
A survey on user expectations for interface builders

M.C. Desmarais, C. Hayne, S. Jagannath, and R. Keller

Centre de recherche informatique de Montréal
1801 ave. McGill College, bureau 800, Montréal, Québec, Canada H3A 2N4

Tel: 514-398-1234 Fax: 514-398-1244 E-mail: desmarais@crim.ca

ABSTRACT
This study provides many insights into the features that users
look for in interface building tools, as well as those that can
hinder their use. The results suggest that users are willing
to pay a high price for a reliable tool that will combine both
fast prototyping and fully operational target interfaces and at
the same time provide high functionality. Yet users want a
tool that is easy to use and to learn. This is a great challenge
for developers of interface builders since there is currently a
compromise to make between tools that allow fast and easy
prototyping, and toolkits which provide high functionality
and good execution speed.

Keywords: GUI tools, survey, evaluation.

INTRODUCTION
Graphical user interface building tools have flourished in the
last five to ten years. They range from libraries of routines,
like the early MacIntosh toolbox or the OSF Motif widgets,
to more recent direct manipulation environments, like Vi-
sualBasic or UIM/X, that allow the interactive assembly of
interface components (see Myers, 1992, and Hartson & Hix,
1989 for taxonomies and a review of such tools).

Due to the increased importance this technology has had in
recent times, we conducted a survey among development
teams of interactive applications on their use of interface
building tools. We report here some results from the sur-
vey that relate to the features that are a hindrance to the use
of interface building tools as well as features that are most
desired by development teams. This constitutes a comple-
ment to the survey conducted by Myers and Rosson (1992)
on user interface programming in which they report informal
and qualitative results on the evaluation of interface building
tools. See also Hix, 1991, for related work on the evaluation
of interface builders.

METHODOLOGY AND SAMPLE CHARACTERISTICS
The survey was conducted in September 1993 and consisted
of a questionnaire composed of 19 questions. The ques-
tionnaire was administered to one member from each of 56

Short paper presented at the CHI 94 conference.
c

�
1994 ACM

software development teams in 40 different organizations,
situated in the provinces of Quebec and Ontario. The sur-
vey’s personalized approach resulted in a high response rate
of 100%. These organizations were composed of 19 small
medium size companies (25 respondents), 19 large organi-
zations and governmental bodies (26 respondents), and 5
university/research teams (5 respondents).

Seventy six percent of the respondents had used at least one
interface builder, the others knew them from a managerial
perspective. Most teams were operating within Microsoft
Windows and the X-Window environments (87% and 56%
respectively) while OS/2 and the Macintosh environments
were each used by about a third of the teams. Twenty percent
were operating within a mainframe environment (all but one
of which were large organizations). The languages most used
were C and C++ (79% and 61% respectively).

USAGE OF TOOLS
Usage of interface building tools was widespread in our sam-
ple as only two of the 56 respondents did not report any tool
used. This percentage is greater than the one obtained by My-
ers and Rosson (1992), probably because we also included
here occasional use and the use for prototypingpurpose only,
whereas Myers and Rosson’s study focused upon one partic-
ular software development project by respondent.

Thirty-one respondents (58%) used only interactive GUI de-
velopment tools, whereas 5 respondents (9%) used only non-
interactive tools. The remaining 33% used both interactive
and non-interactive tools.

The interactive tool most widely used was Visual Basic (41%
used it—22 out of 54 respondents who used tools). Hypercard
came second with 30%. UIM/X (28%), Visual C++ (28%),
and XVT (26%) followed. HyperCard was the tool most
preferred for prototyping (all 16 users of HyperCard), but
only 31% of them built operational systems with it (5/16).
Visual Basic was used for prototyping by 86% (19/22) but
less than half as many built operational systems with it (9/22).
UIM/X and Visual C++ were the preferred tools for building
operational systems with around half of their usage devoted
to this purpose (9/15 and 7/15 respectively).

FEATURES DESIRED IN INTERFACE BUILDING TOOLS
Table ?? contains results for the 53 respondents to the ques-
tion concerning the importance of features offered by user
interface development tools. The features are sorted in or-
der of decreasing importance. The first section of the table
consists of features of the development tool itself whereas



Table 1: Importance of interface builder’s features

Features of interface devlop. tool ++ + –
1. Performance of tool (bug free and reliable) 43 10 0
2. Tool’s rapid prototyping capabilities 38 13 2
3. Complete system development (not just pro-

totypes)
36 13 4

4. Content and quality of documentation 32 17 4
5. Modular development 32 20 0
6. Ease of using the tool 31 22 0
7. Reusability of tool outputs 30 20 1
8. Speed of execution of tool 29 24 0
9. Easy linkage to other libraries and tools 26 21 5

10. Availability of classes / libraries for use 25 22 5
11. Error detection/correction 22 27 4
12. Technical support offered for tool 21 30 2
13. Tool’s ability to enforce interface standards 21 22 6
14. On-line help in the tool 20 21 12
15. Ease of learning and installation 19 29 5
16. Portability aspects of tool 15 27 11
17. Customizability of tool 11 28 14
18. Code generation for multiple languages 11 15 26
19. Cost of tool 8 38 6
20. Project management capabilities 6 19 22

Features of target interface ++ + –
1. Speed of execution 33 17 2
2. Run-time licensing conditions 32 10 6
3. Provision of on-line help 27 21 4
4. 2D graphical interfaces 24 21 5
5. Object-oriented development 23 21 7
6. Database linkage 22 20 10
7. Customizability of interfaces 22 25 6
8. Cross-platform portability 21 23 8
9. Multimedia applications 16 15 18

10. Hypertext applications 15 10 21
11. Graphical animation 10 19 22
12. 3D graphical interfaces 6 20 22
13. Speech input/output interfaces 5 15 29
++ : Very important + : Fairly important - : Not important

the second section contains features of the target interface
created with a tool. The choice of these features was inspired
by their existence in currently available commercial tools.

Very high on the list were two apparently opposed features:
The tool’s rapid prototyping capabilities (2) and its ability to
be used for operational systems (3). Combined with the tool’s
ease of use (6), those features constitute a true challenge to
integrate.

General software quality of the tools was also considered
very important by respondents. Features rated as highly de-
sirable were: bug free and reliable performance (1), good
documentation (4), and execution speed (8).

Modularity and reusability of tools were also factors that are
high on the list (5,7), suggesting that users look for software
engineering advantages in using interface building tools.

Interestingly enough, the cost of the tool was rated second
lowest for “Very important” but it is highest on the “Fairly
important” scale, which suggests that users are willing to pay
a high price for a tool that meets their expectations, even

Table 2: Hindrances to using interface builders

Hindrance Res.
1. Lack of knowledge about such tools 25
2. Lack of time to investigate the tools 25
3. The tools do not have the functionality we need 23
4. Lack of experienced developers on the market 20
5. Fear of adapting a tool which becomes defunct 20
6. Lack of standardization 19
7. Extra cost involved in learning the tool 17
8. Tools are too expensive 16
9. Fear of adapting a non-standard approach 15

10. Complexity of usage 13
11. Our applications are too special purpose 11
12. Not applicable (There is no reason hindering

their use)
4

Res.: Number of respondents out of a total of 56.

though the cost will be a deciding factor.

Turning to the features that are sought for the target interfaces,
the two most important features are speed of execution and
run-time licensing conditions, which attest to the concern
for operational interfaces. The third most important feature,
namely the ability to integrate on-line help, attests to the
concern for the usability of the target interface.

HINDRANCE TO USING INTERFACE BUILDING TOOLS
We also asked the respondents to provide reasons that would
most likely hinder the widespread use of user interface devel-
opment tools in their organizations. The results are compiled
in table ??.

Very high on the scale are reasons that relate to the expertise
around interface builders. Lack of knowledge (1), lack of
time to investigate the tools (2), and lack of experienced
developers (4) are all factors that reveal this problem. This
is not surprising given the proliferation of these tools and the
complexity of the task of analysing them in details, especially
given the wide range of approaches they offer to building
interfaces (eg. source code generation, run-time proprietary
window management, compile-time libraries, etc.).

The second set of most important reasons against the use
of interface builders relate to the problem of standardization
(6). Users do not want to be tied to a tool (5) or adopt a
non-standard approach (9).

Finally, it is worth noting that lack of functionality (3) and
the cost of learning the tools (7) are also high on the list.

REFERENCES
1. H. R. Hartson and D. Hix. Human-computer interface

development: Concepts and systems for its management.
ACM Computing Surverys, 21(1):5–92, 1989.

2. D. Hix and R. S. Schulman. Human-computer interface
development tools: A methodology for their evaluation.
Commun. ACM, 34(3):74–87, March 1991.

3. B. A. Myers. State of the art on user interface soft-
ware tools. Advances in Human Computer Interaction,
4, 1992.

4. B. A. Myers and B. M. Rosson. Survey on user interface
programming. In Proceedings of CHI’92, pages 195–
202, New York, 1992. ACM.


