledge state, they have great significance in expertise
modeling. First, a knowledge state has, in general, many more fixed prerequisites
than alternative prerequisites, such that a POKS will contain most of the underlying
structure in a knowledge domain. Second, the relations in a POKS are transitive.
This constitutes a very desirable feature for the knowledge assessment process
and for building parsimonious knowledge structures. Finally, a POKS can also
contain probabilistic information that will capture some of the information found
in alternative prerequisites: alternative prerequisites will be represented in the
structure as “weaker” (in a probabilistic sense) prerequisites than would fixed
prerequisites. As such, POKS are very useful in assessing someone’s knowledge
state, which is the goal of user modeling.

3.1. AN EXAMPLE

Let us use an example to illustrate the notions behind a POKS. Figure 1 contains a
graphic representation of a plausiblePOKS for UNIX shell commands. It contains 5
nodes which are listed below with a short explanation that relates to Figure 1’s
question items:

(1) yacc:parser program generator. It generates a parser in “C” source code
and it is generally used in conjunction with “lex” which does the lexical
analysis part. “y.output” is the file containing the parsing table information.

(2) lex: lexical analyzer. It also generates “C” source code and writes it in a
file named “lex.y.c”

(3) sed: string editor for performing string manipulations on whole files. The
‘&’ stands for the whole string matched.

(4) ar: create library archives: the “ar c <files>” creates the archive file
(5) cc: “C” source code compiler: the “-c” flag is used for creating object

files.

Insert figure 1
about here

The arcs between the nodes represent surmise relations within the structure.
Some of these relations containstrict prerequisites, namely (4)) (5) and (1))
(2). Indeed, it is necessary to know about the “cc -c” compiler flag in order to
generate archive files. It is also the general case that programs generated with
“yacc” will use “lex” as a lexical analyzer pre-processor. However, other surmise
relations are of anempirical nature, namely (2)) (5) and (2)) (3): knowledge
of “sed” or of the ‘C’ compiler’s “-c” flag is not a prerequisite to using “lex”, but it
is generally the case that these two KU (3 and 5) will be learned before KU no. 2.
Note also that the relation (1)) (5) and (1)) (3) are not explicitly specified
because they can be derived from transitivity.

Whether the surmise relations are determined by prerequisites, or by other
empirical factors that constrain the order of learning among KU, it must be empha-
sized that the order may be violated in a number of cases, either because of noise in
the assessment of mastery, or because the surmise relation is “weak” and there are
many exceptions. Nevertheless, the surmise relation should not be ignored because
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of the noise or the exceptions.Instead, it should justify the use of a stochastic
approach to modeling this phenomenon.

Another remark that needs to be made with the example is that the KU, or
nodes, are defined in terms of procedural knowledge. This does not need to be so.
We could also have included concepts such as "regular expressions", "lexical anal-
ysis", "object files”, etc. We chose to limit this example to procedural knowledge
because it lends itself directly to an operational definition and leads to simple and
unambiguous tests with a simple question. By contrast, a concept such as “regular
expressions” is much more complex and would require many test items to cover
the understanding of all of its ramifications. Nevertheless, it could be represented
as a single node in the knowledge structure, but its assessment should include a
set of questions as opposed to a simple question. Consequently, its mastery would
be represented as a ratio of success over all questions, instead of a dichotomous
value: mastered or not mastered. In fact, it is quite conceivable that a KU could
be represented by another knowledge structure, independent from the knowledge
structure of which it is a member of. In other words, we could have hierarchies of
knowledge structures, where the upper levels represent complex KU that encom-
pass large chunk of expertise and that are tied to a knowledge structure at the
lower level, until KU are tied to direct observations at the leaves of this hierarchy.
Alternatively a set of KU in a single knowledge structure could cover the concept
of regular expressions and their global mastery would represent mastery of this
concept on a[0; 1] scale.

In fact, there exist a number of potential architectures for building knowledge
structures. However, whatever architecture is chosen, the important factors in
defining what should constitute a relevant set of KU are that:

1. KU do represent meaningful and significant units in the domain of knowledge;
2. the user’s mastery of each KU can be reliably assessed, and
3. there is some order in the way users learn KU.

The first two factors depend on the domain expert’s ability to break down
the knowledge domain into KU. This is the same ability as the one required
for developing a good final exam, for example, and it relates to the theory of
psychological testing, for which a large body of theory and practice already exists
(see for example Anastasi, 1966). The third factor, the ordering of KU, varies across
different knowledge domains, but it is a fairly ubiquitous learning phenomenon.
The less any of the three factors above is valid, the less the POKS will contain
relations, and the less effective and reliable it will be in assessing a user’s knowledge
state.

3.2. DEFINITIONS

The above example is useful in explaining the theory of POKS and its application
to user modeling. Let us now define more precisely the notions involved.
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Assume we have a knowledge domain, denotedQ, composed ofn KU:

Q=fU1; U2; :::; Ung

A POKS is a partial order overQ where the nodes represent the domain’s KU,
fU1; U2; :::; Ung, and the arcs represent implications, or surmise relations. An arc,
say fromUi toUj , is denoted asSi)j .

An individual’s knowledge state is denoted byR. In accordance to the standard
overlay model representation, the knowledge state is represented as a subset of
Q:

R=fUi masteredj Ui 2 Qg

However, letr denote theinferredknowledge state:

r=fP(U1) ; P(U2) ; :::; P(Un) g

whereP(Ui) is the probability associated with KUUi, andn is the number of KU
inQ. Thus,P(Ui) represents the probability thatUi is mastered, i.e.P(Ui 2 R).
Global mastery of the domainQ can be computed as :P

P(Ui)

n

It can be interpreted as the probability that an arbitrarily chosen KU would be
mastered by the user in question. Alternatively, in the context whereQ represents
a term exam for example, it would constitute an estimate of the subject’s expected
score over the whole test.

Each arc in a POKS, saySi)j , has two associated weights,Wi)j andW:j):i.
These weights represent the “strength” of the surmise relation. The choice of
estimators for these two weights depends on the inference propagation scheme. For
example, in some circumstances, a derivation of theP(�2

) value could be used
as a measure of the strength of the relation, whereas the conditional probabilities
provide a measure of the directionality (A ) B or B ) A). In our case, the
weightsWi)j andW:j):i are represented by odds ratios. These ratios measure
the influence that a KU has on the odds of another KU. For example, if KUA has
a strong positive influence on the odds ofB the ratioO(BjA)

O(B)
will be high, such

that the observation thatA is true will bring the updated probability ofB close to
one. The details of how the weights are obtained is given in section 4.3 whereas
their role in the evidence propagation scheme is found in section 5.1.

4. The induction of POKS from data

Knowledge structures are difficult to construct through a process of knowledge
engineering with one or more domain experts. We argued that the lack of an
automatic means of constructing them constitutes a serious obstacle to the overlay
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user modeling approach, because it is too tedious and subject to judgment biases.
However, some work, including ours, has begun working towards automatic means
of constructing knowledge structures. In the domain of mathematical psychology,
Falmagne and his colleagues (Falmagne et al., 1990) have developed a technique for
inducing the topology of knowledge structures closed under union, which are more
complex to build than POKS. The technique was proven successful for inducing
small knowledge structures (below 10 nodes). However, it requires relatively large
amounts of data (e.g. 400 reported in Falmagne, 1990).

Parallel to this work in psychology, other researchers from the Artificial Intel-
ligence community have developed a number of techniques to induce Bayesian
networks from data (Cooper and Herskovits, 1992; Geiger, 1992; Heckerman et al.,
1994; Heckerman and Geiger, 1995; Heckerman, 1995; Spiegelhalter et al., 1993;
Pitas et al., 1992). Among some of the important findings on this topic, Cooper and
Herskovits report successful results in inducinga simulated Bayesian network of 37
nodes and 46 relations (see also Heckerman et al., 1994, for further developments
along the same line). However, more than 3000 cases were necessary to recover the
original topology of the network. Geiger (Geiger, 1992) has formulated a learning
algorithm for uncovering a Bayesian conditional dependence tree. This algorithm
combines entropy optimization with Heckerman’s similarity networks modeling
scheme (Heckerman, 1991). The work of Pitas et al. (1992) is also relevant to
this topic. They use entropy measures to guide the induction of the network. Here
again, it is plausible that this technique could be used for knowledge structures.

In our own work, as mentioned earlier, we focused on the induction of knowl-
edge structures closed under union and intersection, that is, knowledge structures
that can be completely represented by a partial order. We put a strong emphasis on
the ability of this structure to produce correct inferences with small amounts of data
(the experiments we report here are based on 19 cases). However, the algorithm
does not guarantee inducing the optimal topology of a network with respect, for
example, to a minimal entropy criterion, or with respect to the maximum likeli-
hood of a topology given a data set. Instead, we focus on the technique’s ability
to perform inferenceswith the network, not so much on its ability to recover a
"true" underlying topology. This is well justified in user modeling because of two
reasons:
� our interest lies first and foremost in assessing a user’s knowledge state, not

necessarily in uncovering the domain’s true knowledge structure, and;
� because a large portion of the knowledge structure’s relations are probabilis-

tic, (i.e. they are not based on a strict order from which discrete, true or
false, and deterministic inferences could be performed), it follows that the
topology is not the only factor that influences the validity of the inferences.
The topology represents only the directionality of influence among KU. The
relations’ weights and the evidence updating scheme are other factors that are
just as important and that must be taken into account to assess the ability of a
knowledge structure to infer an individual’s knowledge state.
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The current technique induces, from a small number of data cases, a set of
binary implication relations from which we can applymodus ponensandmodus
tollensinferencing: for example, if we have a relationA) B, then it follows:
� if A is mastered, then B is mastered, and;
� if B is not mastered, then A is not mastered.
These inferences are, in fact, probabilistic in the sense that they determine the

probability of mastery ofB according to some new evidence of the mastery ofA, or
conversely, the probabilityof mastery ofA given non-mastery ofB. The values will
depend on the surmise relation’s strength, as determined by its associated weights,
Wi)j andW:j):i (section 3.2) and on the evidence propagation scheme.

4.1. THE POKSINDUCTION TECHNIQUE

The basic idea behind the network induction technique is that, in an ideal case, if
there is an implication relationA ) B, then we would never expect to find that
someone knowsA but does not knowB. This assertion translates into the following
two conditions:

P(B j A) =1

P(:A j :B) =1

However, as we stated above, many surmise relations do not have a strict order,
such that the two conditional probabilities will be more or less close, but not equal,
to 1. Moreover, sampling errors will affect the measured conditional probabilities.
A statistical model of an implication, or surmise relation, is thus necessary.

In essence, the statistical model behind the implication relation is based on
two test of hypotheses to verify that the conditional probabilities,P(B j A) and
P(:A j :B) are above a given minimal threshold, and a third test to verify that
the conditional probabilities are different from the initial probabilities. These tests
are described in the following two sections.

4.1.1. Hypothesis tests onP(B j A) andP(:A j :B)

The two test of hypothesis over the conditional probabilities can be stated as
follow:

P(
�
P(B j A)� pc

�
j D)< �c (1)

P(
�
P(:A j :B)� pc

�
j D)< �c (2)

where:
pc : minimal conditional probability chosen forP(B j A) andP(:A j :B). It

can be considered as an indicator of the strength of the knowledge structure’s
surmise relations.
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�c : the alpha error of the minimal conditional probability tests. It determines the
proportion of relations that erroneously fall belowpc.

D : the frequency distribution of co-occurrences ofA andB in a data sample, as
illustrated in Table I, and whereeach value ofN�� corresponds to one of the
following 4 conditions:
1. NA^B: co-occurrences of A mastered and B mastered;
2. NA^:B: co-occurrences of A mastered and Bnotmastered;
3. N:A^B: co-occurrences of Anotmastered and B mastered;
4. N:A^:B: co-occurrences of Anotmastered and Bnotmastered;

Let us demonstrate how these tests of hypothesis can be conducted by first noting
that the frequency pair(NA^B; NA^:B) and(N:A^:B; NA^:B) are stochastic
variables with a probability distribution that follows the binomial distribution:

Bin(k; n; p)

where:

k=

�
NA^B for the pair(NA^B; NA^:B)

N:A^:B for the pair(N:A^:B; NA^:B)

n=k + NA^:B

and

p=

�
P(B j A) for the pair(NA^B; NA^:B)

P(:A j :B) for the pair(N:A^:B; NA^:B)

In other words, the probability distribution ofeach frequency pair is determined by
a binomial function withP(B j A) or P(:A j :B) as one of its argument, and
by two cell values in the distributionD.

Thus, the test of hypothesis forA ) B can be obtained by computing by a
lower tail confidence interval over a binomial function:

p(X � NA^:B) =

NA^:BX
i=0

�
n

i

�
pn�i(1� p)i (3)

wheren has the same definition as above, and wherep is set to the desired minimal
conditional probability,pc. This formula represents the probability that as small a

TABLE I. Distribution of
observed co-occurrences

B :B

A NA^B NA^:B

:A N:A^B N:A^:B
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USER-EXPERTISE MODELING 13

number asX of unpredicted results would be observed if the true probability of a
predicted result were exactlyp. The smaller the probability given by the formula
is, the less likely it is that the true probability of a predicted result isless thanp.

4.1.2. Interaction test

The two tests of hypothesis on conditional probabilities ensure that the minimal
“strength” of the relation is above a predetermined threshold,pc. However, we
still need to verify that the conditional probabilities are different than the non-
conditional probabilities, that is:

P(B j A) 6 =P(B)

P(:A j :B) 6 =P(:A)

These conditionscan be verified through a�2 test on the 2�2 contingency table:

P(�2
)< �i (4)

where�i is the alpha error of interaction. For small samples (N < 50), theFisher
exact testshould be used instead.

These three tests are sufficient to characterize a surmise relation and to ensure
that (1) its “strength” is above a minimum and (2) that a maximum error tolerance
is set.

4.2. AN EXAMPLE OF IMPLICATION RELATION INDUCTION

The followingsection illustrates how the induction technique is applied to a specific
example.

Assume we wish to verify the existence ofA ) B. In the first step of implication
relation induction, a two-dimensional contingency table for the co-occurrences of
A andB is compiled from an empirical data set. Table II shows a possible table of
co-occurrences.

In the second step of the induction method, the above mentioned three tests of
hypothesis are conducted.

Suppose that in this example,pc=0:85 and�c=�i=0:20. Accordingly the bino-
mial hypothesis test forP(B j A) can be computed as follows from equation
3:

TABLE II. Example distribution of
observed co-occurrences

B :B

A 20 (NA^B) 1 (NA^:B)
:A 8 (N:A^B) 1 (N:A^:B)
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14 DESMARAIS, MALUF, AND LIU

P(x � NA^:B) = P(x � 1)
= P(x=0) + P(x=1)

=

�
21
0

�
0:8521 0:150

+

�
21
1

�
0:8520 0:151

= 0:155

hence; P(x � NA^:B) < �c

where symbol
�
j

k

�
represents the number of combinations ofk in j. The inference

with A) B in the modus ponensdirection is significant with confidence level
(1� �c).

In a similar way, the test forP(:A j :B) yields:

P(x � NA^:B) =

�
2
0

�
0:852 0:150

+

�
2
1

�
0:851 0:151

= 0:98

hence; P(x � NA^:B) 6< �c

Since the test ofP(:Aj:B) is not satisfied,A) B cannot be used formodus
tollens inference. Hence, the implication relationA) B is rejected. Indeed, with
NA^:B=1, it would require a value greater or equal to 19 forN:A^:B.

The interaction test (inequality 4) does not need to be conducted in this example
since the second test onP(:A j :B) failed.

4.3. ESTIMATING Wa)b AND W:b):a

Besides the POKS’ topology, the two parameters linked with implications relations,
Wa)b andW:b):a, are also determined by the data samples. The choice of
estimators for these two weights depends on the inference propagation scheme.
In the current study, the valuesWa)b andW:b):a: correspond to the two odds
ratios:

Wa)b =
Oest(B j A)

Oest(B)

W:b):a =
Oest(A j :B)

Oest(A)

whereO(X) represents the odds ofX andO(X j Y ) represents the odds ofX
givenY , that is:

Oest(X) =
Pest(X)

Pest(:X)
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USER-EXPERTISE MODELING 15

Oest(X j Y ) =
Pest(X j Y )

Pest(:X j Y )

The values forPest(B j A) andPest(:A j :B) can be computed from the data
sample. The following formula was used to obtain their values:

Pest=
k + 1
n + 2

(5)

where:

n=

�
NA^B + NA^:B for P(B j A)

N:A^:B + NA^:B for P(:A j :B)

and,

k=

�
NA^B for P(B j A)

N:A^:B for P(:A j :B)

5. Using Bayesian network inferences with POKS

Once a knowledge structure is obtained and parametrized according to the method
described in the previous section, the task of assessing someone’s knowledge state
corresponds to using this structure with a Bayesian network induction technique in
order to estimate each node’s “truth value”, i.e. the probability of mastery.

More specifically, every time a node is assigned a new probability, such as when
mastery or failure is observed, then every other node it connects to is reassigned a
new probability of mastery, and the process is repeated recursively until all paths
from the originating node are followed. In the case where the probabilityof mastery
is increased (i.e. observation of a success), then the implication links are followed
in the forward direction, whereas if the probability is decreased (i.e. failure), the
links are followed in the backward direction.

Although the basic principles behind the use of Bayesian network induction
for knowledge assessment are relatively straightforward, the sound and complete
application of Bayesian inference is a complex matter. Well known algorithms
such as (Lauritzen and Spiegelhalter, 1988; Pearl, 1988) are among mathematical-
ly sound techniques for performing Bayesian network updating. They are relatively
complex and computationally expensive, but they guarantee correct answers pro-
vided a number of assumptions are met. Other approaches are based on simulation
(Henrion, 1988; Pearl, 1992). These approaches yield approximate results with an
accuracy that is a function of the computational cost.

In our case, considering that we build and parametrize the knowledge structure
with relatively small samples, the inferences that result from such structures are
doomed to contain a significant amount of noise and we cannot assert that all
assumptions required for the above mentioned algorithms are fully met. For these
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16 DESMARAIS, MALUF, AND LIU

reasons, the choice of a sophisticated Bayesian inference scheme that can yield
exact results is not necessarily worth the implementation efforts and computational
cost involved, because sampling noise or violated assumptions can outweigh the
improvement in accuracy these methods provide over other simpler ones, such as
MYCIN (Buchanan and Shortliffe, 1984) or Dempster-Shafer (see Buchanan and
Shortliffe, 1984). Hence, inaccordance with our principles of parsimony, ease-of-
use and ease of implementation, we opted for a simpler method that nevertheless
was proven efficient in the context of expert system inferences: the Duda et al.
(1976) evidence propagation scheme based upon odds ratios. It was used initially
in the Prospector expert system and we will refer to it as the Prospector evidence
propagation scheme.

It should be stressed that better performance might be obtained with more recent
Bayesian network propagation algorithms, but this would also come at a greater
implementation and computational cost. As such, the Prospector algorithm should
not be considered as a second class choice if we take into account these pragmatic
issues of cost in the user knowledge assessment approach (cf. the remarks on
potential obstacles to user modeling made in the introduction). This algorithm
should, instead, be considered as the minimal performance standard that one can
expect from the general POKS approach.

5.1. THE PROSPECTOR EVIDENCE UPDATING SCHEME

We will briefly describe the Prospector algorithm in this section. However, the
reader is referred to Giarratano and Riley (1989) for an introduction to the topic
and a more detailed description of the technique.

The Prospector algorithm uses the notions oflikelihood of sufficiencyand
likelihood of necessityfor updating a node’s probability. Given a surmise relation
A) B, these likelihood are defined respectively as:

LS =
O(B j A)

O(B)
(6)

LN =
O(A j :B)

O(A)
(7)

They correspond respectively toWa)b andW:b):a, the POKS relations’ weights
described in section 4.3.

It follows that if we knowA to be true (i.e.P(A) =1), then the probability of
B can be updated using this form of the above equation :

O(B j A) = LS O(B) (8)

and conversely, ifB is known false (P(B) =0), then :

O(A j :B) = LN O(A) (9)
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USER-EXPERTISE MODELING 17

The odds ratios are obtained using the estimated probabilities (formula 5).
In other words, and assuming we observeP(A) =1 with our exampleA) B,

it is the relative effect ofA on the odds ofB that is propagated in the relation. If
A has a strong effect onB, LS will be very high and it will bring the probability
of B close to 1, whereas ifA has little effect onB (i.e. if LS is close to 1) then
the probability ofB will only increase slightly. An analogous relationship holds
for LN when propagating backward.

5.2. POOLING AND PROPAGATION OF EVIDENCE

Equations 8 and 5.1 provide means to update a probability from a single obser-
vation. However, we need to specify the case of node update based on multiple
observations. Moreover, we need a mean of updating from partial evidence, which
corresponds to the case where a node’s probability has changed during the evidence
propagation process, but not from a direct observation.

The process of multiple evidence update relies on the assumption of indepen-
dence (i.e. the evidence propagation problem). From the knowledge structure’s
network topology, we can derive a number of independence assumptions. For
example, given the following network relationships:

A) B

B ) C

D ) B

we can conclude thatP(B j A) =P(B j A;C;D), or we can conclude that if B is
known true, thenP(C j A) =P(C), etc.

Most relevant in our context, the independence assumption enables the “pool-
ing” of evidence. For each of the incoming arcs in a nodeH , fE1 ) H;E2 )

H; :::; En) Hg, we can write:

O(H j E1; E2; :::; En) =

nY
i

LiO(H)

whereLi=LS if Ei is known true andLi=LN if it is known false.
This makes updating with values that aretrue or falsevery simple and efficient.

However, it does not provide an updating mechanism with probabilistic values.
An ad hoc scheme was developed for this purpose. Given the implication chain
A) B ) C, the basic principle is to respect the following conditions:

P(C j A) =

�
P(C j B) if P(B j A) =1
P(C) if P(B j A) =P(B)

and

P(A j :C) =

�
P(A j :B) if P(B j :C) =0
P(A) if P(B j :C) =P(B)
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18 DESMARAIS, MALUF, AND LIU

A linear interpolation is made for every value in between the conditions’ boundary
valuesf0; P(B) ; 1g (two linear segments are thus necessary for a full model—one
for the forward propagation,P(C j A), and another one for a backward propa-
gation,P(A j :C)). The next section provides more details on the computations
involved, but the reader is again referred to Giarratano and Riley (1989) for a more
complete overview.

5.3. EVIDENCE PROPAGATION EXAMPLE IN A SIMPLE KNOWLEDGE STRUCTURE

We will use Figure 2’s simple knowledge structure to demonstrate a short exam-
ple of evidence propagation with the Prospector scheme. This example is useful to
readers unfamiliar with Bayesian inference schemes and, in particular, the Prospec-
tor evidence propagation scheme, but it also helps to build a clearer picture of the
overall system’s behavior.

Figure 2’s schema contains three surmise relations. The nodes’ joint distribution
for each relation is reported in Table III. The relations’ values for LN and LS were
computed over this jointdistribution.For example, the value of LS forU1 ) U3 can
be obtained using equation 6. However, let us use an equivalent form of equation 6
that is simpler to compute because it involves probabilities instead of odds ratios
(Giarratano and Riley, 1989):

LS=
P(A j B)

P(A j :B)
(10)

Using equation 5 to compute the estimates of the probabilities we have:

LS =
(NA^B + 1) =(NA^B + N:A^B + 2)

(NA^:B + 1) =(NA^:B + N:A^:B + 2)

=
(16+ 1) =(16+ 12 + 2)
(0 + 1) =(0 + 36+ 2)

= 21:53

The values for LN can be obtained in a similar manner from the joint dis-
tributions. The likelihoods LN and LS are the only parameters required by the
propagation algorithm, and we can now proceed with the example to demonstrate
the details of the propagation computations.

Insert figure 2
about hereEvidence propagation occurs after a node’s probability has changed. Evidence

will propagate forward to the connected nodes if the change is positive, whereas it
will propagate backward if the change is negative. Assuming that observation of
mastery changes a node’s probability to 1, and observation of non-mastery to 0,
let us simulate two scenarios of evidence propagation. Table IV reports the results
of such a simulation when the initial probability of all nodes are set to 0.5 (note
that they could also have been initialized to their estimated probability). The first
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USER-EXPERTISE MODELING 19

scenario corresponds to the successive observations of mastery ofU1 followed by
U2. The second scenario corresponds to the observation of non-mastery ofU4.

Let us examine in detail the computation involved in the very first observation
(U1) in order to see how these results are obtained:

According to equation 8, we have:

O(U3 j U1) = LS O(U3)

= 21:53�
0:5

1� 0:5
= 21:53

From the general formula

P(X) =
O(X)

O(X) + 1
(11)

we can deriveP(U3 j U1) fromO(U3 j U1) as follows:

P(U3 j U1) =
21:53

21:53+ 1
= 0:956

Next, the propagation continues forward from nodeU3 to nodeU4. According
to the propagation scheme (section 5.2), this process consists in estimatingP(U4 j

U1) based on a linear interpolation betweenP(U4) andP(U4 j U3). The updated
value is in part a function of the amount of change inP(U3) induced by the
observation ofU1. It is computed as follows:

P(U4 j U1) = P(U4) +
P(U3 j U1)�P(U3)

1� P(U3)

�
P(U4 j U3)�P(U4)

�
(12)

All values in this formula are known with the exception ofP(U4 j U3) which is
derived in the same manner asP(U3 j U1) was derived:

O(U4 j U3) = LS O(U4)

= 17:95�
0:5

1� 0:5
= 17:95

TABLE III. Joint distributions and likelihood ratios

Relation Cell Likelihood
NA^B NA^:B N:A^B N:A^:B LS LN

U1 ) U3 16 0 12 36 21.53 0.075
U2 ) U3 20 4 8 32 5.32 0.245
U3 ) U4 28 0 12 24 17.95 0.051
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20 DESMARAIS, MALUF, AND LIU

and by equation 11 we have:

P(U4 j U3) =
17:95

17:95+ 1
= 0:947

Substituting the values in equation 12 yields:

P(U4 j U1) = 0:5 +
0:956� 0:5

1� 0:5
[0:947� 0:5]

= 0:908

A number of remarks could be made about the scenario’s results, but let us
summarize this discussion with two important observations:
� the updated probability of a node is a function of (1) its prior probability, (2)

the amount of change in the neighboring node, and (3) the strength of the
neighboring node’s relation with the current node (note that this corresponds
to three expressions on the right side of equation 12);

� the relative change induced by an observation will decrease as a function of
distance (i.e. the number of arcs traversed from the observed node).

These properties are what we expect in an evidence propagation algorithm. Thus,
although the Prospector scheme does not conform to exact Bayesian inference, it
has all the desired properties to make it a good approximation.

6. Experiments in knowledge assessment

The knowledge structure induction technique, paired with the Prospector evidence
propagation scheme, was used in knowledge assessment experiments with two
different approaches to knowledge assessment, namely assessment through ran-
dom sampling, and assessment through a selective questioning process. These
experiments were conducted with data on UNIX commands.

TABLE IV. Scenarios of evidence propagation

Node observed Probability
U1 U2 U3 U4

Scenario 1:
Initial 0.5 0.5 0.5 0.5

U1 1.0 0.5 0.956 0.908
U2 1.0 1.0 0.991 0.977

Scenario 2:
Initial 0.5 0.5 0.5 0.5
:U4 0.111 0.226 0.048 0.0
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6.1. THE UNIXTM DATA SET

The UNIX data set is composed of 34 KU. They represent 34 items in a ques-
tionnaire on UNIX commands that was administered to 19 subjects. The questions
span a very large range of difficulty, from basic file manipulation, to advanced
data processing and system maintenance commands. Similarly, the 19 subjects’
expertise also spans a very wide range, from that of casual users to professional
programmers and system administrators. Figure 3 provides a performance graph
for the 19 subjects and figure 4 contains some examples of the 34 questions that
represent the KU. It shows that the performance spans from 8 correct answers to
33. The average success rate is 64%. A large range of subject scores with an aver-
age around 50% is generally preferable in order to construct the full knowledge
structure.

Insert figure 3
about here

Insert figure 4
about here

6.2. SIMULATION METHODOLOGY AND KNOWLEDGE STRUCTURES
CONSTRUCTION

The performance of the knowledge assessment scheme is done througha simulation
process: we simulate the observation of a KU and propagate this evidence through
the knowledge structure and, thereafter, verify the accuracy of the inferences made.
To avoid any positive bias in the simulations, a different knowledge structure is
constructed for each and every subject, such that the knowledge structure does not
contain the data from the subject with which the simulation is conducted, i.e. we
built 19 individual knowledge structures from data from 18 subjects.

Because of the small number of data cases, we used low constraining values for
pmin and for�c and�i:

pmin=�c=�i=0:5

The resulting knowledge structures were composed of 224 to 331 implication
relations with an average around 300.

In spite of the significant amount of noise introduced by the choice of low con-
straining parameters, the knowledge structures are still relatively efficient because
the knowledge domain is highly structured. However, it must be stressed that these
values could reset in different result patterns under different conditions (see section
6.5 on the effect ofpmin, �c, and�i).

6.3. KNOWLEDGE ASSESSMENT THROUGH SAMPLING AND OBSERVATION

The first experiment was conducted with the paradigm of assessing someone’s
knowledge state without any control over which KU is sampled. This situation
is an approximation of unobtrusive monitoring of a user’s behavior through the
computer. It is typical of advisory systems in which recommendations are provided
after sub-optimal behaviors are detected.
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We set the initial probability ofeach KU at 0.5, thus providing the system with
no initial information. However, we could also have set the initial probability at
the value of the average success rate from our sample of 19 subjects. Previous
experiments (Desmarais and Liu, 1993) have shown that the general behavior of
the system is similar in both cases?.

The experiments consisted of randomly sampling a portion of an individual’s
knowledge state, and propagating the information on the mastery and non-mastery
of KU across the knowledge structure, and finally reassigning new probabilities to
unsampled KU. The residual error between the probability estimates and the real
values are computed for all KU. This process is applied for sampling from 0%
to 100% of an individual’s knowledge state, which of course ultimately results in
perfect assessment.

6.3.1. Results

Figures 5-a and 5-b provide two different perspectives on the simulation’s results.
They illustrate the evolution of the absolute and the relative standard error score as
a function of the knowledge state’s sampled proportion. The standard error score
is defined as:

S:E:=

sP
(xest� xobs)

2

N
(13)

In our context, the variableN corresponds to the number of KU (34),xobs is 1
if the corresponding KU isknownand 0 otherwise, andxest is the probability of
mastery as estimated by the system. This formula can be interpreted as the average
error in predicting individual KU mastery for a given subject.

Figure 5-a illustrates theabsolutestandard error evolution from 0% to 100%
of the knowledge state’s sampled proportion, averaged over all 19 subjects. A
linear function, that starts and ends at the same data points as the simulation curve,
corresponds to the no-inference condition. It represents the reduction in standard
error due to observation only and it is given as a comparison point. The results
assume that no error remains after a KU is observed, and thus the standard error
is 0 after all KU are observed.

The absolute standard error of estimates provides an idea of the accuracy of the
predictions as a function of the sampled knowledge state proportions. However,
what is most informative for the knowledge assessment performance is to verify
thereduction of standard error due to the inferences. This is provided in figure 5-b.
It represents the relative standard error reduction with respect to theunobserved
KU. It is thus computed over the subset of KU that have not yet been observed and
with the following formula:

�S:E:i=
S:E:i � S:E:0i

S:E:i
? Note that this statement may not be true for average success rates close to 0% or 100%.
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where S:E:i is the original standard error of unobserved KU before any observa-
tions, and S:E:0i is the standard error of the same set of KU after the update from the
observed KU. Figure 5-b represents the relative standard error reduction averaged
over all 19 subjects. This measure can be interpreted as the information added by
the inferences on a scale of 0 to 1.

Insert figure 5
about hereThe results show that the relative standard error reduction is proportionally

small at the beginning, but that it is cumulative and follows a progressive increase
from 0% to 100% sampling proportion?. It reaches approximately a 20% relative
error reduction after sampling half the knowledge states. This is significant in
demonstrating that the knowledge assessment scheme is valid with such a small
sample size; but it nevertheless constitutes a relatively small contribution from
a practical point of view??. We will see in the section on controlled knowledge
assessment how this can be improved with a different sampling scheme.

6.3.2. A note on knowledge assessment through monitoring

Although, for our purpose here, random sampling yields an acceptable approxima-
tion for the performance of the knowledge assessment process when monitoring the
user’s behavior, the general assumption that random sampling of KU corresponds
to the monitoring paradigm is inexact in at least two ways: (1) commands have
different frequencies of usage, which makes some of them much more likely to be
observed than others, and, most importantly, (2) we cannot observe non-mastery
directly and thus could not conclude that a KU is unknown (i.e. we can only infer
masteryfrom observation of correct usage). As a consequence, random sampling
in mastered KU solely would correspond more closely to knowledge assessment
through monitoring. However, inference of solely mastered KU would necessarily
lead to a bias towards overestimating the average mastery and would require a
correction.

One technique that can be used to compensate for the lack of direct observation
of non-mastery is based on the probability of occurrence of skills observation,
within a given period of time, or within the context of a task. For example, if,
for someone who masters an application’s commandCi, fi is the frequency of
usage of this command in a set ofN commands, or in a period of timeP , then the
probability of occurrence ofCi for everyN commands, or for every periodP , can
be approximated with the ratiosfi

N
or fi

P
respectively. Thus, the probability that

someone does not masterCi given that it has not been observed inN commands,
or in a periodP , can be easily estimated from a binomial, or a Poisson distribu-
tion (see for example Desmarais, et al, 1993 and Desmarais, et al., 1987). This
allows a probabilistic inference of unknown KU through a monitoring process.

? In fact, the results stop at 33 of the 34 knowledge states’ KU sampled because no error reduction
is possible after all KU are observed.
?? This conclusion holds in the context of this single experiment, but with a different sample size

and a different knowledge domain, the random sampling could provide very different results.
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Care must be taken, however, to take into account clustering effects that often
occur when monitoring KU and which can bias the estimates of the probability of
occurrences.

Another technique is through the observation of inefficient means of completing
some tasks, which can be indicative of the fact that the efficient means are not
mastered. Here again, care should be taken to ensure that the means taken are
truly inefficient and that the observations do not stem from other factors that can
explain the use of inefficient methods (see for example, Zissos and Witten, 1985,
on heuristics to determine true inefficiencies).

6.4. CONTROLLED KNOWLEDGE ASSESSMENT

Another paradigm for knowledge assessment, different from sampling based on
unobtrusive observation of KU, corresponds to the controlled choice of sampled
KU. In this case, questions or test items are administered to the user in order
to verify mastery or non-mastery of KU. Although, for some applications, the
choice could be determined by objectives such as presenting test items that are
at an appropriate level of difficulty for the user (this would correspond to an
“exerciser” application, for example), we will focus on the objective of optimizing
the knowledge assessment process. The questions, or KU, will thus be chosen based
on theexpected amount of information they will provide. The sampling process
will thereby provide a good estimate of the user’s knowledge statewith a minimal
number of KU tested.

6.4.1. Entropy-driven sampling

One such method of optimizing the knowledge assessment process, to provide the
maximum information with the least number of KU tested, is the entropy-driven
sampling. The objective is to choose the KU that has the highest chance of reducing
the entropy in the knowledge structure.

Entropy is essentially a measure of the amount of uncertainty in a system of
stochastic events. Its general definition is:

H(Z) =�
X
z

pz logpz

whereZ is a system of stochastic events,fz1; z2; :::; zng. GivenN systems and
assuming they are conditionally independent, the global entropy is their summa-
tion:

H(Z1; Z2; :::; ZN) =�

NX
i

X
z

piz logpiz

A knowledge structure can be considered as a set of systems corresponding to the
network’s nodes, each node having two possible states (events): true or false. Thus,
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given a knowledge structure,Q, composed ofN KU, the entropy can be measured
in the following way:

H(Q) = H(U1; U2; :::; UN)

= �

NX
i

2X
z

piz logpiz

= �

NX
i

(pi logpi +(1� pi) log(1� pi) )

wherepi is the probability that KUUi is mastered by the user. This equation assumes
all KU are independent of each other, which is of course an invalid assumption, by
the definition itself of a Bayesian network with one or more relations. However, it
is a close enough approximation for our purpose, as the simulation demonstrates
in the next section.

Based on the above formula, it is now possible to derive the KU that is most
likely to reduce entropy. This is given by the expected value of entropy given an
observed KU, as computed by the following formula:

H(Q0 j Ui is observed) =
�
pi �H(Q0 j Ui=1)

�
+
�
(1� pi) �H(Q0 j Ui=0)

�
H(Q0 j Ui=1) is the total entropy computed from the knowledge structure’s state
after a success at KUUi andH(Q0 j Ui=0) is the total entropy after a failure. Given
the expected value of entropy for every KU, the choice of the most informative
KU thus corresponds to the KUUi with the lowest value.

6.4.2. Results

Figure 6 shows the result of the entropy-driven knowledge inference process. It
can be seen that performance is significantly better than the random inference
scheme. The relative standard error reduction is approximately reduced by half
after sampling 50% of the knowledge state, compared to approximately 20% for
the random sampling condition. An almost perfect assessment is reached after 29
KU are observed.

Insert figure 6
about here

6.5. THE EFFECT OFpc AND OF �i, �c

The experiments described in the previous sections were conducted with:

pc=0:5

�i=�c=0:5

These parameters are used in the knowledge structure induction process. They
determine the minimal strength and the acceptable errors, or uncertainty, of the
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knowledge structure’s surmise relations. Consequently, they affect the number
of relations that will be induced, the overall network’s topology, and the overall
inference process. In general, the more relaxed these parameters are, the greater
will be the number of relations. This increase on the connectivity will in turn impact
on the “quantity” of inferences generated by the observations of KU, as well as on
their accuracy (more inferences with less accuracy, or vice-versa).

We explored the effect of�? on the knowledge assessment performance by
conducting another set of experiments with different� values. Figure 7 illustrates
the results of these experiments when using different values for the� parameters
and shows their respective effect on the standard error scores. In addition Table V
reports the maximum and minimum size of the knowledge structures as a function
of the� value. The experiments were conducted with entropy-driven sampling.

Insert figure 7
about hereThe results show a clear effect of the choice of� on the performance. Although

little difference is seen between�=0:5 and�=0:8, the performance for�=0:2 is
significantly lower than the other two. This is explained by the very few relations
induced in the knowledge structures built with�=0:2. However, in spite of the
greater number of relations found in the knowledge structures with�=0:8 than the
ones with�=0:5, the performance is not improved by this increase in the number
of inferences. The reason is because the added relations with�=0:8 are much less
reliable and result in an increase of inaccurate inferences.

This should by no means be interpreted as a general conclusion, as the impact
of � andp on the standard error score reduction can be very different according
to the topology of the knowledge structure, the sample size, and with the evidence
propagation scheme. What these results suggest is that there is a need to adjust
� andpc according to the specific characteristics of the data set (eg. the number
of subjects in the data sample and the degree of certainty desired). Further work
is required to provide guiding principles on the adjustment of� andp with the
characteristics of the data set.

? For simplicity, let us refer to equal values of�i and�c as� and assuming�i=�c.

TABLE V. Knowledge structures size.

Alpha Number of relations
minimum maximum

0.2 30 57

0.5 224 331

0.8 310 490
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7. Conclusion

The experiments on knowledge assessment have shown that the POKS technique
is effective in using observed KU to infer correctly an individual’s knowledge
state, either through the monitoring of a user’s behavior, or through a selective
questioning process. However, the selective questioning process, based on entropy
minimization, was shown to be much more efficient in reducing the standard error
score of knowledge assessment than is random sampling.

The experiments also demonstrated that the� parameter, used in building the
knowledge structure, can have significant effects on the knowledge assessment per-
formance. Indeed, it was shown that the knowledge structures built with�=0:5 and
�=0:8 had clearly a better performance than the one built with�=0:2. The effects of
� on the knowledge assessment performance suggest that more needs to be known
about this parameter and about thepmin parameter. It is likely that their effect will
vary with sample size and with the knowledge domain’s characteristics.

In fact, we need to develop a better understanding of the reliability of the POKS
approach with respect to the characteristics of the topology of the knowledge
structure, and with respect to the� and pmin parameters, and the sample size.
Moreover, an analysis of the variability of the knowledge assessment process
over individual differences must also be investigated. Indeed, even if the average
performance of the approach is good, it also needs to be consistent across users.
Otherwise, poor performance with some users would result in frustrations on
their part. Techniques for assessing the level of confidence in the knowledge
assessment with regards to an individual user would thus be an important asset to
the approach.

Nevertheless, in spite of these current limitations, the approach appears to be a
good candidate to meet the challenges raised in the introduction. It does succeed
in progressively reducing the knowledge assessment error and it is a completely
automatic process that is easy to implement, as it uses simple algorithms for both
knowledge structure induction and for evidence propagation. It thus reduces the
process of knowledge assessment to its most fundamental element: defining the KU
that correctly represent a knowledge domain. The rest of the process lends itself
to automation and, hence, relieves the end-user from the burden of working on the
tedious and complex details of a precise knowledge assessment procedure.
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1.
What does the “yacc” com-
mand write in “y.output”?

?

2.
What is the name of the source
code program generated by
“lex”?

4. What does this command per-
form: “ar c <files>” ?

?

P
P
P
P
P
P
PPq ?

3. What does the special charac-
ter “&” stand for in “sed”?

5.
What is the use of the “-c” flag
with the “cc” compiler?

Fig. 1. Inference network with UNIX command KU.
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Fig. 2. Simple knowledge structure.
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Fig. 3. Frequency count of individual performances on the 34 item questionnaire.
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Question 1: What is the name of the command to rename or move a file?

(a)
(b)
(c)

move
mv
rn

(d)
(e)
(f)
(g)

cp
cat
dd
Do not know

Question 12: What is the name of the command to list the jobs waiting to be
printed?

(a)
(b)
(c)

lpq
lprm
lp -q

(d)
(e)
(f)
(g)

jobs
pq
print -l
Do not know

Question 30: Which of the following ‘sed’ commands transforms the first line into
the second one?

Line 1: aaa bbb ccc
Line 2: aaaxbbbxccc

(a)
(b)
(c)
(d)

s/ /x/g
s/ /x/;s/ /x/
2s/ /x/
S/ /x/

(e)
(f)
(g)
(h)

1,$s/ /x/
s /x/2
s /x/$
Do not know

Fig. 4. Some examples of test items from the UNIX questionnaires.
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Figure 5-a Figure 5-b

Fig. 5. Standard error score evolution. Figure 5-a represents the absolute standard error evolution (it is paired
with a straight line that represents the no-inference condition and serves as a comparison) whereas
5-b is the relative standard error reduction due to the inferences.
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Figure 6-a Figure 6-b

Fig. 6. Standard error evolution for the entropy-driven sampling condition (see figure 5 for explanations).
The entropy-driven performance corresponds to the lines marked with triangles. The random sampling
condition (full line) is reproduced in this figure for comparison purpose.
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Fig. 7. The relative standard error reduction score of three knowledge structures built with three different�i
and�c parameters:�c=�i=0:8 (line-marker with square),�c=�i=0:5 (line-marker with triangles),
and�c=�i=0:2 (line-marker with crosses).pmin=0:5 for all knowledge structures.
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