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AbstractÐThis paper is concerned with the problem of measuring the uncertainty in a broad class of belief networks, as encountered

in evidential reasoning applications. In our discussion, we give an explicit account of the networks concerned, and coin them the

Dempster-Shafer (D-S) belief networks. We examine the essence and the requirement of such an uncertainty measure based on well-

defined discrete event dynamical systems concepts. Furthermore, we extend the notion of entropy for the D-S belief networks in order

to obtain an improved optimal dynamical observer. The significance and generality of the proposed dynamical observer of measuring

uncertainty for the D-S belief networks lie in that it can serve as a performance estimator as well as a feedback for improving both the

efficiency and the quality of the D-S belief network-based evidential inferencing. We demonstrate, with Monte Carlo simulation, the

implementation and the effectiveness of the proposed dynamical observer in solving the problem of evidential inferencing with optimal

evidence node selection.

Index TermsÐBelief networks, uncertainty modeling and management, discrete event dynamical systems, optimal evidential

inferencing, controller, observer, entropy, user profile assessment.
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1 INTRODUCTION

BELIEF networks are computational structures that are
composed of clusters of nodes representing assertions

or query/evidence variables interrelated by links signifying
the independence relationships among the nodes [5], [17].
Some belief networks decompose the joint-probability
distribution of real-world probabilistic knowledge with
conditionals [16], while others focus on the belief-function
measures of the nodes as supported by surrounding
evidences. Falling into the latter category is the Dempster-
Shafer (D-S) belief networks in which the probabilities of
evidential support are explicitly represented. The D-S belief
networks are frequently used as a knowledge representa-
tion scheme to handle situations where causal or diagnostic
relationships are to be captured and reasoned about. Some
examples of the D-S belief network application are
diagnosis and multisensor integration [11], [12].

There exists a complete formalism of evidential reason-
ing for computing and propagating evidential support
(whether confirming or disconfirming) throughout the
network; the formalism is also known as the D-S theory
of evidence. In the D-S theory of evidence, the deductions
take place within logical constraints, and the belief
information (i.e., the weight) is treated as metaconstraints
that modify these logical constraints. The D-S evidential

representation and inferencing scheme may be viewed as
a simplified (but sound) theoretical deviation from the
Bayesian theory [7], [18].

1.1 Problem Statement

With the D-S approach to knowledge representation and
reasoning, if some information on certain nodes or variables
is obtained, its support over other unobserved nodes can
readily be computed based on the structure of the network
as well as the previous state of the network (i.e.,
probabilistic or belief measures of nodes). This paper is
concerned with two important problems in the D-S belief
network applications; namely,

1. Is it necessary to devise an optimal policy of selecting
evidence nodes so that stronger belief functions can
be achieved?

2. Furthermore, if necessary, then how can we compu-
tationally determine such an optimal policy?

1.2 Organization of the Paper

In this paper, we will, first of all, address the above two
issues from a point of view of discrete event dynamical systems
[4]. This will, in turn, enable us to better understand the
nature of the problems at hand and to qualitatively study
the requirements of our solutions. Following those require-
ments, we will then define a new entropy-oriented
uncertainty measure for the D-S belief networks essential
for solving the optimal evidence collection problem. In
order to quantitatively demonstrate the necessity as well
as the effectiveness of the proposed uncertainty measure
application, we will conduct some Monte-Carlo simula-
tion studies in which the performances of entropy-based
evidential inferences are contrasted with those of random
evidential inferences.
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2 THE D-S BELIEF NETWORKS AS DISCRETE

EVENT DYNAMICAL SYSTEMS

2.1 The D-S Belief Networks

In the D-S belief networks, the set of all possible outcomes
of a node is called the frame of discernment, denoted by �.
For instance, with respect to node xi in the D-S network, its
possible outcomes may be expressed as follows:

�xi � fa1; a2; . . . ; ak; . . . ; ang: �1�
Here, the term ªdiscernº entails that it is possible to
differentiate the correct variable state from all the other
possible states with respect to a specific node. One correct
state requires that the set be exhaustive and that the subset
be disjoint [7], [18].

The D-S theory of evidence accepts partial evidential
specifications in the form of logical sentences and allows a
basic probability assignment (bpa) to the subsets of a
conclusion, as denoted by m���. Unlike the Bayesian
approach, the D-S model does not allow a subset be proven
by any rule set unless it appears in a consequent of at least
one rule. Suppose that our frame of discernment for node
xi, �xi , is fa;:ag, where each element denotes a hypothesis
induced from some observations. Thus, the confirmation
m�a�, disconfirmation m�:a�, and the frame of discernment
mass m��xi� will form the basic probability assignment for
node xi. Formally, a bpa of node xi is a function:

m : 2�
xi
! �0; 1�;

where

m�;� � 0;

X
cj��xi

m�cj� � 1:0: �2�

The D-S theory distinguishes the state of ignorance about
a variable from the relative weight afforded on the variable
versus its negation. The ignorance is signified by the
probability mass assigned to �xi , as denoted by m��xi�.

Based on the notion of probability mass, a belief function,
Bel�cj�, over �xi can be defined as the total belief committed
to all subsets of cj, i.e.,

Bel�cj� �
X
b�cj

m�b�: �3�

The D-S theory of evidence offers a rigorous means for
revising beliefs in the presence of new evidential support
from distinct sources (i.e., accumulated evidence), known as
Dempster's rule of combination. This rule states that two bpas
corresponding to two independent sources of evidence may
be combined to yield a new bpa, as follows:

m�c� � � �
X

c0\c00�c
m�c0� �m�c00�; �4�

where � is a normalization factor that ensures (4) be
satisfied. Specifically,

� � 1

1ÿPc0\c00�;m�c0� �m�c00�
: �5�

2.2 The Discrete Event Dynamical Systems
(DEDS) Model

Having described the basic constructs of a D-S belief
network, we can now take a close look at how such a
network fits into the conventional discrete event dynamical
systems (DEDS) model [4]. This treatment is essential for
our later discussions on the uncertainty measure as used in
optimal evidential reasoning.

In order to apply the DEDS model, we first represent the
belief functions of the interconnected network nodes as a
single vector, called state vector x. The element of this vector
is called a vector node, xi. Subsequently, given the collection
of derived belief functions, we can formulate a discrete event
dynamical systems model for the D-S belief network in terms
of the following quintuple:

S � �X;U; Y ;�; ��; �6�
where X, U , and Y correspond to a finite set of state vectors,
a finite set of evidence inputs, and a finite set of outputs of
the network, respectively. � denotes a transition function of
the state vectors, and � denotes an output function defined
as X ! Y . The DEDS model is illustrated in Fig. 1.

Given the system of some finite number of vector nodes,
we can make systems state transitions based on the input
sequences. In other words, we can obtain new hypotheses
(belief functions) based on the belief network by taking into
account the input evidence that supports one or more vector
nodes.

2.3 Transition Function �

Generally speaking, transition function � can be defined as
follows:

� : X � U ! X: �7�
In what follows, we formulate the exact transition function
in our DEDS model (i.e., �t;t�1 in Fig. 1) based on our earlier
description of the D-S belief networks.

Without loss of generality, we assume that there are only
two possible outcomes for each vector node (i.e., a network
node variable) xi in both xt and xt�1. Hence, our frame of
discernment can be written as: �xi � fa;:ag. Suppose that in
state xt, nodexti receives certain updated evidential supports;
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Fig. 1. A typical multivariate DEDS model of mixed belief functions. xt

and xt�1 are two state vectors, whereas xr denotes a state vector

whose basic probability assignment (bpa) function has been updated.



namely, k supports confirm a for the value of vector node xti,
as denoted by fmC1;mC2; . . . ;mCkgt, and l supports discon-
firm a, as denoted by fmD1;mD2; . . . ;mDlgt.

First, we organize these supports by combining all bpas

for each of the possible outcomes into two composite
evidential supports, one confirming a with a bpa equal to
mt
C and the other disconfirming a with mt

D. By the
definition of bpa, we know that mt

C and mt
D can both be

derived by repeatedly applying (4) and (5). Hence, we have

mt
C � 1ÿ

Y
1�i�k

�1ÿmt
Ci�; �8�

mt
D � 1ÿ

Y
1�j�l
�1ÿmt

Dj�: �9�

As a result, we can derive a pair of new bpas, mt�1
C , and mt�1

D

for xt�1, representing the effect of propagating supports
from the two composite evidential sources,

mt�1
C � � �mt

C � �1ÿmt
D�; �10�

mt�1
D � � �mt

D � �1ÿmt
C�; �11�

where

� � 1

1ÿmt
C �mt

D

:

From the preceding discussions, we can readily work out a
transition function of the discrete event dynamical system for
automatically deriving the system state. The transition
function, �t;t�1, that gives new belief functions is expressed
as follows:

xt�1 � �t;t�1�xt; fmt
C;m

t
Dg� � fBelt�1

i �a�; Belt�1
i �:a�g;

�12�
where

Belt�1
i �a� � mt�1

C �13�

Belt�1
i �:a� � mt�1

D : �14�
It should be pointed out that due to the existence of node

connectivity, the transition from state xt to state xt�1 may
involve a chain of vector node updating, in which one
updated vector node further propagates evidential supports
to other adjacent nodes. In the Appendix, we have provided
a complete algorithm that governs the repeated updating of
vector nodes during a state transition.

3 OPTIMAL ªCONTROLº POLICY FOR CHOOSING

INFORMATIVE EVIDENCE NODES

From the transition function of DEDS, we know that the
next vector state in which a network will be is entirely
dependent on the present vector state and the evidential
input at one or more vector nodes. Our earlier empirical
investigations of the D-S belief networks have also
demonstrated that an arbitrary sequence of vector node
observation fu1; u2; . . . ; ut . . .g can dramatically change the

belief functions, and as a result, reduce the overall
uncertainty of the system to a varying degree [8].

In the D-S belief network applications, various evidence
node selection policies may be applied to determine which
node is to be observed next. One approach is to randomly
chooseanevidencenodefromacompletenodeset,U .Another
approach is to apply some optimization techniques and
choose the most informative node. This approach requires a
well-defined optimality function to evaluate the performance
of evidential inferences based on the belief network.

In what follows, we are concerned with the construction
of such an optimality function. More specifically, we are
interested in the problem of how to unambiguously
measure the degree of uncertainty reduction in the system
so that sufficient feedback information can be obtained for
choosing the input sequence futg. If we have such an
uncertainty measure, we can then address the problem of
optimal evidential reasoning in which the purposefully
selected node observation will rapidly bring the network to
an equilibrium state with a minimum uncertainty.

As shown in Fig. 2, this is essentially an optimal policy
generation problem from the point of view of the optimal
DEDS control. An optimally selected input sequence will
yield an optimal performance of the system (with respect to
some specific optimality definition) [10]. The point of
interest here is how to devise a robust dynamical observer
for the DEDS that can unambiguously measure the
performance of the system. Specifically, the observer should
estimate the uncertainties associated with the systems
vector nodes over a sequence of finite evidential observa-
tions, where normally each vector node consists of a
probability space of more than one independent variable.

3.1 Observability of the D-S Belief Networks

In this section, we formulate the dynamical observer that
incorporates an uncertainty measure for the system S. The
dynamical observer to be constructed must be capable of
measuring the belief functions of each state vector in the
system S, hence satisfying the following observability
axiom [1], [3]:

Definition of Observability. A dynamical system that is
described by (6) is said to be observable if given an arbitrary
input ut; there exists for every vector in X an output sequence
described by output function � and, also,

8 ut � U; X � fut;�g; 9 � : X ! yt; yt 6� ytÿ1: �15�

In order to satisfy the above observability condition,
the construction of our dynamical observer for the DEDS,
S, has to take into account certain functional aspects that
can readily identify which ut 2 U has been taken such
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Fig. 2. A good measure of uncertainty associated with xt can result in

some feedback for determining input sequence ut�1, which can, in turn,

dictate the way in which a belief network is updated.



that X � fut;�g ! X. Here, we choose � as our output
function that yields Y , an uncertainty measure, from state
vectors in X.

In general, when the vector nodes face some alterations
resulting from an arbitrary input ut, the system S undergoes
a state transition, as mentioned in the previous section. This
state transition also produces a corresponding output Y
using an output function � defined over all vector nodes.
Formally, we define � as an N:1 function that maps the
complete set of vector nodes into a measure of uncertainty,
which is denoted as follows:

yt � ��Belt1; Belt2; . . . ; Belti; . . . ; BeltN�; �16�
where Belti represents the belief function of the ith vector
node in xt.

3.2 Entropy-Driven Optimal Evidence Node
Selection

Whether for simple systems, or for systems that have a
tendency to grow in complexity and size such as belief
networks, a standard method of measuring the systems
uncertainty is essential. In the classic information theory
[19], formalisms were defined with an attempt to quantita-
tively measure an information process or mechanism. In the
context of the D-S belief networks, we let the dynamical
system S be measured with a similar means to acquire a
significant and informative measurable index.

3.2.1 The Classic Entropy-Based Uncertainty Measure

Suppose that a system of some finite number of vector

nodes is given, about which new hypotheses are to be

analyzed resulting from the dynamics of some input to one

or more vector nodes. And, the notion of entropy will be

employed to evaluate the uncertainty change in the system

as a function of the induced hypotheses. In what follows,

we can observe that unlike the entropy computation for the

Bayesian models, the entropy computation for the D-S belief

networks cannot be carried out in a straightforward fashion

using probability distributions.
For the sake of illustration, let us consider a D-S belief

network which has a two-element frame of discernment for

its state vector nodes, as denoted by �xi � fa;:ag. First, we

take a linear projection that transforms the D-S belief

functions, Beli, into a probability value, for instance,

Pi�a� � 1

2
� 1

2
Beli�a� ÿBeli�:a�� �: �17�

Further, we apply the conventional entropy measure and

write:

Hds�x� � ÿ
X
i

X
k

Pi�ak� log2 Pi�ak�: �18�

Without lose of generality, Fig. 3 plots the corresponding

entropy function of a single vector node system, S, having

linearly projected its D-S belief functions into their Bayesian

counterparts. As shown in the figure, values f0:5; 0:5g and

f0; 0g have the same entropy, although the two values carry

different amounts of information concerning fa;:ag.
According to the discussion in Section 3.1, we know that

the preceding linear projection of entropy has led to an
unobservable state in the system S. That is, there exists an
input u that has no consequent change in the output
measure y. This contradicts the observability.
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Fig. 3. Entropy computed for the D-S belief networks based on a Bayesian projection space. Notice the linearly projected entropy function for the

D-S belief functions at values f0:5; 0:5g and f0; 0g.



3.2.2 An Improved Entropy-Based Uncertainty Measure

Let us now modify the above classic entropy measure in
order to cater to the D-S belief network semantics.
According to the D-S network formalism, the belief
functions associated with each variable signify the prob-
abilities of evidential supports, rather than the probabilities
of the variable itself. This is also to say, the uncertainty-
oriented interpretation of entropy within the present
context of the D-S networks has to be modified. The proper
interpretation would be: the extended entropy measure
indicates the degree of the uncertainty associated with the
evidential supports weighted by the degree to which the evidential
supports do not disconfirm (although not necessarily always
confirm) the variable.

Since the degree to which the evidential supports do
not disconfirm a node variable (which is sometimes
referred to as a plausibility function) can be formally
expressed as follows:

Pli�a� � 1ÿBeli�:a�
�
X
b��xi

m�b� ÿ
X

b���xi
ÿa�

m�b� �
X
a\b 6�;

m�b�; �19�

we can write a generalization of the Shannon entropy
definition as the uncertainty measure for state vector x as
follows:

Hds�x� � ÿ
X
xi2x

X
y��xi

P li�y� log2 Beli�y�� � �20�

and based on (3) and (19), we can rewrite:

Hds�x� � ÿ
X
xi2x

X
y��xi

X
y\c 6�;

m�c�
24 35 log2

X
b�y

m�b�
" #

; �21�

which is a monotonically decreasing function.

The fact that (21) is monotonic and decreasing proves

that this entropy measure is observable. For the sake of

illustration, we have given in Fig. 4 a plot of the proposed

entropy function for the D-S belief function in our above

single-node, two-element frame-of-discernment example.

Note that the entropy increases for values tending toward

f0; 0g, and reaches a minimum entropy at f1; 0g and f0; 1g.
Klir [13] and Klir and Yuan [14] have provided an

ªentropy-likeº measure called dissonance. If we follow thier
original definition, we can further derive a detailed
expression of dissonance for the D-S belief-network system
as follows:

Dds�x� � ÿ
X
xi2x

X
y��xi

X
b�y

m�b�
" #

log2

X
y\c6�ÿ;

m�c�
24 35: �22�

Equation (22) appears to be a symmetrical function to
(21) above. However, the two definitions have quite
different semantic meanings: The former is concerned with
the uncertainty associated with (or doubt about) the
evidences for all subsets of �xi that have a nonnull
intersection with xiÐthe doubt about the plausibility,
whereas the latter is concerned only with the uncertainty
associated with (or doubt about) the total evidences
committed particularly to xi. In other words, (21) measures
the doubt about our belief in xi, which is exactly what we
are interested in.

In addition, as shown in Fig. 5, a plot of dissonance for our
single-node belief system, the measurements at f0; 0g, f1; 0g,
and f0; 1g are equal under the dissonance computation,
further reflecting the fact that Klir's dissonance does not
express the uncertainty associated with our belief about the
variable node. Thus, (22) cannot serve as our optimality
measure.
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Fig. 4. Uncertainty measure computed for the D-S belief functions. Notice the function at values f0; 0g; f1; 0g, and f0; 1g.



3.2.3 Selecting Optimal Evidence Nodes Based on the

Improved Uncertainty Measure

In what follows, we revisit the original problem of

generating an optimal evidence node policy for the optimal

DEDS ªcontrol,º based on our proposed uncertainty

measure of the D-S belief-network system. Specifically,

here our problem is viewed as an optimization problem that

is to minimize the doubt about the evidential supports (i.e.,

to maximize the belief yield in the DEDS) with the least

number of evidence nodes. To do so, we incrementally

choose a sequence of evidence nodes that have the highest

chance of reducing the entropy in the system.
Our ªcontrollerº utilizes the uncertainty measure as

defined above to predict the expected belief yield of each

individual node over all the possible outcomes. The node

that has the maximum expected belief yield is selected as

the potentially most informative evidence node, which is to

be observed next.
Based on the definition of our extended entropy

computation for the D-S belief system, we can write the

optimality criterion that xi is most likely to reduce entropy

in our two-element frame-of-discernment case, as follows:

Hds�x j xi is observed� �
Beli�a� �Hds�x j xi � a�� � � Beli�:a� �Hds�x j xi � :a�� �;

�23�
where Hds�x j xi � a� is the total entropy computed from

the belief systems state if the evidence of a is observed and

Hds�x j xi � :a� is the total entropy if the evidence of :a is

observed. Given the expected entropy value for every xi,

the problem of determining the most informative evidence

node is hence reduced to that of finding the node with the

lowest Hds value.

4 AN OPTIMAL EVIDENTIAL INFERENCING EXAMPLE

In this section, we examine the effectiveness of our
proposed uncertainty measure in generating a sequence of
optimal evidence nodes for reducing the uncertainty of a
D-S belief network. Our examination will be based on a
Monte-Carlo simulation study. More specifically, our study
utilizes a small set of empirically obtained data samples to
algorithmically induce a D-S belief-network system. There-
after, based on such an induced network, we carry out
optimal evidential inferencing, by selecting and observing a
sequence of optimal evidence nodes from the network. The
observations of the evidence nodes are simulated using the
event variables from the empirical data samples, and
correspondingly, the network-based inference results about
the rest of unobserved nodes are validated using the values
from the same data samples. From such an empirical
validation, the amount of correct inferences (i.e., reduction
in uncertainty), as resulted from the input evidence, can
readily be calculated.

4.1 The D-S Belief-Network Induction Based on
Empirical Data Samples

The empirical data used for building the D-S belief network

consists of 26 complete samples, which were compiled

based on the results of a questionnaire administered to a

group of subjects. Each sample contains 191 variables (or

nodes), covering the subjects' knowledge of using a

commercial word processor. Each data sample can be

viewed as a certain state vector from the point of view of the

preceding DEDS model.
We then input those 26 data samples into an induction

algorithm to construct a D-S belief-network system. This
belief-network induction algorithm along with the study on
the validity of induced networks has been reported else-
where. Interested readers are referred to [15] for details.
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Fig. 5. Dissonance computed for the D-S belief functions. Notice the function at values f0; 0g, f1; 0g, and f0; 1g.



The set of data samples as used in this study induces
2; 368 statistically significant links among the 191 variable
nodes. The specific meanings of the derived D-S belief-
network system in this case can be stated as follows:

. A node represets a fine-grain knowledge unit (or KU),
which may be a basic concept or elementary skill.
We assume that each KUi corresponds to a proposi-
tion, namely, ªthe individual knows KUi.º

. The weight for a KUi indicates our belief that the
KUi is mastered.

. A link represents a gradation constraint, which
indicates that if a certain concept or skill has been
acquired then it can, to some extent, be inferred that
another concept or skill is also acquired.

Therefore, the knowledge of an individual subject can be
described using some subset (i.e., an overlay model) of all KUs.

One of the main applications of this knowledge assess-
ment technique is to dynamically build fine-grain user
profiles. Here, by fine-grain modeling we mean the
characterization of an individual's knowledge, with respect
to a set of knowledge units (KUs) consisting of either basic
concepts or elementary skills.

4.2 Experimental Results on Optimal Evidential
Inferencing

With the induced belief network, we conducted a series of
user profile assessment simulations. We used a set of
10 testing data samples (other than those for the network
induction) to simulate the observations of some network
evidence nodes and, at the same time, let our reasoning
program estimate the belief values for other unobserved
nodes. Prior to the inferencing, all the nodes of the
knowledge structure were assigned the same initial beliefs.

As a result of the evidential inferencing, a node with
Bel�a� above 0:85 is considered TRUE and Bel�:a� above
0:85 is considered FALSE. This translates to the diagnoses of

known and unknown knowledge units (KUs), respectively.
The system does not produce any predictions if the weights
associated with a node variable do not meet such thresh-
olds. Such a bidirectional thresholding is typical of
applications in which a partial diagnosis is acceptable [9].

After each observation-and-updating session, we exam-
ined the performance of the evidential inferencing by
measuring the results with the standard error of estimate,
defined as follows:

� �
�������������������������������������������������������P10

i�1

P191
j�1 �xempij ÿ xestij�2
Ns � nmax

s
; �24�

where nmax is the number of knowledge units (191). Ns is
the number of subjects used for the test (10). xempij is equal
to 1 if the actual value in the subject i0s empirical sample
corresponding to KUj is known, and 0 otherwise. xestij is the
estimated belief.

The results of the systems performance in three different
simulation modes are given in Fig. 6. They correspond,
respectively, to the average standard error scores over
10 subjects. The three simulation modes are:

1. Inferences based on the entropy-driven evidence node
selection. When a node, KUi, is chosen based on
entropy minimization, the belief for KUi is assigned
0.9 for a successful occurrence of KUi in the testing
sample, and 0.1 otherwise. Inference propagation is
performed around the observed evidence node, KUi,
according to the connectivity of the belief network.

2. Inferences based on random sampling of the evidence
nodes. Same as (I) but nodes are chosen at random.

3. No inference condition. Same as (II) but no inference
propagation is performed.

Note that we have assigned weights 0.9 and 0.1 for
successful and unsuccessful occurrences, respectively, to
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Fig. 6. Individual-node-assessment performance in three different modes of observation, measured in the standard error of estimate over 191 KUs

and averaged for 10 subjects. Note: The solid line, the dashed line, and the dotted line correspond to Modes I, II, and III, respectively (refer to the text

for details).



reflect the residual uncertainties associated with such a
process (e.g., a person may produce good answers by
chance or bad errors by mistake). As a result, the
expected score at 100 percent observation is below the
perfect score, since the nodes' weights are contrasted
against 1.0 and 0, instead of 0.9 and 0.1.

4.3 Discussions

The results from Fig. 6 clearly indicate that the entropy-driven
approach (Mode I) is more efficient in reducing the standard
error of estimate. For instance, a close to perfect knowledge
assessment was obtained after sampling 80 percent of a
subject's knowledge units (i.e., 80 percent of evidence nodes).
Furthermore, sampling 60 percent of the knowledge units
would reduce the standard error score of estimate to about
half of the error score in Mode III. Thus, the method was
successful in reducing the number of questions (or evidence
nodes) to be asked in order to assess a subject's profile.

The explicit algorithm used in the above entropy-driven
evidence node selection process is essentially a technique of
hill climbing. This technique benefits the incremental
evaluation of the optimality criterion. As can be noted from
the DEDS model derived in this study, an optimal evidence
node selection will affect the future admissible selections. In
other words, the selection of one node will change the
topology of the state transition diagram; an example of such
a case has been provided in Fig. 7. Therefore, we cannot
directly apply the conventional dynamic programming algo-
rithm to find the optimal policy of a DEDS that minimizes
the ªtotal costº by proceeding from the terminal node
backwards [2], [6].

One of the obvious limitations of the hill climbing
technique is that the search may be trapped in local optima,
hence affecting the final (global) search results (in our case,
a sequence of evidence nodes). From Fig. 6, we notice that
Mode I, although, in general, is consistently more efficient
than Mode II in reducing the errors, gave poorer perfor-
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Fig. 7. Selection of one evidence node, e.g., x1 or x2, will affect future admissible selections of other nodes.



mance in evidential inferencing when the amount of
observation was less than 12 percent. This is due to the fact
that the entropy-driven evidential inferencing was trapped
in a local minimum when fewer than 12 percent of evidence
nodes were observed.

In order to both overcome the computational complexity
and improve the overall search performance, we may further
consider other search techniques well-known for handling
NP-hard optimization problems, such as simulated annealing.
With those techniques, the optimal sequence search starts
with an initial sequence and makes randomized changes on
the previous sequence in such a way that the sequence is
biased towards a global optimal. The advantage of such
approaches lies in that the search will not blindly search all
local optima. An explicit treatment of those optimization
techniques is beyond the scope of the present paper. Our
future work will examine this issue in details.

5 CONCLUSION

In this paper, the problem of measuring the uncertainty
associated with a Dempster-Shafer (D-S) belief network in
order to determine a sequence of evidence nodes during
reasoning has been addressed. This problem was interpreted
with the existing concepts of optimal system control so that
the nature of the problem as well as the requirement for such
an uncertainty measure can better be examined. This was
done by viewing the D-S belief network as a discrete event
dynamical system (DEDS) and, subsequently, studying the
possible formulation of the uncertainty measure for the
DEDS. As it was shown, the classic entropy measure for the D-
S belief system could lead to unobservable vector states. As an
improved dynamical observer especially catering to the
semantics of the D-S system, a new computation scheme
was given. The necessity and effectiveness of the proposed
uncertainty measure in the optimal evidential inferencing
was shown in Monte Carlo simulation experiments that drew
upon a hill climbing search technique.

APPENDIX

THE BELIEF REVISION ALGORITHM

Belief revision starts from each observed node, xi, and
propagates the belief to its neighboring nodes based on the
inference rules of modus ponens and modus tollens. The
algorithm can be stated as follows:

The Belief Revision Algorithm. {Initially, all the observed
nodes (i.e., the truth values of some nodes) are stored in a linked
list, linkobserv. insert and get next node are standard
queuing functions. update belief computes belief functions.
4Bel��� denotes the net change in beliefs after updating.}

Begin

for each observed node, xi in linkobserv, do

insert� xi queue�;
while queue is not empty, do

starting node get next node�queue�;
if starting node = TRUE, then

for each rule: starting node) xj;

starting node) : xj;

xj ) : starting node;: xj ) : starting
node do

Bel�xj�  update belief( starting
node, xj�;

if 4Bel�xj� is greater than a threshold, �,
then insert�xj; queue�;

else

for each rule: xk ) starting node;

: xk ) starting node;

: starting node) xk;

: starting node) : xk; do

Bel�xk�  update belief(starting
node; xk�;

if 4Bel�xk� is greater than a
threshold, �, then

insert�xk; queue�;
End

It should be pointed out that the D-S belief network may
not always be a singly-connected graph. In order to handle
the problem of multiple transitivity in the network, our
present implementation of the belief updating algorithm
allows the traversal from one node to another to be
performed only once by randomly choosing one of the
possible traversal paths. Thus, the path traversal in the
multiple transitivity case may be regarded as being
nondeterministic.
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