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ABSTRACT

An adaptive user interface relies, to a large extent, upon an
adequate user model (e.g., a representation of user-expertise).
However, building a user model may be a tedious and time
consuming task that will render such an interface unattractive
to developers. We thus need an effective means of inferring
the user model at low cost. In this paper, we describe a
technique for automatically inferring a fine-grain model of a
user’s knowledge state based on a small number of observa-
tions. With this approach, the domain of knowledge to be
evaluated is represented as a network of nodes (knowledge
units—KU) and links (implications) induced from empiri-
cal user profiles. The user knowledge state is specified as a
set of weights attached to the knowledge units that indicate
the likelihood of mastery. These weights are updated ev-
ery time a knowledge unit is reassigned a new weight (e.g.,
by a question-and-answer process). The updating scheme is
based on the Dempster-Shafer algorithm. A User Knowl-
edge Assessment Tool (UKAT) that employs this technique
has been implemented. By way of simulations, we explore an
entropy-based method of choosing questions, and compare
the results with a random sampling method. The experimen-
tal results show that the proposed knowledge assessment and
questioning methods are useful and efficient in inferring de-
tailed models of user-expertise, but the entropy-based method
can induce a bias in some circumstances.
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INTRODUCTION

Knowledge assessment is a fundamental component of user
modeling. It has been used to adapt the level of technical
details of on-line documentation and error messages; it is
also an essential ingredient found in practically every intelli-
gent tutoring systems, coaches, and consultants (see for e.g.,
[12, 15]). Its widespread use in commercial applications,
however, remains very limited, or non-existent. We suspect
that, among other things, one reason for this is the unavail-
ability of simple and efficient knowledge assessment model-
ing techniques that non-specialists of Al/cognitive-modeling
can use while developing their applications. There exist
a number of approaches, from simple and not-that-useful,
to sophisticated and costly, but the tradeoff between com-
plexity, development-cost, and usefulness rarely allows the
application of expertise modeling techniques outside the ex-
perimental laboratory.

The most simple approach to this problem consists of
categorizing the user onto a novice-expert scale. Although
this approach is feasible with moderate development cost, it
provides only very coarse information. Another technique is
based on the idea that a knowledge domain can be defined as a
set of knowledge units (KU). An individual’s knowledge state
is defined as a subset of it. This model thus constitutes a fine
grain assessment to the extent that it provides information
about each individual KU. Moreover, the set of KUs can
be structured with various types of relations [8]. One such
relation is the precedence relation, which indicates the order
in which KUs are learned. A number of researchers have
used this type of relation to infer user knowledge state (e.g.,
[1, 10, 14]). The main problem lies in building this structure
of relations among KUs, which can be a very tedious task
when the number of KUs is more than a few tens, unless the
task can be automated.

This paper presents a technique for automatically con-
structing a structure of precedence relationsamong KUs from
a small number of subject’s knowledge states. The structure
is thereafter used in conjunction with the Dempster-Shafer
evidential reasoning method [9, 13] for assessing someone’s
knowledge state. This provides an entirely algorithmic ap-
proach to knowledge assessment, relieving the developer



from the burden of building such tools.

In the remainder of the paper, we provide an overview
of the knowledge structure induction and user knowledge in-
ference techniques, and describe a series of empirical tests
on an implemented module with two approaches to knowl-
edge inference: a first approach in which KUs are chosen at
random (a situation similar to that of a non-obstructive user-
modeling facility, where KUs are observed but not chosen)
and a second one in which KUs are subject to explicit choices
based on entropy-minimization.

OVERVIEW

In the current modeling approach, the domain knowledge is
represented as a knowledge structure [7], whose nodes are
the fine-grain knowledge units (KU). An individual’s knowl-
edge about the domain, i.e., a knowledge state, is modeled
by a collection of numerical attribute values attached to the
nodes. Each value indicates the likelihood (i.e., probabil-
ity) of a user’s knowing a specific KU. In the network, KUs
are connected by implication (precedence) relations. An
implication relation is in fact a gradation constraint which
expresses whether a certain concept has to be understood be-
fore another difficult one, or whether a certain skill isacquired
prior to an advanced one.

Empirical Construction of Knowledge Structures
In contrast to other work that also adopted similar approaches
(see in particular [1]), the knowledge structure in the current
study is induced entirely from empirical data composed of
samples of knowledge states. Because the knowledge struc-
ture induction process is automatic, it allows a much larger
number of KUs to be included than other approaches.

The basic idea behind the empirical construction is that
if there is an implication relation A = B, then ideally we
would never expect to find an individual who knows A but
not B. This translates into two conditions: P(B|A) ~ 1 and
P(—A|-B) ~ 1. These conditionsare verified by computing
the lower bound of a [1 — aerror] cOnfidence interval around
the measured conditional probabilities. If the confidence
intervals are above a predefined threshold, an implication
relation between the two KUs is asserted. Two weights are
associated with the relation (according to the two directions
of the inference, i.e. modus tollens vs. modus ponens). They
correspond to the relation’s conditional probabilities P(B| A)
and P(—A|-B). The weights express the degree of certainty
in that relation. This method is inspired by previous work
[3, 4]. A more detailed treatment of the knowledge structure
construction method is given in [11].

Aggregation of Evidence

Once a knowledge structure is obtained, it can be used as a
basis for knowledge assessment. The knowledge state of a
user is built and updated as soon as some observations are
made (e.g., questionsare answered). Each observation can be
viewed as a piece of evidence. This new information may be

propagated to other nodes in compliance with the gradation
constraints (inference structure).

Inthe present work, we applied the Dempster-Shafer (DS)
evidential reasoning to recursively propagate evidential sup-
ports (whether confirming or disconfirming) throughout the
knowledge structure. Different degrees of support, gathered
from different sources of evidence, are combined to yield a
new weight using the Dempster’s rule of combination [9].

Selecting Questions

Observations about a user’s knowledge state can be driven
by a user monitoring module that reports evidence of known
KUs?, or they can be made through a sequence of question-
and-answer sessions. In the first approach, evidence of
known and unknown KUs is not under control and can thus
be considered a random process. However, in the question-
and-answer sessions, the evidence gathering process can
be controlled during the knowledge assessment through an
entropy-driven selection method. This approach, advocated
in a number of previous studies (e.g., [6, 7]), applies the
rule of minimum entropy and chooses the most informative
questions. In the entropy-driven method, the expected infor-
mation yield of each individual question over all the possible
answers/outcomes (i.e., the entropy before and after the ques-
tion isanswered) is computed and weighted by the likelihood
of each outcome. The information yield of a single question
is thus given by the sum of differences between initial and
updated entropy:

AH = Z [H(KU:) = (pr HL(KU) + p-r HLx (KU ()

where prH (KU;) is the entropy of the updated knowl-
edge structure given the user knows KU; (weighted by
the likelyhood factor p; that K'U; is known), and where
p-kH' , (KU;) is the converse.

The question that has the maximum expected information
yield is chosen as the most informative one. Both the random
and entropy-driven methods of selecting a question are tested
in this study.

IMPLEMENTATION

We have implemented the knowledge-structure induction
procedure and the evidential reasoning scheme described
in the previous section. The resulting knowledge assess-
ment engine, UKAT (User Knowledge Assessment Tool), is
composed of a set of C library routines. The observation
gathering module of UKAT allows the questions to be se-
lected either randomly or non-randomly. The algorithmic
details of the modules can be found in [11]. The UKAT
interface was developed in X-windows using the Motif wid-
get package. In addition to presenting questions, acquiring
answers (either text or choices), and building fine-grain mod-
els, it also permits users to browse and select the previously

LIn [2] for instance, observation of text-editing methods by a plan recog-
nition module indicated which commands were mastered by the user.
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Figure 1: The interface of UKAT — A User Knowledge Assessment Tool



(un)answered questions and to look up scores (see Figure 1).
Hence, the interface can easily be extended into a drill-and-
practice training system.

EXPERIMENTAL RESULTS

In order to validate our modeling technique, we have chosen
the WordPerfect™? text editor as a domain of which users’
knowledge states are to be evaluated. This domain knowl-
edge is composed of 192 identified KUs (knowledge units)
that correspond the mastery of WordPerfect commands (see
[5] for details).

Empirical Data

The implication relations (i.e., gradation constraints) among
the KUs are generated with the knowledge structure construc-
tion method, applied to a number of empirically obtained
subjects’ knowledge states. We used 47 sample knowledge
states; each of them is the result of a test covering all 192
KUs. All 192 x 192 pairs of KUs were tested for implica-
tion relations, using the statistical criterion mentioned earlier
(where P(B | A) > 0.5 and P(—A | =B) > 0.5 with
a < 0.05). As a result, 2,368 implications were included in
the knowledge structure.

In order to test the derived knowledge structure, we per-
formed a series of user modeling simulations. Each simu-
lation run consisted of selecting (in either a random or an
entropy-driven fashion) a proportion of a subject’s knowl-
edge state and propagating evidence to update the probability
that a certain KU was mastered by the subject. Prior to the
inferencing, all the nodes of the knowledge structure were
assigned initial beliefs (i.e., initial probabilities). The results
of simulations, based on 26-subject test data, are described
below.

Building Fine-Grain User Models: The Knowledge
Unit Level Assessment
The first level of testing corresponds to the residual errors in
individual KUs assessment. Each KU is associated a weight
that indicates the probability of knowledge and which is up-
dated after each new observation (evidence). The difference
between those weights and the actual knowledge state repre-
sents the residual errors.

The basic measure of performance is the global standard
error of estimate:

192 2
- Z =1 (Zobs;; — Test;; ) @)
node = N, x N

where Ny is the number of knowledge units (192). N is the
number of subjects used for the test (26). zobs; IS 1 if the
corresponding KU; is known and 0 otherwise, and Teg,; IS
the estimated probability of mastery.

In addition to the standard error of estimate which is an
indicator of the dispersion around the estimate based on the

2\WordPerfect is a trademark for WordPerfect Inc.
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Figure 2: The residual errors in estimating probability of knowl-
edge of individual KUs as measured by the standard errors of es-
timate. It shows the uncertainty convergence in three diffferent
operating modes. The solid line, the dashed line, and the dotted
line correspond to mode | (entropy-driven evidence gathering), I
(random evidence gathering), and Il (no inference condition), re-
spectively.

second moment, we also investigated the bias around the
estimate, which is given by the first moment:

26 192
Dzt j:l(xOij — Test,;)

NSXNk

3)

The results of the system’s performance in three different
simulation modes are displayed in Figures 2 and 3. These
show, respectively, the standard error scores and the bias over
192 KUs and 26 subjects. The three simulation modes are:

() inferences based on the entropy-driven question selec-
tion: nodes were given their initial probabilities and,
when the chosen question is asked (based on entropy
minimization), they are assigned 0.9 for a successful
answer and 0.1 otherwise, and inference propagation is
performed around the node according to the Dempster-
Shafer algorithm;

(1) inferences based on random sampling of the questions:
same as (1) but questions are chosen at random; and,

(1) no inference condition: same as (I1) but no inference
propagation is performed.

Note that we have assigned 0.9 and 0.1 weights for suc-
cessful and unsuccessful answers respectively to reflect the
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Figure 3: Absolute errors in estimating probability of knowledge of
individual KUs, as measured by the sum of the differences between
the observed KU mastery and its estimated probability. The results
show a clear bias for the entropy-driven method (mode I).

residual uncertainties associated with such a process (e.g.
good answers by chance and bad errors by mistake). Conse-
quently, the expected score at 100% observation is below the
perfect score since the nodes’ weights are matched against 1
and 0 and not against 0.9 and 0.1.

The results from Figure 2 clearly indicate that the entropy-
driven approach (mode 1) is more efficient in reducing the
standard error of estimate. However, Figure 3 shows that
below 60%, it has a tendency to underestimate the probability
of knowledge. This tendency is slightly reversed above 70%.
A plausible explanation for this behavior is that the system
asks questions that are likely to be failed at the beginning,
leaving more successful questions for the end. Although
this order does not introduce any error in the standard error
score, it does introduce a bias when we simply sum up the
differences between observed and estimated values. This
phenomenon is further discussed later.

As far as mode 11 is concerned, Figure 2 indicates that
it is consistently better than mode 111, but less efficient in
reducing the errors than mode I, especially when the amount
of observation is greater than 20%. It is not subject to a bias
as mode I is, however.

Estimating User Overall Scores: The Knowledge
State Level Assessment

We have studied the performance of the system at estimating
whether or not each individual KU is known by a subject.
Another useful application of our technique is to guess an
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Figure 4: Theresidual errors in estimating global knowledge states
as measured by the standard error scores of the three operating
modes.

individual’s overall score, as it is often required in adaptive
training systems.

The performance scores are given by a similar measure
as KU level assessment, namely the standard error of es-

> (Tas—wes)?

timate: o . However, zqps and zeq represent,

respectively, Zilizl Zops, and Zilizl Tes,, Where zeg, is O if
KU; < 0.5and 1 otherwise.

Figure 4 show the residual errors of the performance.
A bias similar to the one in Figure 3 was also found in
this experiment, although those results are not shown here
for brevity. Figure 4 indicates that both modes | and Il
are consistently better than mode 111 in guessing the scores
(except mode | with less than 16% observation). However,
the advantage of mode | over mode 11 is only manifest after
40% sampling.

Discussion and Further Results
As conjectured by previous researchers [7], the above results
have provided an empirical demonstration that the minimum
entropy inference is effective in reducing the inferences’ stan-
dard error, or uncertainty about a knowledge state. How-
ever, an interesting finding of this investigation is that the
minimum-entropy approach induces a bias at the knowledge
state level score and thus may not be appropriate for the pur-
pose of inferring users’ global scores, where this bias would
manifest itself.

The explanation we have given for this bias lies in the fact
that if the system asks the questions that will likely be failed at



the beginning, and those that will likely be answered correctly
at the end, a bias will be found in the global knowledge
state. This does not necessarily introduce more errors in the
estimations of individual KU probabilities, i.e., the global
knowledge state entropy. The cause for this behavior may
stem from the fact that given the average knowledge state is
46% of all KUs, it is likely that there are more nodes closer
to 0 than to 1, and thus a greater reduction in entropy will be
achieved by bringing these nodes closer to 0.

Let us look at two typical individual cases in which the
minimum-entropy searching behavior can best be illustrated.
Figures 5 and 6 display scores of two subjects — one with
the actual score lower than the average and the other with
the actual score higher than the average. In Figure 5 (lower
than average score), the entropy method is shown to do much
better than the other two methods, since lowering weights is
the right direction for reducing uncertainties of the knowledge
state, whereas in Figure 6 (higher than average), the entropy
method starts lowering the weights only after observing more
than 16% of the total KUs.

CONCLUSION

The results presented in this paper indicate that in general,
the approach to knowledge assessment is efficient in infer-
ring new information and deriving the knowledge states of
users, given either random or non-random observations. Two
important applications of this technique in the context of
adaptive user interfaces have been addressed. One involves
building fine-grain user models; the other is guessing users’
overall scores or levels of expertise. While both random and
minimum-entropy-based observations are useful and effec-
tive, the latter appears to affect the order of questions asked
and consequently the average knowledge state scores. In
other words, the entropy method is the best for reducing un-
certainties, but may generate a bias in assessing global user
knowledge at the beginning. This result has rejected the
previously held, rather intuitive, belief that the entropy min-
imization technique is a monotonically informative solution
to the assessment/diagnostic problems.
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