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ABSTRACT
This study looks at the text data generated from the Asyn-
chronous Peer Instruction tool, DALITE. The goals of this
work are two-fold: i) to determine whether the words stu-
dents use in their self-explanations can be predictive of their
success on the related multiple-choice item, or even reveal
their uncertainty about the concept being tested; and, ii) to
determine if the collection of words used by a student over
the course of a semester using DALITE can predict their
end-of-semester learning outcomes. Through the course of
this study, we examine the effectiveness of different statisti-
cal models and document representations to explain these
data. Results suggest the following: i) words alone are
not enough to reliably predict item-level outcomes, and ii)
DALITE holds the potential to offer teachers a novel plat-
form for formative assessment that is predictive of student
success and learning.
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1. INTRODUCTION
The Distributed Active Learning Integrated Technology En-
vironment (DALITE)[2], implements an original peer in-
struction paradigm that relies on students providing a ratio-
nale to their choice over multiple-choice questions (MCQ).
After every MCQ, the student is prompted to provide the
rationale for their choice. Once provided, the student is
shown a few other students’ rationales for the same choice,
and for an alternate choice. If the answer was right, the
alternate choice shown is for a wrong answer, else it is the
right answer’s rationales. The student can then decide to
change their choice or not.

This instruction paradigm has recently been integrated into
the EdX platform and we believe it has a great future in
MOOCs and other environments where educational crowd-

sourcing bootstraps instructional content. However, for the
bootstrap to be effective, a good understanding of the pro-
cess of learning from this type of content is crucial. This
paper reports on early analysis of student rationales with
this aim in mind, using a text classification framework.

For this particular study, we are interested in

• identifying students who are unsure about their an-
swers (as revealed by when they switch from right-
to-wrong, or wrong-to-right in DALITE). Are there
linguistic patterns for students who are uncertain?

• studying the effect of the teacher on the development
of their students’ language. Is there a teacher effect?

• documenting group differences in language use, for sub-
populations such as strong vs. at risk students, or
male vs. female. [10] discusses the gender gap in per-
formance in college physics classrooms. This was ob-
served in a previous study of ours looking at DALITE
as well[1]. Is there a measurable difference between the
language used by strong students and weak ones? Are
there gender differences?

• finding minimally disruptive, low-stakes, language based
predictors of student failure, as early in the semester
as possible. Can the results of DALITE questions as-
signed prior to any of the three midterms predict which
students ultimately fail?

• which classification algorithms perform the best in this
context? What document representations optimize clas-
sifier performance for the different target variables?

2. RELATED WORK
Peer Instruction[4], massively popularized by Eric Mazur
from Harvard, encourages teachers to promote student dis-
cussions after question polls in class, and subsequently re-
poll their students to see if they changed their original an-
swer choices. This is the process our group makes asyn-
chronous using DALITE.

The classification of student texts in physics has been stud-
ied in work surrounding the Why2Atlas[18] intelligent tu-
toring system (ITS), which dialogues with students in order
to lead them to a more complete conceptual understand-
ing. [15] used deep syntactic analysis for the classification of



statements as related to different components of a complete
explanation of a concept. AutoTutor[7] and iStart[13] are
conversational ITS’ that use Latent Semantic Analysis[5] to
analyze the coherence of student self-explanations. A recent
review of advances in ITS’s[16] showed that natural language
processing techniques, such as distributional semantics and
deep syntactic analysis could be used to classify speech acts
by students.

The study described herein take the first step in analysing
the data from the DALITE platform, which is not an ITS,
and does not have any dialogue agents, but has students
asynchronously interacting with each other’s self-explanations.
This first step is based on classifying students based on their
words alone. Also, this study is slightly different than those
mentionned above, as it was part of a larger in-vivo design
based experiment on the development of tools to engage stu-
dents in active learning, even outside of the classroom[3].

3. DATA AND METHODS
3.1 Corpus Statistics
The dataset is made up of student-generated self-explanations
for 80 different DALITE items (conceptual physics ques-
tions). On average, 97 students attempted each item, writ-
ing explanations for each question with an approximate length
of 32 words, with a type-token ratio of 0.87. The average
number of unique words used by all students to answer any
given one item was 310.

The 140 students in this study came from three different
colleges in the province of Quebec, Canada. The course
material was surrounding what would normally be freshman
physics in the U.S. Besides collecting midterm grades and
final course grades, each student also completed the Force
Concept Inventory[8], at the beginning of the term, as well at
the end. The normalized pre-post gain (or Hake gain) on this
questionnaire has become a standard measure in the physics
education research community. More aggregate statistics of
the dataset rest are more fully described in [1].

3.2 Experimental Setup
In order to evaluate the classification models and document
representations, we choose different target variables for each
experiment:

1. Whether the rationale was written for a correct answer,
or an incorrect one. This is meant as a starting base-
line, just to make sure the texts are differentiable along
this seemingly obvious axis (assuming students will use
different words to justify different answer choices)

2. Whether the rationale was written by a student who
ended up switching their answer choice for that ques-
tion

3. Whether the rationale was written by a male student
or a female student.

4. Which of the five teachers was the one who taught the
student who wrote the rationale under examination.

High accuracy prediction by classifiers for these target vari-
ables might imply that DALITE could become more adap-
tive, modeling the student’s cognitive state and future suc-
cess, based solely on the words they used in their explanation
alone. For our first set of experiments, feature matrices are
built from ”per-question corpora” (one classifier is built for
every question item in DALITE, so there is one document
per student who attempted that question).The overall effec-
tiveness measure used is accuracy, which is averaged across
all per-question corpora. Classifier performance is always
compared to a baseline accuracy, calculated by always pre-
dicting most frequent class for the target variable (reported
at the top of each table in the results).

In addition, the research team also has the objective of pro-
viding teachers with early predictors of student failure. We
approach this by building classifiers for a different set of
target variables:

1. Will the identified student fail their first of three midterms?

2. Is this student at risk of failing the course (final grade
within 5 percentage points of failing)?

3. Will this student end the term with a lower than me-
dian gain in conceptual knowledge? (as measured by
the Hake gain on the FCI)

Building models that can discriminate between such stu-
dents, based only on the words a student used in DALITE,
could indicate whether or not that this tool offers teachers
a valid and reliable type of formative assessment. For this
second set of experiments, feature matrices are built from
”per-student corpora”, where one classifier is built to predict
each target variable, and each data point is a concatenation
of all the rationales written by the student up to a certain
point in time (as we wish to see how early in the term a
student’s future troubles can be flagged).

3.3 Tools
All texts were automatically corrected using the PyEnchant
module (any misspelled word was replaced by the most likely
suggestion). For the experiments where we explore Part-
of-Speech tagging, tokenized sentences were passed straight
through the NLTK Part-of-Speech tagging module. All fea-
ture matrices and classifiers were built through the Scikit
Learn library[14]. Classifier hyper-parameters were left at
their default values. We employ Laplace smoothing for un-
seen words. In an effort to report generalizable results,
we use stratified k-fold cross-validation, which preserves the
class distribution in each fold.1

3.4 Statistical Models
Significant amount of work was done in comparing different
statistical learning algorithms for text classification. One of
the simplest yet most effective text classification approaches
is the Naive Bayes classifier[11]. In datasets when vocabu-
lary size was small, [12] compared different event models for

1all scripts used to get the results for this study are available
at sameerbhatnagar.github.io/



the Naive Bayes family of classifiers, finding that the multi-
variate Bernoulli model (where the components of each doc-
ument vector are binary, modeling simply the presence or
absence of a word), performed better for text classification
than its multinomial counterpart (where document vectors
are the counts of the different terms in tha document). [9]
shows that Support Vector Machines (SVM) are well suited
to the task of text classification, due to three factors in-
herent to the nature of the task: high dimensional feature
space, many relevant features (dense concept vectors), but
sparse document vectors. Finally, we explore the utility of
a k-nearest neighbor classifier in this setting as well, based
on the intuition that the document vectors might not be
linearly separable.

3.5 Document Vector Representations
This study also aims to explore different choices of docu-
ment representation. The most basic choice would have the
elements of document vectors simply containing raw word
counts (we ensure that the words in the original questions
item text are always included in the term-document ma-
trices).[17] showed that shifting importance to rarer words
across a corpus would improve classifier effectiveness. We
also look at N-grams to relax the independence assumption
between words, but this may require more data than we
have to avoid sparsity (we only go up to bigrams). There
is an interest in also adding syntactic information, such as
part-of-speech (POS) tags, and represent documents as bags
of POS-tags (e.g. since there is an important difference in
physics between using the word ”force” as a verb or as a
noun, which could reveal a misconception if students use it
incorrectly). Finally, document vectors can also be repre-
sented for their semantic content. One of the most success-
ful techniques for this is Latent Semantic Analysis[5], which
relies on a truncated singular value decomposition of term
co-occurrence matrices. This allows us to approximately
represent documents in a lower dimensional space, and typ-
ically removes noise such that document vectors that are
similar in meaning, cluster together. The sensitive choice
in such latent factor models is the choice of how many fac-
tors will be kept after the matrix decomposition. We do a
grid search over different possible number of dimensions to
reduce to, ranging from 2 to 10, and pick the model that
performs best in cross-validation.

The total number of unique words used, which will serve
as features for our models, is on the order of two times the
number of students (the number of data points), resulting
in term-document matrices that are very sparse (often more
than 97%). For this reason we implement a univariate fea-
ture selection using a chi-squared test, where we select the
top 10 ranked features for their usefulness in discriminating
the target labels[11]. We experiment with different docu-
ment representations, searching for the best combination.

4. RESULTS
Referring to the experimental setup section above, there are
two sets of experiments that were conducted:

1. Given an item, and all the DALITE rationales written
by the students in the past for that item, can we look
only at the words entered by some new student, and

Table 1: Accuracy for Predicting low hake gain for
a student at end of term (Baseline accuracy: 0.52)

Model Raw TfIdf Bigrams PoS SVD.r SVD.B
Mult.NB 0.67 0.54 0.67 0.65 NA NA
Bern.NB 0.69* 0.70* 0.69* 0.59 NA NA
SVM 0.64 0.51 0.64 0.48 0.51 0.51
kNN 0.63 0.68* 0.65 0.45 0.55 0.55

Table 2: Accuracy for Predicting at risk for a stu-
dent at end of term (Baseline accuracy: 0.56)

Model Raw TfIdf Bigrams PoS SVD.r SVD.B
Mult.NB 0.60 0.55 0.62 0.61 NA NA
Bern.NB 0.62 0.71* 0.64 0.63 NA NA
SVM 0.55 0.55 0.54 0.55 0.55 0.55
kNN 0.62 0.68* 0.53 0.65 0.61 0.63

predict his/her outcome on that item? Can we predict
if they are going to switch their answer (and hence
they might have been uncertain)? Can we predict their
gender, or teacher?

2. Given a student, and all of the rationales written by
that student up until a certain point in time, can we
predict end-of-semester learning outcomes? Can we
predict such outcomes early on in the semester?

We do not explicitly report in this paper any results from
the first set of experiments, except in saying that none of our
statistical models, with none of the possible document vector
representations, was able to achieve a prediction accuracy
above baseline.

We report a subset of the results for the second set of exper-
iments in the tables below. Tables 1 and 2 show classifier
performance if we include all of each student’s rationales in
making a prediction, while table 3 reduces the data available
to the model to only include rationales written by students in
the first third of the course. The rows of each table represent
which statistical model was used, while the columns repre-
sent the choice of document vector representation (‘SVD.r’
means that truncated singular value decomposition is car-
ried out on the feature matrix derived from the corpus of raw
text, while ‘SVD.B’ means that that SVD was carried out
on the feature matrix derived from the combinations of uni-
grams and bigrams. Since SVD return vectors with negative
components, the Naive Bayes models are not applicable.)

5. DISCUSSION

Table 3: Accuracy for Predicting low hake gain for
a student after 1/3 of semester (Baseline accuracy:
0.52)

Model Raw TfIdf Bigrams PoS SVD.r SVD.B
Mult.NB 0.63* 0.59 0.64* 0.62 NA NA
Bern.NB 0.58 0.55 0.66* 0.65 NA NA
SVM 0.62 0.51 0.60 0.57 0.51 0.51
kNN 0.59 0.58 0.57 0.51 0.54 0.55



Our research team started this study with the following
question: do students in different cognitive states, use differ-
ent words to explain their thinking when answering concep-
tual questions? In general, the poor performance of most
of the statistical models studied herein tends to confirm
the intuition behind the body of work centered around La-
tent Semantic Analysis: in most cases, the mere occur-
rences of the words is not enough to discriminate strong
students from weak ones, and that such datasets can be too
noisy and sparse. However, what is striking how the trun-
cated SVD models also yielded essentially null results (even
when optimized for the number of dimensions through cross-
validation). This may highlight how the DALITE rationales
are too short in length to have similar success to other edu-
cational text classification systems using LSA, such as that
of [6], where the input texts were long enough to predict
local coherence.

The inability of all these models to predict item-level out-
comes, such as getting the answer correct, or whether a stu-
dent is about to switch their answer, leads us to believe
that richer syntactical and semantic representations will be
required. Otherwise, whether a student is male or female,
certain of their answer or not, correct or incorrect in their
answer choice, they cannot be distinguished by their words
alone. What is more, even if students are studying under
the guidance of very different teachers, using different text-
books (as was the case in our study), they are still using
similar language to defend their thinking in DALITE.

An encouraging result lies in the relative success of the
Bernoulli Naive Bayes model in each of the three tables,
which suggests that modeling the absence, as well as the
presence of words is useful in predicting student learning
outcomes. In table 3, both Naive Bayes models significantly
increase prediction accuracy over baseline for distinguish-
ing students who would have below median Hake gain on
the FCI, using only the words in their rationales in the first
third of the course.

6. FUTURE WORK
A more domain specific study is now underway, where we
are looking at the types of DALITE items that had higher
than expected prediction accuracies from their associated
classifiers. What do these items have in common? What
are the most informative features for these models? How
can such information help teachers in instructional design?

The most important facet of DALITE that has not yet been
studied lies in the patterns in student preferences: when
students are on the page where they can read their peers’
rationales, and are asked to reconsider their original an-
swer choice, they are also prompted to select which, if any,
of their peers’ rationales they thought was most convincing.
This ’crowdsourcing’ of high quality, peer-assesed rationales
if very healthy for the future of DALITE, but is also fer-
tile ground for research related to the current study: what
distinguishes language that is effective to convincing to stu-
dents (whether for the right answer, or the wrong one)?
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