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École Polytechnique de Montréal

Abstract. Bayesian networks are commonly used in cognitive student
modeling and assessment. They typically represent the item-concepts
relationships, where items are observable responses to questions or exer-
cises and concepts represent latent traits and skills. Bayesian networks
can also represent concepts-concepts and concepts-misconceptions rela-
tionships. We explore their use for modeling item-item relationships,
in accordance with the theory of knowledge spaces. We compare two
Bayesian frameworks for that purpose, a standard Bayesian network ap-
proach and a more constrained framework that relies on a local indepen-
dence assumption. Their performance is compared over their respective
ability to predict item outcome and through simulations over two data
sets. The simulation results show that both approaches can effectively
perform accurate predictions, but the constrained approach shows higher
predictive power than a Bayesian Network. We discuss the applications
of item to item structure for cognitive modeling within different contexts.

1 Introduction

There is considerable interest in the use of Bayesian networks (BN) for student
modeling and cognitive assessment (for eg., Mislevy, Almond, Yan, & Steinberg,
1999; Conati, Gertner, & VanLehn, 2002; VanLehn, Niu, Siler, & Gertner, 1998;
Vomlel, 2004). In part, this interest stems from the ability of a BN to model the
uncertainty that is inherent to cognitive modeling. Moreover, BN lend themselves
to automatic learning and offer an attractive alternative to the difficult and
error prone effort to parametrize a student model by means of human expertise.
Finally, this interest can also be attributed to the fact that the field of BN has
progressed at a rapid and sustained pace in the last two decades. It has now
matured to a level where commercial and open source software packages and
libraries allow their use in a relatively simple manner.

The studies on the use of BN in student models have, to our knowledge, ex-
clusively dealt with modeling relationships from test item responses to concepts
and misconceptions, and between concepts and misconceptions themselves. How-
ever, items also have an internal structure according to the theory of knowledge
spaces (Doignon & Falmagne, 1999). Doignon and Falmagne (1999) have shown
that the structure among items is determined by the order that constrains their
learning in time. This order allows the inference of mastered (or non mastered)
items, thereby allowing the assessment of an individual’s state of knowledge



from partial evidence, akin to the process of evidence propagation in a Bayesian
network.

We describe two approaches to building item to item structures and how
to use them for cognitive diagnostic. The first approach incorporates a specific
method of inducing the structure of item to item structures. It is combined with
an inference model based on simple posterior probability model under the as-
sumption of local independence. The second approach is a generic approach of
inducing the structure of a BN and performing inference within such structures.
First, we describe theoretical underpinning of item to item structures. It is fol-
lowed by the description of each approach and by a performance comparison to
assess their respective ability to predict item outcome.

2 Item to Item Node Structures and the theory of
Knowledge Spaces

Item to item structures depart from the more common way of building student
models, which is based on a hierarchy of concepts with items at the bottom of the
hierarchy (see, for eg. Millán, de-la Cruz, & Suárez, 2000; Vomlel, 2004; VanLehn
et al., 1998). In contrast to hierarchical structures, item to item structures build
structures among observable knowledge item themselves (Falmagne, Koppen,
Villano, Doignon, & Johannesen, 1990; Doignon & Falmagne, 1999), bypassing
concept links. A number of researchers have worked on the problem of building
student models within this framework (Dowling & Hockemeyer, 2001; Kambouri,
Koppen, Villano, & Falmagne, 1994). Our own work on Partial Order Knowledge
Structures (POKS) (Desmarais, Maluf, & Liu, 1996; Desmarais & Pu, 2005) falls
under this line of research as well.

The theory of knowledge spaces asserts that knowledge items, i.e. observable
elements such as question items, are mastered in a constrained order. Knowledge
items define an individual’s knowledge state as a subset of items that are mas-
tered by that individual. The knowledge space determines which other knowledge
state the person can move to. Viewed differently, the knowledge space defines
the structure of prerequisites among knowledge items. For example, we learn to
solve figure 1’s problems in an order that complies with the inverse of the arrow
directions. It follows from this structure that if one masters knowledge item (c),
it is likely she will also master item (d). Conversely, if she fails item (c), she
will likely fail item (a). However, item (c) does not significantly inform us about
item (b). This structure defines the following possible knowledge states (subsets
of the set {a, b, c, d}):

{∅, {d}, {c, d}, {b, d}, {b, c, d}, {a, b, c, d}}

Other knowledge states are deemed impossible (or unlikely in a probabilistic
framework).

Formally, it can be shown that a directed acyclic graph (DAG), such as
the one in figure 1, can represent a knowledge space closed under union and
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Fig. 1. A simple knowledge space composed of 4 items ({a, b, c, d}). The partial order
constrains possible knowledge states to {∅, {d}, {b, d}, {c, d}, {b, c, d}, {d, b, c, a}}. In the
Knowledge space Theory, the arrows represent surmise relations (�) that determine
the order in which we acquire the knowledge items, represented by the graph nodes.

intersection. Closure under union and intersection implies that if we combine
two people’s knowledge state, it is a valid subset of the knowledge space, and so
is the intersection of their two states. We refer to such structures as partial order
knowledge structures, or POKS. They represent a variant of the general theory
of knowledge space which assumes closure only under union. The assumption of
closure under union and intersection allows a considerable reduction the space of
knowledge states. It greatly simplifies the algorithms for inducing a knowledge
structure from data and reduces the amount of data cases required.

It can be seen that the theory of knowledge spaces and its POKS derivative
make no attempt to structure knowledge in a hierarchy of concepts or any other
structure containing latent variables (often called latent traits). The knowledge
state of an individual is solely defined in terms of observable manifestations of
skills such as test question. Of course, that does not preclude the possibility to
re-structure knowledge items into higher level concepts and skills. In fact, this
precisely is what a teacher does for developing a quiz or an exam, for example.

2.1 Partial Order Knowledge Structures and Bayesian Networks

Although POKS graphs like the one in figure 1 can be conveniently represented
graphically by a DAG that resembles to a BN, the semantics of links is differ-
ent. BN directed links usually represent causal relationships (although they can
represent any kind of probabilistic relationship) and the structure explicitely
represents conditional independence between variables. A knowledge space link
is similar to a logical implication relation, but it represents a prerequisite, or, to
use Doignon and Falmagne terminology, a surmise relation. For example, if we



have a surmise relation A � B, it implies that the mastery of B will precede the
mastery of A, and thus if a student has a success at for A, that student is likely
to have a success for B. Moreover, its structure represents a partial ordering of
the order in which items are likely to be learned.

That difference in the semantics of links has a number of implications. For
one, the closures under union and intersection of POKS implies that, given a
relation A → B, or in the poks framework A � B, the absolute frequency of
people who master a knowledge item A will necessarily be smaller or equal to
the frequency of B. This conclusion does not hold for the case of general BN.
For example, assume figure 1’s structure is the following (a BN taken from
Neapolitan, 2004):

(a) smoking history
(b) bronchitis
(c) lung cancer
(d) fatigue

a

b c

d

It is clear that smoking history (a) can be a much more frequent state than
lung cancer (c) and bronchitis (b). This could not happen in POKS. The fre-
quency of (a) cannot be higher than that of (b) and (c). It is also obvious that,
whereas the occurrence lung cancer could decrease the probability of bronchitis
by discounting (or “explaining away”) that later cause as a plausible explanation
for fatigue, discounting does not play a role in the case of knowledge structures
(eg. observing node (c) in Figure 1 would not decrease the probability of (b)).

In short, many interactions found in general BN do not occur in POKS.
We conjecture that this reduction in the space of possibilities that characterizes
POKS, namely the closure under union and intersection, can be used to infer
knowledge structures with algorithms that rely upon stronger assumptions and
more constrained search spaces than for the more general BN models.

In fact, structural induction techniques tailored to the Knowledge structures
and the POKS frameworks have been devised by a number of researchers. For
example, Kambouri et al. (1994) introduced a semi-automated algorithm to con-
struct knowledge structures. They developed an application that combines the
use of empirical and an interactive question-answer process with domain experts
to successfully construct knowledge structures. Their approach allows the con-
struction of knowledge structures closed under union only, which implies it can
represent alternative prerequisites. However, the construction process requires
human intervention and cannot be considered as automated learning.

In the current study, we focus on the construction of item to item structures
solely from learning approaches. The next section describes a BN learning ap-
proach over item to item structures, and a constraint-based structural learning
approach to induce POKS.



3 Induction and Inference with Partial Order Knowledge
Structures

The topology of an item to item structure can be fairly intertwined and complex.
Inducing that structure is a difficult task to perform manually. It entails deter-
mining the order of mastery among knowledge items. If the set of knowledge
items is large, over a few tens of items for example, our own experience is that
this task can be very tedious and error prone.

Thus, finding means of learning the item to item knowledge structures from
empirical data is imperative. We study two means of learning item to item
structures:

– Bayesian Network structural learning;
– a POKS learning and inference algorithm.

Each approach is discussed below. Experiments to compare their respective per-
formance for predicting item responses outcomes is reported later.

3.1 Bayesian Network structural learning for POKS

In spite of the semantic differences between the links of a BN and those of
a POKS, the relations of both structures can be thought of as probabilistic
implications between nodes. Both can represent evidence that influences the
probabilities of neighboring nodes taking on values of true or false, in accordance
to a Bayesian framework. It follows that any BN structural learning algorithm
is a reasonable candidate for learning item to item structures.

We conducted a study on learning item to item BN structures with the K2
and PC algorithms:

K2 The K2 algorithm (Cooper & Herskovits, 1992) is based on a Bayesian
method that looks for the most probable structure given the observed distri-
bution. It uses a greedy search algorithm over the space of network topolo-
gies.

PC The PC algorithm (Spirtes, Glymour, & Scheines, 2000) falls into the constraint-
based structural learning approach. It uses conditional independence tests
with a given level of significance to determine the structure.

These algorithms are regularly used in the BN learning literature. For the
K2 algorithm, the general principle is to maximize the probability of a given
topology given observed data. Cooper and Herskovits (1992) originally used a
Bayesian metric, but the well known BIC (Bayesian Information Criterion) is
also used. The algorithm performs a local search constrained by a given node
ordering pattern to reduce the search space. That order is a topological order
which defines a subspace of the permissible DAGs. For our experiments, the
initial order is obtained first using the Maximum Weight Spanning Tree (MWST)
algorithm by (Chow & Liu, 1968) to derive a network topology, and by extracting
a topological order from this structure. François and Leray (2003) has shown that



the initial DAG obtained by the MWST is an effective replacement to a random
ordering.

We used Ken Murphy’s BNT package for learning the BN structures of
all the experiments conducted (http://www.cs.ubc.ca/~murphyk/Software/
BNT/bnt.html). The results are reported in the section 4.

3.2 POKS Structural Induction

The second approach we study for inducing the relations among items is based
on Desmarais and Pu (2005; Desmarais et al., 1996).

This approach can be considered a constraint-based structural learning ap-
proaches since it uses conditional independence tests to determine the structure
(see Neapolitan, 2004).

The POKS induction algorithm relies on a pairwise analysis of item to item
relationships (Desmarais et al., 1996). The analysis attempts to identify the order
in which we master knowledge items in accordance to the theory of knowledge
spaces (Doignon & Falmagne, 1999) but under the stronger assumption that the
skill acquisition order can be modeled by a DAG.

The tests to establish a relation A � B consists in three conditions for which
a statistical test is applied:

P (B|A) ≥ pc (1)
P (A|B) ≥ pc (2)

P (B|A) 6= P (B) (3)

Conditions (1) and (2) respectively correspond to the ability to predict that B is
true given that A is observed true (mastered), and the ability that A is false (non
mastered) given that B is false. The third condition verifies that the conditional
probabilities are different from the non conditional probabilities (i.e. there is an
interaction between the probability distributions of A and B). These conditions
are verified by a Binomial test with parameters:

pc the minimal conditional probability of equations (1) and (2),
αi the alpha error tolerance level.

For this study, pc is set at 0.5. Condition (3) is the independence test verified
through a χ2 statistic with an alpha error αi < 0.2. The high values of alpha
errors maximize the number of relations we retain. See Desmarais et al. (1996)
and Desmarais and Pu (2005) for further details about the parameters.

3.3 Inferences

Once we obtain an item to item structure, an assessment of the probability of
success over all items can be computed from partial evidence. In other words,
we wish to evaluate the validity of the two frameworks over their item outcome
predictive ability. We do not attempt to assess the actual item to item structures



themselves because we have no mean to determine their respective true struc-
ture. In fact, that issue belongs to the field of cognitive science and was already
thoroughly investigated by Doignon and Falmagne (see Doignon & Falmagne,
1999) and a number of other researchers. Our interest lies in the predictive power
of the models which is measured by their ability to perform accurate assessment.

3.4 Inference in BN

For the BN structure, there exist a number of standard and well documented
algorithms (see, for eg., Neapolitan, 2004). We use the junction-tree algorithm
(Jensen, 1996) which performs an exact computation of posterior probabilities
within a tree whose vertices’s and derived from a triangulated graph, which is
itself derived from the DAG in the BN.

3.5 Inference in POKS

For the POKS framework, computation of the nodes’ probabilities are essentially
based on standard bayesian posteriors under the local independence assumption.

Given a series of relations:

E1 � H,E2 � H, · · · , En � H

where Ei stands for an evidence node (parent) and H stands for a hypothesis
node (child), the likelihood ratio of H is computed according to the following
equation :

O(H |E1, E2, . . . , En) = O(H)
n∏
i

P (Ei |H)
P (Ei |H)

(4)

In case the evidence is negative for observation i, then the ratio P (Ei | H)

P (Ei | H)
is used.

We refer the reader to Desmarais and Pu (2005) for more details.
In the current study, we do not use transitive/recursive propagation to per-

form inference based on partial evidence as was done for previous studies with
POKS (Desmarais & Pu, 2005; Desmarais et al., 1996). Instead, we rely on the
fact that if we have strong surmise relations A � B � C, then we would also
expect to find A � C according to the POKS structural learning algorithm. In
other words, if we have A � B and B � C, no probability update is performed
over C upon the observation of A, unless a link A � C is explicitly derived
from the data.

The departure from the original POKS framework (Desmarais et al., 1996)
makes the model simpler. It avoids the definition of a scheme to propagate
partial evidence: propagating evidence from A to C in a structure like A � B �
C, for example. Given that we expect partial evidence inferences to result in
direct, transitive relations, the results are expected to be very similar. This was
confirmed in our own experimental results that show that the performance is
very close between the two alternatives.



4 Predictive Comparison of the BN and POKS Structural
Learning approaches

The BN and POKS structural learning approaches are compared over their abil-
ity to predict item response outcome. We use data from real tests to conduct
simulations and measure the performance of each approach for predicting the
outcome over the full set of item answers from a subset of observed answers.
This validation technique is identical to the ones used by Vomlel (2004) and by
Desmarais and Pu (2005).

4.1 Simulation Methodology

The experiment consists in simulating the question answering process with the
real subjects. An item is chosen and the outcome of the answer, success or failure,
is fed to the inference algorithm. An updated probability of success is computed
given this new evidence. All items for which the probability is above 0.5 is con-
sidered mastered and all others are considered non-mastered. We then compare
the results with the real answers to obtain a measure of how accurate the pre-
dictions are. The process is repeated from 0 items administered until all items
are “observed”. Observed items take their true value, such that after all items
are administered, the score always converges to 1.

The choice of the question to ask is determined by an entropy reduction op-
timization algorithm. The same algorithm is used for the BN and POKS frame-
works (for details on this algorithm, see Vomlel, 2004; Desmarais & Pu, 2005).
Essentially, the choice of the next question to administer corresponds to the one
that reduces the entropy of a set of network nodes. Items with very high or
low probability of success are generally excluded because their expected entropy
reduction value will be low.

4.2 Data sets

The data sets are taken from the results of two tests administered to human
subjects :

1. Arithmetic test. Vomlel (Vomlel, 2004) gathered data from 149 pupils who
completed a 20 question items test of basic fraction arithmetic for grade 6–
8 pupils.

2. UNIX shell command test. The last data set is composed of 47 test
results over a 33 question item test on knowledge of different Unix shell
commands. The question range from simple and essential commands (eg. cd,
ls), to more complex data processing utilities (eg. awk, sed) and system
administration tools (eg. ps, chgrp).

For each data set, a portion of the data is used for training and the remaining
ones for testing. Table 1 provides the size of the training and testing sets along
with the average success rate of each test.



Table 1. Data sets

Data set
nb.

items
nb. data cases

Average
success rate

Training Test Total

Arithmetic 20 100 49 149 61%
Unix 33 30 17 47 53%

For each data set, six training and test sets were randomly sampled from
both corpus. All performance reports represent the average over all six sampled
sets.

4.3 Simulation parameters

A number of parameters must be set for the different algorithms used.
The BN parameters for both the K2 and PC algorithms were initialized with

Dirichlet uniform priors, which correspond to Beta priors in the case of binomial
variables.

For the PC algorithm, recall that it relies on a conditional independence test.
The significance level chosen for this test in our experiment is 0.2, the same value
as the one used for the POKS interaction test (see below).

For the POKS structural learning, two parameters need to be set. They are:

pc = 0.5 and αi = 0.2

These values were also used in Desmarais et al. (1996) and they are generally
appropriate when the number of nodes is below 50.

The simulations are run with Ken Murphy’s BNT package (http://www.cs.
ubc.ca/~murphyk/Software/BNT/bnt.html). Note that it was not possible to
test the PC algorithm for the Unix test because it resulted in an error with
Matlab.

4.4 Learned Structures

Over all six randomly sampled sets, the POKS structural learning algorithm cre-
ated structures that, for the arithmetic data set, contains between 181 and 218 re-
lations, of which 117 to 126 are symmetric, for an average between 9.1 to 10.9
links per node. For the Unix data set, the number of relations varies between 582
and 691, and the number of symmetric relations varies between 348 and 297, and
average relations per node that varies between 17.6 to 20.9. The structure of the
Unix data set is thus much more populated with an average link per node about
twice that of the arithmetic test.

For the BN structural learning results, figure 2 displays the first two struc-
tures learned with the K2 algorithm. Recall that the structures of both the K2
and PC algorithms were constrained to 1 parent. It can be seen that the topol-
ogy differs significantly between the two network shown in this figure. In general,
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Fig. 2. Two examples of BN structures learned with the K2 algorithm.

about only half of the relations are common between BN from two samples. How-
ever and as mentioned, we do not focus on the actual topologies in this study but
solely on the ability of the induced structures to perform accurate inferences.

Processing time for learning differs significantly between the two BN struc-
tural learning algorithms.

For the arithmetic data, we obtained these values on a 1Ghz pentium PC
running Linux :

PC: ≈ 1080 seconds and K2: ≈ 3 seconds
Learning time for the POKS algorithm is considerably faster than both. It

stands around 80ms. However, these numbers should be interpreted with care
as the POKS algorithm is a C program whereas the BN software runs under
Matlab. Nevertheless, the POKS algorithm has order O(ni2) time complexity,
where n is the number of cases and i is the number of item nodes, which is far
less than the K2 algorithm (O(ni4) for the current context).

On the performance of the evidence propagation algorithms, the total simula-
tion time for the BN varied between 2120 seconds to 2609 seconds. This is again
orders of magnitude greater than for the POKS algorithm which took about
1 second per simulation. Each simulation involves looping over 49 cases and,
for each for each of the 20 question item, performing on average 19 inferences



(n−1 items). To find the average time of an inference we would thus divide each
simulation time by 49 ∗ 20 ∗ 19 = 18, 620.

4.5 Results

The performance results are averaged over all test subjects and random samples.
The formula for computing the accuracy of the prediction after each observed
item is:

Accuracy =

∑r
i

∑m
j

∑n
k Mijk

rmn

where r is the total number items in the test, m is the number of random sample
runs of the simulation (6), and n is the number of test subject cases (17 for the
Unix test and 49 for the arithmetic test). Mijk represents the item outcome
prediction to item i by subject k for the simulation run j. It is 1 if the prediction
is correct or if it is an observed item, and 0 otherwise.

Figure 3 reports the simulations results for the item outcome predictive per-
formance. It shows that, for both data sets, the POKS algorithm yields more
accurate predictions than the two BN algorithms. Although the difference is only
a few percentage points, it is relatively significant. For example, after 20 items,
the difference between the BN and POKS for the Unix data set is about 95%
compared to 98%. Although this represents a 3% difference in absolute values, it
should be regarded relative to error reduction. In terms of the remaining error,
it represents a 60% relative reduction. Viewed from a different perspective, it
means that the accuracy reached by POKS after 20 of the 33 item Unix test is
only reached after about 27 items for the BN K2 algorithm. In a context where,
for example, we need strong confidence that a specific item is mastered and avoid
mistakes, the difference in reliability can be significant.

Looking at the relative error reduction between both tests, we note that the
performance difference between algorithms is greater for the Unix than for the
arithmetic test. This is potentially due to the fact that this test was meant
to discriminate between a wide range of expertise, from basis file manipulation
commands to sophisticated data manipulation scripts, whereas the arithmetic
test is more focused on closely related skills and notions. The ordering between
items that is typical of knowledge structures is more likely to appear for the
Unix than the arithmetic test.

We also note that the PC algorithm performs better than the K2 algorithm,
apparently due to more accurate priors. However, the difference quickly vanishes
after 2 items are observed.

To obtain an estimate of the statistical significance of the performance re-
sults, Figure 4 reports the variability of the estimates across subjects. The plot
represents the quartiles for the different algorithms. The boxes contain a line in-
dicating the median and span over roughly the upper and lower quartiles around
it. The ‘whiskers’ represent the outer quartiles and outliers are shown by them-
selves. The arithmetic simulation results of Figure 4 contains two series of boxes
for the BN results that respectively correspond to the PC and K2 algorithms,
whereas the Unix contains only the K2 algorithm results.
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Fig. 3. Item prediction performance for the Arithmetic and Unix tests. Each line rep-
resents the average over all 49 test cases and over 6 simulation samples.

5 Discussion

This study shows that item to item structures can be constructed from data and
yield effective predictions of item outcome. Two approaches were investigated,
namely standard BN induction techniques and the POKS framework, which
stands closer to the Naive Bayes family of models.

Experiments over the two data sets show that the POKS framework yields
better predictive results for item outcome prediction than does the general BN
framework. Although the strong performance of a Naive Bayes framework is
by no means uncommon (Domingos & Pazzani, 1997), we conjecture that, for
this study, it is consequent with the constrained nature of POKS: knowledge
spaces closed under union and intersection. The assumptions made by the POKS
framework may be appropriate for the knowledge spaces and, consequently, allow
the framework to be applied effectively with small data sets as the ones we
experimented with.

Item to item student models are based solely on observable variables. This
implies that they can readily be learned through standard and general BN struc-
tural learning techniques, or through more specialized techniques such as POKS.
The absence of hidden variables makes the learning more robust and more effi-
cient. The POKS approach is particularly efficient for both learning and infer-
ence.

These models yield prediction of item responses. As such, they can be used
to assess higher level concepts or skills, much in the same manner as we would
use test results to assess the mastery of a topic or diagnose learning difficulties.
However, they do not model misconceptions, nor build link from specific answers
to specific skills or misconceptions as BN can do. Some tutoring systems require
such diagnostic in order to provide more relevant remedial material for a student.
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Fig. 4. Box plot of the variance across subjects. Central quartiles are within the box
whereas the two extreme quartiles are represented by the “whiskers”.

Nevertheless, their simplicity and the possibility of learning item to item models
with relatively small data samples makes them very attractive for many learning
systems such as study guides.
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