IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 9, NO. 6, NOVEMBER/DECEMBER 1997
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from Empirical Data: Algorithm and
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Abstract —This paper describes an algorithmic means for inducing implication networks from empirical data samples. The induced
network enables efficient inferences about the values of network nodes if certain observations are made. This implication induction
method is approximate in nature as probablistic network requirements are relaxed in the construction of dependence relationships
based on statistical testing. In order to examine the effectiveness and validity of the induction method, several Monte-Carlo

simulations were conducted, where theoretical Bayesian networks were used to generate empirical data samples—some of which

were used to induce implication relations, whereas others were used to verify the results of evidential reasoning with the induced
networks. The values in the implication networks were predicted by applying a modified version of the Dempster-Shafer belief
updating scheme. The results of predictions were, furthermore, compared to the ones generated by Pearl’s stochastic simulation
method [21], a probabilistic reasoning method that operates directly on the theoretical Bayesian networks. The comparisons
consistently show that the results of predictions based on the induced networks would be comparable to those generated by Pearl’s
method, when reasoning in a variety of uncertain knowledge domains—those that were simulated using the presumed theoretical
probabilistic networks of different topologies. Moreover, our validation experiments also reveal that the comparable performance of
the implication-network-based-reasoning method can be achieved with much less computational cost than Pearl’s stochastic
simulation method; specifically, in all our experiments, the ratio between the actual CPU time required by our method and that by

Pearl’'s is approximately 1:100.

Index Terms —Belief-network induction, probabilistic reasoning, learning algorithms, evidential reasoning, implication networks,
implication-network induction, knowledge engineering, Monte-Carlo simulation, empirical validation.

1 INTRODUCTION

As pointed out by Pearl [20], it would be impractical
and inappropriate to represent real-world probabil-
istic knowledge by entries of a giant joint-probability dis-
tribution table. A more reasonable approach would be to
opt for a network of probabilistic relationships among
small clusters of nodes. A Bayesian network decomposes
the joint-probability distribution with conditionals, and is
usually defined in terms of a set of nodes representing
assertions or variables and a set of connecting arcs signi-
fying the independence relationships. The criterion for
detecting these independence relationships embedded in
the underlying probabilistic model is based on graph
separation [2]. In the Bayesian network, the prior prob-
abilities of all the root nodes and the conditional prob-
abilities of other nodes given all the combinations of their
parent nodes are specified. Hence, with the Bayesian net-
work, if some information on the state of certain nodes or
variables is obtained, the conditional probability distribu-
tion of other unobserved nodes can be updated, which is
uniquely defined by the network. Bayesian networks have
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been used to model situations where causality is to be
captured and reasoned about.

A number of algorithms for belief revision in Bayesian
networks have been proposed in the past. Some are exact
while others are approximate. The time complexity of them is
in general problem-dependent. Comprehensive overviews of
the existing methods can be found in [2]. Among those
methods, Pearl’s local propagation scheme handles a specific
class of Bayesian networks, namely singly connected net-
works, in which any pair of nodes has at most one connect-
ing path [20]. The probability distribution of a variable A in
the network is updated based on three parameters, they are:

1) the current strength of the causal support contributed
by each incoming link to 2 (i.e., for top-down predic-
tive inference),

2) the current strength of the diagnostic support con-
tributed by each outgoing link from 2 (i.e., for bot-
tom-up diagnostic inference), and

3) the fixed conditional probability matrix relating the
variable 2 to its immediate parents.

This scheme is strictly adherent to probability theory, and
propagates harmoniously toward a stable equilibrium.

In order to handle multiply connected Bayesian net-
works, stochastic simulation methods have been widely
used [16], [21], which eliminate the requirement of trans-
forming a multiply connected network into a directed
acyclic graph (DAG) as often done with an exact approach.
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In the stochastic methods (e.g., Henrion’s logic sampling
method [16] and Pearl’s stochastic simulation method [21]),
the precision of the reasoning is dependent on the size of
stochastic samples that a simulation generates. Chin and
Cooper [3] have noted that the stochastic simulation algo-
rithms, when applied to certain networks, could lead to
much slower than expected convergence to the true poste-
rior probabilities, and proposed several possible forms of
graph modification.

All the above mentioned evidential reasoning methods
rely heavily on the availability of Bayesian networks. In
real-life applications, however, it would be difficult to ob-
tain a real Bayesian network mainly due to the insufficiency
of empirical data and/or the complexity involved in the
network induction. Generally speaking, constructing a
valid knowledge representation is a time-consuming task,
and often subject to opinion biases or logical inconsistency
if it is built purely based on human heuristics. To overcome
the difficulties in knowledge acquisition, several investiga-
tions have been carried out in recent years to explore the
effectiveness and validity of automated means such as al-
gorithms to perform this task [12].

Geiger [3] presented an algorithm for learning Bayesian
networks that have a specific topology called a condi-
tional tree. This algorithm combines an entropy-based op-
timization criterion with similarity networks [15]. Olesen
et al. [19] considered the problem of modifying networks in
changing environments and developed a tool for creating
adaptive systems based on the compactly represented con-
tingency table of imaginary counts. In addition, Geiger
et al. [14] provided an algorithm for recovering structures
such as trees, singly connected DAGs, and directed bipar-
tite graphs.

Pitas et al. [22] proposed a method of learning general
rules from specific instances based on a minimal entropy
criterion. Cooper and Herskovits [5] developed an algo-
rithmic method of empirically inducing probabilistic net-
works, which utilizes a Bayesian framework to assess the
probability of a network topology given a distribution of
cases. A heuristic technique was provided to optimize the
search for probable topologies.

Another related work is the development of a prediction
logic based on a contingency table of probabilities, as pro-
posed by Hildebrand et al. [17]. In their work, the emphasis
was on the computation of precision and accuracy of
propositions represented. An analogy was made between
the contingency table-based prediction logic and the formal
proposition logic.

In this paper, we describe a new algorithm for inducing
implication networks from a relatively small number of
empirical data samples. The induced implication network
can readily be used to compute the values of unobserved
network nodes once a certain observation is made or a
query is asserted. In this respect, our algorithmic implica-
tion induction method presents an alternative means for
computationally deriving domain-knowledge structures
essential for reasoning under uncertainty. The validity of
the induced implication networks will be examined by way
of Monte-Carlo simulation experiments.

The major difference between the previously mentioned
approaches and ours is that the mentioned approaches
focus on topological induction accuracy, while we focus
on the accuracy of inferences based on an induced
network without regards to the topological uniqueness.
Our approach to implication induction draws on the previ-
ous work in empirical construction of inference networks

(71, [81, [81, [10].

1.1 The Methodology for Investigation

Our study investigates the validity of an implication-
network induction method with Monte-Carlo simulations.
It starts with a given theoretical Bayesian network from
which data samples can be generated and used to induce a
set of new probabilistically significant implication relation-
ships between pairs of individual variables. The belief revi-
sion in the induced networks rests on the assumption that
the induced evidential sources are independent from one
another. That is, combining evidence from multiple evi-
dential sources assumes marginal independence for con-
firming or disconfirming evidence.

In this work, several experiments were carried out to
compare the results of evidential reasoning in the induced
networks with those generated by Pearl’s stochastic simu-
lation method—a multiply connected network solution
based on local belief propagation algorithm [21], using the
theoretical probabilistic networks.

The rationale behind the present Monte-Carlo simula-
tions can be stated as follows: Since it is difficult to obtain a
real Bayesian network from a set of empirical data samples,
our validation of the induced networks needs to rely on a
simulated data set generated from the “real” net—a given
theoretical Bayesian network. This would ensure a fair
comparison if the results of evidential reasoning in the in-
duced networks are to be contrasted with the results ob-
tained by an existing Bayesian-network-based-reasoning
method, i.e., Pearl’s stochastic simulation method.

1.2 The Organization of the Paper

The organization of the paper is as follows: Section 2 fo-
cuses on the algorithmic details of constructing an implica-
tion-network based on empirical data samples. Section 3
describes how the induced implication network is used to
compute the values of unobserved network nodes once a
certain observation is made or a query is asserted. Section 4
presents several Monte-Carlo experiments that examine the
validity of the induced network, and compares the results
with those of the commonly used Pearl’s stochastic simula-
tion method. Section 5 concludes the paper by highlighting
the key findings of the present study.

2 IMPLICATION NETWORK INDUCTION

In the present work, we refer the term implication network to
a directed graph in which each node represents an individ-
ual variable or hypothesis, and each arc signifies the exis-
tence of a direct implication (e.g., influence) between two
adjacent nodes. The value taken on by one variable is de-
pendent on the values taken on by all variables that influ-
ence it. Each value indicates the degree of belief that an un-
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observed variable is TRUE. This value is updated every time
new information is obtained (e.g., some evidence is ob-
served). The strengths of the node interdependencies are
quantified by weights associated with the arcs.

Formally, an implication network can be represented as
an ordered quadruple;

Net = (N, T, Ppins &%) (6]

where Nis a finite set of nodes and 7 is a finite set of arcs.
Pmin IS the minimal conditional probability to be estimated
in the arcs and ¢, is the network-induction error allowed
(to be explained later). Furthermore, each induced implica-
tion relation can be specified by the following quadruple:

I e 11 = (Napg, Nogn, Wi, W, ) @
where W, and VV, are weight functions that map the pairs of

antecedent-consequent node states, i.e., N,,; and N, (Note:
They can be either TRUE or FALSE), and their negations
to a real number between 0 and 1, respectively. That is,

V\/I : Nant X Ncon - [0, 1] (3)

W, : =Ngon X =Ngye — [0, 1] (4)

2.1 The Implication Induction Algorithm

The basic idea behind the empirical induction of implication
relationships is that in an ideal case, if there is an implica-
tion relation 2 = B, then we would never expect to find
the co-occurrences as in Fig. 1 that 2 is true but not B, from
the empirical data samples. This translates into the follow-
ing two conditions:

PEIn)=1 (5)

In reality, however, due to domain uncertainty or sampling
errors, Conditions 5 and 6 may not be satisfied. Our impli-
cation induction algorithm takes into account the impre-
cise/inexact nature of implications and verifies the above
conditions by computing the lower bound of a (1 — &) con-
fidence interval around the measured conditional prob-
abilities. If the verification succeeds, an implication relation
between the two nodes is asserted. Two weights are associ-
ated with the implication,l expressing the degree of cer-
tainty in that relation. In the present implication-based rep-
resentation, the weights are estimated based on conditional
probabilities P(B | &) and P(—aA | —B). Once an implication
relation can be determined, another logical operator “<” is
readily defined as follows:

(A = B) = ((B= A) > (B & A)) )

The elicitation of dependencies among the nodes requires
considering the existence (or nonexistence) of direct rela-
tionships between pairs of random variables in a domain
model. In theory, there exist six possible types of implica-
tions between any two nodes or events, the error cells cor-
responding to the uncertainty in these implication relations
are summarized in Fig. 2.

1. With respect to the two directions of the inference, i.e., modus ponens vs.
modus tollens.

H -H

A | Nuw Npop
A4 | Ny Noan-

Fig. 1. A contingency table where each cell indicates the number of
co-occurrences.
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A = —-B
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H =H
..., inverse negative implication
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() g
-A O m
H -H
(i) negation implication N o o
iv
~h =B -A m O
H =-H
(v) Eomt:e equivalence N _—
< -A m O
H =H
(i) zegatl;e equivalence N —
<o -A O m

Fig. 2. The occurrences of errors in samples (denoted by M), corre-
sponding to the uncertainty in each of the six possible implications, are
tested during the respective implication induction.

The implication induction algorithm can be stated as follows:

The Implication Induction Algorithm
Begin
set a significance level ¢, and a minimal conditional
probability pin.
for node;, i € [0, Npax — 1] @and nodey, j € [i + 1, Nyl
for all empirical case samples
compute a contingency table

where Nj;, Ny, Ny;, N, are the numbers of occur-
rences with respect to the following combinations:
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Ny; : nodei = TRUE A nodej = TRUE

N;,: nodei = TRUE A nodej = FALSE
N,;: nodei = FALSE A nodej = TRUE
N,,: nodei = FALSE A nodej = FALSE

for each implication type k out of the six possible
cases (as in Fig. 2) test the following inequality:

P(X < Nerror_cell) < o (8)

based on the lower tails of binomial distributions
Bin(N, pmin) and Bin(N, pyin), where N and N de-
note the occurrences of antecedent satisfactions in
the two inferences using a type k implication rela-
tion, i.e., in modus ponens and modus tollens, respec-
tively. ¢ is the alpha error of the conditional prob-
ability test.
if the test succeeds, then
return a type k implication relation.

End

In other words, we would like to test whether the prob-
ability of the errors as in the contingency table is less than a
threshold. Suppose that the probability of committing an
error in each single empirical data sample is p,, and that all
n samples are independent. If X is the frequency of the oc-
currence, then X satisfies a binomial distribution, whose
probability function py(k) and distribution function Fy(k)
are given below:

P = (] pE(L-p.)"" ©)

K _ o
P =px <= Y (] it-p,)"”

j=0

(10)

A numerical example of implication induction is given in
the Appendix.

2.2 An Example of an Implication Network

Fig. 3 gives a Bayesian network—a representation typically
used by the existing probabilistic reasoning methods. In the
present study, networks of this kind will serve as theoreti-
cal probabilistic relation networks for generating simula-
tions about the states of the network nodes. Once the
simulated data samples are generated, the implication in-
duction algorithm can be applied. For this particular Baye-
sian network, we have generated 50 data samples, and used
them to induce implication relationships. The criteria for
accepting a relation are as follows: py,, = 0.8 and ¢, = 0.2,
which imply that we retain a relation involving conditional
probabilities (corresponding to (5) and (6)) greater than 0.8
and that we tolerate a 20 percent error rate. Fig. 4 shows all
the induced implication relationships under the above in-
duction conditions; the new implication network contains
19 relations.

3 REASONING BASED ON THE INDUCED NETWORKS

Further to the construction of an implication network, in-
ferences can be made by traversing the implication network
and updating the belief values of the traversed nodes. As
Charniak [2] points out, there might not exist an approxi-

mation belief updating scheme that works well for every
situation, but it might be that in the end, we will simply
have a library of algorithms. The current study on the va-
lidity of the induced network for evidential reasoning em-
ploys a modified version of the Dempster-Shafer method of
evidential reasoning [6], [24] to propagate supports (whether
confirming or disconfirming) throughout the implication
network.

The Dempster-Shafer inferencing scheme may be re-
garded as a theoretical deviation from Bayesian theory.
According to the Dempster-Shafer scheme, the set of possi-
ble outcomes of a node is called the frame of discernment,
denoted by 0. If the antecedents of a rule confirm a con-
clusion with degree m, the rule’s effect on belief in
the subsets of © can be represented by so-called probability
masses. In our bivariate case of evidential reasoning, there
are only two possible states for each node, g;, that is, ©® =
{TRUE, FALSE}.

The Dempster-Shafer scheme provides a means for com-
bining beliefs from distinct sources, known as Dempster’s
rule of combination. This rule states that two assignments,
corresponding to two independent sources of evidence,
may be combined to yield a new one, that is,

mX)=k Y my(X) m,(X;) (11)
X; X=X
where k is a normalization factor,
1

k (12)

- 1= %, o MX) m,(X; )

Our belief revision algorithm works as follows: Starting
from each of the observed nodes, g;, it propagates the belief
to its neighboring nodes based on the inference rules of
modus ponens and modus tollens. In particular, if the ob-
served value of g; is TRUE, it performs forward chaining by
following the positive implication g; = ¢; and the forward-
negative implication g; = —q;, and at the same time, back-
ward chaining by following the forward-negative implica-
tion g; = —0; and the negation implication —g; = —q;. Oth-
erwise, vice versa. While doing so, it maintains a queue of
next items from which the beliefs are to be propagated. The
branching of a propagation stops whenever the path is ter-
minated or the change in a belief value after updating is
less than a threshold, @ (e.g., 0.1 percent). The belief revi-
sion algorithm can be stated as follows:

The Belief Revision Algorithm

{Initially, all the observed nodes (i.e., the truth values of
some nodes) are stored in a linked list, 1ink,pgerr 1insert
and get next node are standard queuing functions.
update belief computes belief functions. A Bel(=) denotes
the net change in beliefs after updating.}

Begin

for each observed node, g; in 11inkgpgpn, dO
insert (q;, queue);
while queue is not empty, do
node < get next node (queue),
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P(X7)=0.5 P(X1)=0.5 P(X8)=0.5

© (o

) 0@@@

P(X21X1)=0.9 P(X41X1)=0. 5 P(X61X1)=0. 9
P(X2I~X1)=0.5 P(X4l~ X1) P(X6I~X1)
P(X31X1)=0.1 P(X5IX1)=0.5 P(X10IX1,X8)=0.9
P(X3I~X1)=0.5 P(X51~X1)=0.1 P(X10IX1,~X8)=0.9
P(X10I~X1,X8)=0.9
P(X10I~X1,~X8)=0.5
4
X9
P(X91X3)=0.1
P(X91~X3)=0.5

Fig. 3. A theoretical Bayesian network that is used to generate a collection of data samples upon which our implication induction algorithm operates.

359 366 521 4 356 11
Xy kg | 4L 4 Xy < Xg 5 470 Xq = Xg 370 463
4 521 521 4 112 5
Xy o> -Ky | 262 213 Xy = Xg 238 237 Xyg = Xg 373 510
359 8 263 4 494 236
Xq = %4 266 467 Xq = Xg 496 237 Xy>Xp | 265 5
264 466 352 378 8 258
Xz > Xg | 262 8 Xy> kg | 265 5 Xy > Xy | 258 475
263 3 7T 259 3 263
Xy = X 467 267 Xy Xg | 518 25 Xy = -Kyg | 114 6%
521 5 113 4 113 4
X = Xg 238 236 XXy | 412 471 Xyg = Xg 646 237
112 5
Xip = Xg | 414 469

Fig. 4. Given a set of 50 data samples generated from a Bayesian network, 19 implication relations can be derived using the induction algorithm.
On the right-hand side of each implication relationship is the contingency table, [, tested during the induction of the respective implication.

if node = TRUE, then if A Bel(qj) > a threshold, 8, then
for each rule: node = @, node = —g, insert (gj, queue);
gj = —node, and —g; = — node do else

Bel(g)) <~ update_belief(node, (), for each rule: g, = node, —Qy = node,
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—node = (, and - node = —q, do
Bel(qy) <~ update belief
(node, qy);
if A Bel(q,) > a threshold, 6, then
insert (Qx, dqueue);

End

The basic probability assignment, m, augmented to each
of the identified implication relations, utilizes the estimated
conditional probability of the nonupdated node given an
updated one.

It should be pointed out that an induced implication
network may not always be a singly connected graph. In
order to handle the problem of multiple transitivity in the
network, our present implementation of the belief updating
algorithm allows the traversal from one node to another
to be performed only once, by randomly choosing one of
the possible traversal paths. Thus, the path traversal in
the multiple transitivity case may be regarded as being
nondeterministic.

4 EMPIRICAL VALIDATION WITH DATA GENERATED
FROM THEORETICAL NETWORKS

Our empirical validation study begins with a theoretical
Bayesian network to generate samples from which the im-
plication induction algorithm is applied. Thereafter, infer-
ences can be made using the induced implication network
whenever a node is observed.

This section presents the results of some experiments
which take several Bayesian networks of difference charac-
teristics and generate data samples for carrying out the
proposed implication induction and evidential reasoning
task. The respective networks used in the experiments are:

1) a single-chain serially connected network,

2) atwo-layer parallelly connected network,

3) afive-node multiply connected network, and
4) aten-node multiply connected network.

Apart from evaluating the validity of our network-
induction method by way of examining the results of evi-
dential reasoning in the induced networks, we also conduct
comparisons with one of the commonly used probabilistic
reasoning approaches, namely Pearl’s stochastic simulation
algorithm for handling general multiply connected Bayesian
networks [21]. Pearl’s simulation method generates a series
of network samples that are consistent with the probabili-
ties of the root nodes and the conditional probabilities of
the nonroot nodes in the network. The generated samples
(viewed as simulated scenarios) allow for the counting of
occurrence frequencies of specific events that in turn give
the estimates of the probabilities of those events (or node
variables). In reasoning with Pearl’s method, whenever a
node variable is newly observed, the posterior probabilities
of other nodes are estimated through such a stochastic
simulation process. One of the major features of Pearl’s sto-
chastic simulation method lies in that the samples as gener-
ated from the network have already taken into account the
effect of node dependencies (as in multiply connected net-
works). However, to yield precise estimates of the node

probabilities, Pearl’s method requires a large number of
iterations.

In all the experiments that we have conducted, we run
1,000 iterations for each of Pearl’s simulations.2

4.1 The Experimental Procedure

In all the experiments conducted, the general procedure for
validating our algorithm can be summarized into the fol-
lowing basic steps (see also Fig. 5):

1) Theoretical network specification. Define a theoreti-
cal Bayesian network with prior probabilities of its
root nodes and the conditional probabilities of its
nonroot nodes given all the combinations of their
predecessors.

2) Simulated data sample generation. Apply logic sam-
pling algorithm (see [16]) to generate two sets of data
samples from the network as defined in Step 1; one
for constructing implication network and the other for
validating the evidential reasoning results. The states
of the root nodes are generated based on their prior
probabilities as given in the Bayesian network, while
the states of the nonroot nodes are generated based
on their probabilities conditioned on their immediate
parent nodes.

3) Implication network construction. Induce implica-
tion relationships between pairs of variables by ap-
plying the induction algorithm (see Section 2.1) to the
simulated data sample set from Step 2. This step repre-
sents the probabilistic knowledge originally modeled by the
Bayesian network into a set of implication relationships.

4) Implication network propagation. For each of the
testing data samples, randomly select an unknown
(i.e., unobserved) node and use its value in the sample
as a new observation, and thereafter propagate the
belief values for other nodes reachable from the ob-
served one.

5) Reasoning validation. For each of the updated nodes,
compare the belief value computed based on the
propagation and the one given in the testing sample.3
Output the difference (whose computation scheme
will be defined later).

6) If there exists any unobserved node in the testing data
sample, then go to Step 4. Otherwise exit.

With regard to Pearl’s stochastic simulation scheme, Step
3 is eliminated since the procedure directly involves the
theoretical network.

Throughout the experiments, we generate 50 samples
from the given Bayesian networks for constructing the
implication networks, and another 100 samples for empiri-
cally validating the evidential reasoning results. During the
statistical testing for implication networks, the criteria for
accepting a single relation are: p,;, = 0.5 and ¢ = 0.4. This
set of parameters enables us to derive implication networks
composed of moderate-influence links. Here it should be
pointed out that the effects of the p,,,;, and ¢, values on the

2. A stochastic simulation of 1,000 iterations, as has been experimentally
demonstrated by Shachter and Peot [23], will yield reasonably stabilized
prediction results.

3. In the experiments, if the value of a node 2 as given in the binary data
sample is 1, then the belief value Bel(A) is regarded as 1, else Bel(A) = 0.
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Validation
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with Empirical
Node Values
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Based
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Fig. 5. A flowchart summarizing the major steps involved in our experimentation.

induced network topologies as well as the evidential infer-
ence performance could be, to a certain extent, a domain-
specific matter depending on the nature of available em-
pirical data. Recent studies that, in part, addressed this is-
sue have been reported in [11].

The validation results for our induced implication net-
works will also be compared to those produced by Pearl’s
method. In our present study, we shall utilize the same set
of testing sample data to validate Pearl’s stochastic simula-
tion-based evidential reasoning method that directly util-
izes the given theoretical Bayesian networks.

4.2 The Metrics of Evaluations

In order to evaluate the reasoning performance, we use a
set of testing data samples to simulate the observations of
the network nodes, and at the same time, let our reasoning
program estimate the belief values for other unobserved
nodes. After each observation-and-updating session, the
following error is calculated, namely, the absolute differ-
ence between the actual value in the data sample and the
updated belief value. This error can be stated as follows:

AX = | Belemp(x) - Belest(x) | (13)

where Bel,,,,(X) denotes the belief value obtained from the
empirical (simulated) testing sample in the following man-
ner: If the actual value of the node X in the testing sample is
equal to TRUE, this belief value is set to 1; else if the ob-
served state is FALSE, it is set to 0.

Based on the calculated differences, we can further de-
rive the mean error (A) as well as the standard deviation
(on) of the testing data samples; these two metrics are de-
fined as follows:

_ 1 Ns Nmax
A= ———— A 14
Nsx”max;; I ( )
and
1 Ns 2
o= | Y (& - 1B) (15)

S

1

where n., is the number of nodes in the network. N is the
number of simulated empirical data samples for the testing.

4.3 Experimental Results

This section presents the results obtained from the empiri-
cal validation experiments.

4.3.1 Experiments with Serially Connected and Parallelly

Connected Bayesian Networks
Ouir first two experiments are concerned with the perform-
ance of our implication-based evidential reasoning method
as well as Pearl’s in dealing with topologically simple,
semantically clear theoretical Bayesian networks; namely,
a single-chain, serially connected network and a two-layer,
parallelly connected network. These experiments were de-
signed to see how each method would predict in the case of
serial-propagation dominant or parallel-propagation domi-
nant networks, and at the same time, to study how sensi-
tive each method would be to a set of biased empirical
testing samples.

Fig. 6 shows a serially connected network used for vali-
dating serial propagation performances of the two meth-
ods. In dealing with such a serial network, our induced
network contains 14 implication rules, as listed in Fig. 7,
and its topology resembles closely that of the theoretical
network.

Figs. 8 and 9 present the mean prediction accuracy of the
two methods tested using the following three testing data
sets, respectively:

1) 100 data samples generated using the theoretical Bay-
esian network.

2) 100 data samples generated using the theoretical
Bayesian network. But, the values of some ran-
domly selected nodes are changed from 0 to 1. This
is to examine the sensitivity of the methods to posi-
tively biased cases.
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P{X1)=0.5 P(X2|X2)=0.2 P(X5
P(X3|~X2)=0.8 P{X5

B(X2|x1}=0.8 P(x4(X3)=0.8

B{X2|~X1)=0.2 P(X4|~¥X3)=0.5

X4)=0.8

~X4)=0.2
P(X6|X5)=0.8
B(X6|~X5)=0.,5

P{X7
P({X7

X6)=0.2 P(X9|x8)=0.8

~X6)=0.8 P(X9|~Xx8)=0.2
P(X8|Xx7}=0.8 P(X10|x9)=0.2
B(X8|~X7)=0.5 P(X10|~X9)=0.8

Fig. 6. A single-chain, serially connected Bayesian network where both strong confirming and disconfirming links exist.

425 100

X=Xy 86 338 -Kq = X3
352 238

X3 Ky | 99 411 Xy = Xp
21 203

~Xg = Ky | 118 457 Xg = kg
20 299

k7 = kg 81 330 X7 = kg
112 258

Xg = ~Kq0 | 435 204 Xg = %40

164 361 100 411
326 149 Xy Xy | 390 9
284 67 125 226
140 508 Xy kg | 246 403
69 271 81 248
520 140 Xg > kg | 280 38D
353 287 300 T
132 279 Xg = Xg 124 505
Tl 353

466 110

Fig. 7. Based on 50 data samples generated from the theoretical Bayesian network (as shown in Fig. 6) 14 implication relations can be derived.
On the right-hand side of each implication relationship is the contingency table, [J, tested during the induction of the respective implication.

3) 100 data samples generated using the theoretical
Bayesian network. But, the values of some randomly
selected nodes are changed from 1 to 0. This is to
study the sensitivity of the methods to negatively bi-
ased cases.

Prediction-error (Induced network: pmin = 0.5, ac = 0.4)

0-5 | | | |
0.45 — — — — — —Nginferemce
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Mean = __— __ — I — j [
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e -]
0Ly - - —- - - — — —
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Fig. 8. The mean prediction-error among 100 testing samples, obtained
by the implication-based method and Pearl’s stochastic simulation
methods. The theoretical Bayesian network is single-chain, serially
connected. The criteria for the implication induction are: p,;, = 0.5,
o, =0.4.

Note that in the latter two validation experiments, the
positive and negative biases were introduced in two of the
total 10 nodes, hence the mean errors in these two cases
were both at 20 percent when all nodes were observed.

Fig. 10 gives a two-layer, parallelly connected theoretical
Bayesian network used to validate the performances of our
method as well as Pearl’s. Several characteristics may be
observed from such a parallel network; they are:

1) the conditional influences from the top three nodes
toward the bottom three nodes are much stronger
than the influences from the bottom to the top, as it is
revealed in the prior and posterior probabilities of the
network, and

2) the top three nodes are joined at the bottom nodes by
disjunctions.

Note that the relations of this network are complex as only the
combined negation of the three parent nodes have an effect on the
children. Moreover, it has a positive effect on x4 and X6 and a nega-
tive effect on Xs. This type of relation is not adequately captured by
binary relation induction techniques such as ours. Thus, this case is
playing against the implication network-induction technique.

Figs. 11 and 12 present the results of experiments with
three different sets of testing samples, generated in a simi-
lar way as in the preceding serial network case. As it is
shown in the figures, the positively biased errors in the
testing data would have greater impact than negatively
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Fig. 9. The mean prediction-error among 100 testing samples, obtained by the implication-based method and Pearl’s stochastic simulation
method. The theoretical Bayesian network is single-chain, serially connected. The criteria for the implication induction are: p,;, = 0.5, o = 0.4.
(a) In the testing samples, the values of 20 percent nodes are changed from 0 to 1; (b) In the testing samples, the values of 20 percent nodes are

changed from 1 to 0.

P(X1)=0.5 P(X2)=0.5 P(X3)=0.5

Y \\

X4 X6
P(X4|X1,X2,X3)=0.8 P{X5|X1,X2,x3)=0.2 P(X6|X1,X2,X3)=0.8
P(X4|~X1,X2,X3)=0.8 P(X5|~X1,X2,X3)=0.2 P(X6|~X1,X2,X3)=0.8
P(X4|X1,~X2,X3)=0.8 P(X5|X1,~X2,X3)=0.2 P(X6|X1, ~X2,X3)=0.8
P(X4(|~X1,~x2,X3)=0.8 P(X5|~X1,~X2,X3)=0.2 P(X6|~X1,~x%2,X3)=0.8
P(X4|X1,X2,~X3)=0.8 P(X5|X1,X2,~X3)=0.2 P(X6|X1,X2,~X3)=0.8
P(X4|~X1,X2,~X3)=0.8 P(X5|~X1,X2,~X3)=0.2 P(X6|~X1,X2,~X3)=0.8
P(X4|X1l,~X2,~X3)=0.8 P(X5|X1,~X2,~X3)=0.2 P(X6|X1,~X2,~X3)=0.8
P(X4|~X1,~X2,~X3)=0.2 P(X5|~X1,~X2,~X3)=0.8 P(X6|~X1,~X2,~X3)=0.2

Fig. 10. A two-layer, parallelly connected Bayesian network used to validate the performances of parallel propagations with our method and

Pearl’s stochastic simulation method.

biased errors. That is, the testing with negatively biased
cases would yield slightly better results for both methods.
This phenomenon may be understood in view of the char-
acteristics of the original Bayesian network. For instance,
if one of the top nodes is TRUE, all three bottom nodes, ex-
cept node X5, would tend to become TRUE. However, if one

of the top nodes is biased toward FALSE, the other two top
nodes will still retain their influences on the bottom nodes.

Since in the parallelly connected network testing, both
positive and negative biases were introduced at one of the
total six nodes, the resulting mean errors at 100 percent
observation are around 16 percent.
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Prediction-error {Induced network: pmir = 0.5, ac = 0.4)
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Fig. 11. The mean prediction-error among 100 testing samples, ob-
tained by the implication-based method and Pearl’s stochastic simula-
tion method. The theoretical Bayesian network is two-layer, parallelly
connected. The criteria for the implication induction are: p,;, = 0.5,
o,=0.4.

In both the serially connected and parallelly connected
network testing, the difference in performance between our
method and Pearl’s may be understood by noticing the
ways in which the two methods propagate evidential sup-
ports. In our method, we propagate the weights following
the induced implication rules, whereas in Pearl’s method,
bidirectional propagations were performed in the theo-
retical Bayesian network. Thus, Pearl’s updating scheme
may be more prone to the probabilities of negative events,
while ours is more ready to neglect (or “forget” about)
the random sampling errors by means of localizing the
propagation.

In all the results presented above, it is shown that
our implication-based reasoning aggregates evidential
weights relatively closer toward the actual ones than
Pearl’s method, whether it is serial propagation or par-
allel propagation.

Prediction-error [lLoduced netwark: poyin = 0.5, o = 0.1)

ST T T T 1
L No infr. —
0.4
M
error -3
0.2
P N R
0 1 2 3 1 3 3]
Number of nodes chserved
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4.3.2 Experiments with Multiply Connected Networks

The first multiply connected network tested is a five-node
loop network as proposed in [4] and studied by a number
of researchers [23]. This network is given in Fig. 13. The
posterior probabilities are set to 0.7.

The implication-based method and Pearl’s stochastic simu-
lation method were tested using 100 empirical testing sam-
ples generated from the theoretical five-node Bayesian net-
work. Fig. 14 presents the mean errors of the two methods.

Our second multiply connected network is more compli-
cated than the five-node one in a sense that it contains 10
nodes and 12 interconnected conditional links, as shown in
Fig. 15.

Fig. 16 shows the experimental results obtained by test-
ing and contrasting the predictions made on the induced
networks and with the theoretical network, using a separate
set of generated data samples (100 in total). The experi-
ments have shown that while both exhibit a similar behav-
ior, the reasoning based on the induced networks gives
slightly better performance with respect to the earlier de-
fined evaluation metrics.

4.3.3 Experiments on Implication-Network Induction with
Different o,

As may be noted from the preceding descriptions of our
experiments, the error probability allowed in the network
induction (i.e., o) was set to 0.4. In order to further get an
insight into the effect of ¢ setting, let us now take a close
look at the performances of the implication-based method
with induced networks of different ¢, values.

Figs. 17a to 17d present the mean errors of the implica-
tion-based method and Pearl’s stochastic simulation
method. In the figures, the induced networks for the impli-
cation-based methods have adopted the following respec-
tive ¢ values:

(@) o =0.1;
(b) oz =0.2;
(¢) o =0.3; and
(d) o, =0.5.

Prediction-error (loduced network: pogio =05 o = 0.41)

0-5 T T
No infr. —
0.4 Ampl] method Je— |
Pearl’s =—
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A N B

|
0 1 2 3 1 ] 6
Number of nodes chaerved
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Fig. 12. The mean prediction-error among 100 testing samples, obtained by the implication-based method and Pearl’s stochastic simulation
method. The theoretical Bayesian network is two-layer, parallelly connected. The criteria for the implication induction are: p,;, = 0.5, o, = 0.4.
(a) The value of one randomly selected node is changed from O to 1; (b) The value of one randomly selected node is changed from 1 to 0.
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P(X1)=0.5

P(X2|X1)=0.7
P(X2~X1)=0.3

P(Xx4
P(X4
P(X4
P(x4

X2,X3)=0.7
~X2,X3)=0.7
X2,~X3)=0.7
~X2,~X3)=0.3
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P(X3[X1)=0.7
P(X3|~X1)=0.3

P(X5(X3)=0.7
P(X5[~X3)=0.3

Fig. 13. A five-node, multiply connected Bayesian network as originally proposed and studied in [4].

What is interesting to point out in these experiments is
the following: If the ¢, value is extremely low, such as 0.1,
the performance of the implication-based method would
become slightly inferior to Pearl’s method. However, as the
o, values increased to 0.2, 0.3, etc., the performances of the
two methods would be comparable. Furthermore, when the
o, values exceeded 0.5, the performance of the implication-
based method could be far more effective in reducing the
prediction errors than Pearl’s method. Generally speaking,

Prediction-error (Induced network: pmin = 0.5, ¢c =0.4)

0.3 i | | |
No inference —
0.4 — _ | implicakion methiod —»—_|
) | Pearll’s ﬂlgorit]Tm -
wean | T — T T 7 T ]
eror
ool — L — ]
| | |
01— — T — T — 7T ]
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Number of nodes chaerved

Fig. 14. The mean prediction-error among 100 testing samples, ob-
tained by the implication-based method and Pearl’'s stochastic simula-
tion method. The theoretical Bayesian network is shown in Fig. 13. The
criteria for the implication induction are: p,;, = 0.5, o, = 0.4.

we can note that when the induced network contains an
enough number of implication rules as in Fig. 17d, the im-
plication-based local evidential reasoning scheme as used
in our work is capable of propagating evidential supports,
and subsequently making correct inferences.

4.4 Discussion

So far, the results of our validation experiments have
shown that the performances of the two methods are in
general quite similar, with respect to the mean prediction
error measure—an evaluation at a global network level. In
addition, it should also be mentioned that the comparable
performance of the proposed method can be achieved with
much less computational cost than Pearl’s stochastic simu-
lation method More specifically, the ratio between the ac-
tual CPU time required by our method and that by Pearl’s
is approximately 1:100. For instance, we have conducted
the experiments (as mentioned in Section 4.3.2) on a Sun
SPARC 20/612MP workstation, and found that it would
take Pearl’s stochastic simulation method 2,040 msec to
complete a 100-iteration—normally it requires 1,000 itera-
tions for reasonable precision—simulation in deriving the
posterior probabilities of the network nodes upon an obser-
vation. On the other hand, however, it took only 29.75 msec
for our implication-based method to generate the predic-
tions about the unobserved nodes.

Several experiments were also carried out on other sto-
chastic simulation methods, such as Shachter’s Basic Al-
gorithm with Markov Blanket [23], our initial results
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P(X3|Xx1)
P(X3|~X1)

P(X7
P(X7
P (X7
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~X3,X6)=0.8
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P(X6)=0.5

P(X5(|X1)=0.8
P(X5|~X1)=0.2

X1,X6)=0.2 P(X8|X1,X6)=0.8

~X1,X6)=0.2 P(X8|~X1,X6)=0.8
X1,~X6)=0.8 P(X8|X1,~X6)=0.8
~X1,~X6)=0.2 P(X8|~X1,~X6)=0.5

P(X9
P(X9
P(X9
P(X9

X3,Xx8)=0.8
~X3,X8)=0.8
X3,~X8)=0.2
~X3,~X8)=0.8

Fig. 15. A multiply connected Bayesian network used for generating samples upon which implication networks were induced and validated.

showed that the asymptotic behaviors of different sto-
chastic simulation methods, by and large, tended to be
quite close.

One of the important characteristics of our implication-
based method is that the induced implication network
contains the major conditional dependence relationships as
in the given theoretical network, and when both the theo-
retical network and the induction condition get stronger,
our induced implication network would contain fewer im-
plication relations.

Prediction-error {Induced network: pmin = 0.5, ac = 0.4)
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" Implication method —+—
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Fig. 16. The mean prediction-error among 100 testing samples, ob-
tained by the implication-based method and Pearl’s stochastic simula-
tion method. The theoretical Bayesian network is shown in Fig. 15. The
criteria for the implication induction are: py,;, = 0.5, o, = 0.4.

4.4.1 Experiments with Networks Composed of High-
Influence Links

In our present study, we also examined the effect of the
conditional probability strength in theoretical networks on
the accuracy of evidential reasoning. In order to test the
performances of the two methods with networks composed
of high-influence links, we modified the multiply connected
network as in Fig. 15 by changing the conditional prob-
abilities from previous 0.8 to 0.9.

The results of prediction validation are given in Fig. 18.
What is interesting to note is that in this case, when the
posterior probabilities increased to 0.9, our method would
not give performance as good as Pearl’s. The explanation
for such a phenomenon might be:

1) When the causal nodes in the network are fewer than
the diagnostic nodes, our method would not make as
strong evidential inferences (e.g., diagnostic infer-
ences) as Pearl’s method does.

2) Pearl’s method is more accurate to account for the
posterior probabilities when the conditionals are
strong. Or, in other words, it performs well if the
given Bayesian network is less uncertain.

4.4.2 Notes on Network Construction and Reasoning

There are several advantages in our present pairwise im-
plication induction method. First, estimating the condi-
tional probability of A based only on the information of
B, P(21B), requires less empirical data than estimating, say,
the conditional probability P(a|B, C, D). One may observe
that it is usually more convenient to assess, either statisti-
cally or subjectively, the conditional probabilities of a cer-
tain variable, given fewer contributing sources.
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Fig. 17. The mean errors of the implication-based method and Pearl’s stochastic simulation method. The induced networks for the implication-
based methods have adopted the following respective « values: (a) o, = 0.1, (b) o, = 0.2, (c) = 0.3, and (d) o, = 0.5.

Second, the induced implication network provides a suf-
ficient knowledge representation for carrying out efficient
evidential reasoning. Sometimes it might not be necessary
to involve all the conditional probabilities in the step-by-
step unfolding of other probabilities, even if a complete set
of the conditionals could perfectly be constructed. For in-
stance, suppose that our empirical data has strongly indi-
cated that marginal probability of a variable A to be 0.7. As
we are observing some variables, we update this probabil-
ity to 0.5, based on both the incoming and outgoing sup-
ports. This could be caused by some of the weak links
whose conditional probabilities are not so significant. The
question now is whether we should still aggregate this up-
dating result even when it fails to give us a better estimate
on the posterior probability of A given certain observation.
With an exact probabilistic reasoning scheme such as
Pearl’s local constraint propagation, the answer would be
affirmative, as it is believed that any perturbation of the
probability would eventually be stabilized at a certain value
and that such a value can tell us which value the variable is
more likely to take. When maintaining the consistency of
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Fig. 18. The mean prediction-error among 100 testing samples, ob-
tained by the implication-based method and Pearl’s stochastic simula-
tion method. The theoretical Bayesian network is multiply connected
with strong conditional links. The criteria for the implication induction
are: pmin = 0.5, o, = 0.4.
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the posterior probabilities, such an approach overlooks the
fact that in doing so, much of the error as signified by the
weak conditionals (e.g., 0.49) gets propagated to other vari-
ables. In other words, the strict adherence to probability
theory as in the exact approaches guarantees consistent
probabilistic results, but not necessarily the informative
predictions or diagnoses.

One of the arguments for involving both top-down pre-
dictive and bottom-up diagnostic inferences in evidential
reasoning is based on the intuition that a stronger belief in a
given hypothesis means a greater expectation for the occur-
rence of its various manifestations, and a greater certainty
in the occurrence of these manifestations adds credence to
the hypothesis [20]. But the question that remains is what if
either the belief or the certainty is extremely weak. In our
opinion, the weak evidential sources should be discarded in
order to avoid the aggregation of errors.

Since the goal of evidential reasoning is to make judg-
ments about the unobserved variable, i.e., the information
in terms of what is more plausible based on some observa-
tions, our present implication-based evidential reasoning
explicitly represents the strong links of the networks and
propagates the belief only along these links. At the same
time, it discards the weak links that cause the erroneous
prediction perturbation.

5 CONCLUSIONS

This paper has presented a computationally efficient means
for automatically inducing implication networks from em-
pirical data samples. The proposed network-induction al-
gorithm was validated through Monte-Carlo simulations
in which data samples were stochastically generated from
theoretical Bayesian networks. The performances of evi-
dential reasoning in the implication networks as induced
from a variety of theoretical Bayesian networks were stud-
ied at the global network level. Furthermore, the predic-
tion-error results were contrasted with those of the com-
monly used stochastic simulations such as Pearl’s [21].
Several general observations about the effectiveness of the
proposed and Pearl’s methods could be made. Generally
speaking, the results of reasoning based on the induced
networks is comparable to those of Pearl’s method, par-
ticularly when the uncertainty inherent in the domain
knowledge is not neglectable. However, what is most
significant is that our method is well suited for applica-
tions where Bayesian networks are not known as a priori
knowledge.

Wise and Henrion [25] have studied the behavior of a
single rule in isolation using some of the commonly applied
probabilistic and nonprobabilistic inference methods [1],
[6], [18], [21], [24] and compared the performance of these
methods on one small rule set. As they noted, the ultimate
impact of these differences within a system of many rules
would depend on aggregate characteristics of the system or
the nature of the situation. This paper offers a new empiri-
cal ground for the further understanding of the existing
approaches to evidential reasoning in Bayesian networks.

One interesting extension of the present work would be
to adjust the weights of implication relationships as new
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observations are made. An adaptation mechanism has been
suggested by Olesen et al. [19] and demonstrated in their
aHUGIN system.

APPENDIX
AN EXAMPLE OF POSITIVE IMPLICATION INDUCTION

What follows illustrates how the previously presented algo-
rithm is used to verify the existence of a positive implication
relation: A = B (see Fig. 2).

A.1 Contingency Distributions

In the first step of positive implication induction, a two-
dimensional contingency table for variables 2 and B is
compiled. As computed from an empirical data set, the cells
in the contingency table contain the observed joint occur-
rences for the respective four possible combinations of val-
ues. Table 1 shows an example of the contingency table
with respective co-occurrences of variables A and B in a
hypothetical data set. In the table, N.. denotes the occur-
rences of the respective situations. The total numbers of A’s
and —B’s can be derived accordingly as follows:

Na=Narg * Nar—g =21

N—g = Nar—g + Noar—p =2

TABLE 1
DISTRIBUTION OF OBSERVED OCCURRENCES
B —B
A 20 (Nanp) 1 (Nar—p)
—A | 8(N-srp) 1 (N-pa—-p)

A.2 Statistical Tests for Implication Existence

The second step of our induction method consists in an as-
sessment of the numerical constraints imposed by A = B.
More specifically, the assessment is based on the lower
tails of binomial distributions Bin(Na, pmin) and
Bin(N—g, pmin) to test measured conditional probabilities
P(B | 2) and P(—2 | —B), where

Na = Narg + Nar—p, N—g = Nar—g + Noar—p,

and ppn, iS @an arbitrary number chosen as the minimal condi-
tional probability for an implication relation. For each of the
two binomial distributions, we check to see whether Ine-
guality 8 can be satisfied.

Suppose that in this example, pyi, = 0.85; ¢, = 0.20. Ac-
cordingly the binomial distribution for testing P(B | 2) can
be written as: Bin(21, 0.85). The computation of the lower
bound proceeds as follows:

P(X < Npr—p) =P(x<1)
=P(x=0)+P(x=1)
= (201) 0.15° 0.85° + (211) 0.15" 0.85%°
=0.155
hence,
P(X < Nar—g) < &
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where symbol

(¥

represents the number of combinations of k in j. The infer-
ence with A = B in the modus ponens direction is signifi-
cant with confidence level (1 — ).

In a similar way, given Bin(2, 0.85), the test for
P(—A | —B) yields:

P(X < Narg) = ((2)) 0.15°0.85° + @ 0.15" 0.85"

hence,
P(x < Nan—p) € o

Since Inequality 8 for the test of P(—A | —B) is not satisfied,
A = B cannot be used for modus tollens inference. Hence,
the positive implication 2 = B is rejected.
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