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Abstract
Many intelligent educational systems require a compo-
nent that represents and assesses the knowledge state
and the skills of the student. We review how student
models can be induced from data and how the skills as-
sessment can be conducted. We show that by relying
on graph models with observable nodes, learned stu-
dent models can be built from small data sets with stan-
dard Bayesian Network techniques and Naı̈ve Bayesian
models. We also show how to feed a concept assessment
model from a learned observable nodes model. Differ-
ent experiments are reported to evaluate the ability of
the models to predict item outcome and concept mas-
tery.

Introduction
The advantages of using data mining and automated learn-
ing techniques in educational systems are compelling. When
data is available, they can waive the efforts required by the
domain and modeling expert for building student models.
The elimination of this human effort brings a large num-
ber of benefits beyond the efficiency and economic issues.
It also implies greater reliability by removing the subjectiv-
ity and variability induced by a human intervention in the
modeling process. Although it does not necessarily imply
improved accuracy, automated model learning does imply
accrued model predictability, in the sense that confidence
intervals can be derived from the data sample and the proba-
bility of making a wrong decision can be assessed. This fac-
tor is very important to avoid the loss of user confidence and
even the rejection of the system that is often observed when
the user gets frustrated by too many wrong decisions on the
part of the system (Horvitz 1999). Having a user model that
yields a measure of parameter confidence allows the system
to refrain from taking initiatives that can be ill advised and
frustrating for the user given their perceived utility.

Of course, these advantages vanish if the amount of data
required to build the student model outweighs the benefits.
The sensitivity of the model to the data set size is thus critical
and cannot be ignored.

We review some work to build student models from small
data samples and the means to assess the student skills with
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such models. We propose an approach based on item to item
structures and assess the predictive performance of different
models with this approach. We also show how to use this
approach to assess concepts by reusing an existing Bayesian
Network that models relations at the concept mastery level.

Representing student cognitive state
Not every student model lends itself to learning from data.
A large number of approaches have been proposed to repre-
sent the student knowledge and skills, but only a subset is
amenable to learning. We will focus on Bayesian graphical
models of student proficiency. These models are among the
most commonly used and allow a great level of flexibility
(Mislevy et al. 1999), and they lend themselves to learning.

Graphical student models are generally organized as a
hierarchy of concepts with observable nodes, namely test
items, as leaves of this hierarchy. Figure 1 illustrates a hy-
pothetical example of such network. The “non observable”
nodes are concepts, skills, and misconceptions. They are
considered hidden nodes in the sense that they cannot be
directly observed. However, because hierarchical student
models can contain a large number of hidden nodes, their
structure generally cannot readily be learned from data with-
out some human intervention (Vomlel 2004, for eg.).

Concepts Misconceptions

Items

C_1

C_2 C_3 M_2

I_2I_1 I_3 I_4

M_1

Figure 1: Example of a BN structure with items, concepts,
and misconceptions.

One family of models departs from the hierarchical ap-
proach by building links among observable item nodes



themselves, bypassing concept links (Dowling & Hocke-
meyer 2001; Kambouri et al. 1994; Desmarais, Maluf, &
Liu 1996). They emerge from the work of Falmagne et al.
(1990) and Doignon & Falmagne (1999) on the theory of
knowledge spaces. Our own work on Partial Order Knowl-
edge Structures (POKS) (Desmarais, Maluf, & Liu 1996;
Desmarais & Pu 2005) falls under this line of research as
well. We refer to this type of student models as item to item
structures.

Item to item structures are good candidates for learned
student models because their nodes are observable, in con-
trast to concept nodes. We briefly review the theory behind
item to item structures and report some results on learned
student models with such an approach.

Knowledge Spaces
Item to item structures are based on a cognitive model-
ing theory named knowledge spaces (Doignon & Falmagne
1999). The theory of knowledge spaces asserts that knowl-
edge items—observable elements that define a knowledge
state such as question items—are mastered in a constrained
order. In the knowledge space theory, a student’s knowl-
edge state is simply a subset of items that are mastered by
an individual and the knowledge space determines which
other states the person can move to. Viewed differently,
the knowledge space defines the structure of prerequisites
among knowledge items. For example, we learn to solve
Figure 2’s problems in an order that complies with the in-
verse of the arrow directions. It follows from this structure
that if one masters knowledge item (c), it is likely she will
also master item (d). Conversely, if she fails item (c), she
will likely fail item (a). However, item (c) does not sig-
nificantly inform us about item (b). This structure defines
the following possible knowledge states (subsets of the set
{a, b, c, d}):

{∅, {d}, {c, d}, {b, d}, {b, c, d}, {a, b, c, d}}

Other knowledge states are deemed impossible (or unlikely
in a probabilistic framework).

Formally, it can be shown that if the space of individual
knowledge states is closed under union, then that knowl-
edge space—the set of all possible knowledge states—can
be represented by an AND/OR graph (Doignon & Falmagne
1999). In other words, if we combine two individuals’
knowledge states, then that combined knowledge state is
also plausible (i.e. part of the knowledge space). However,
knowledge spaces are not closed under intersection, mean-
ing that if we take the common knowledge items between
two individuals’ knowledge states, then we can obtain an
invalid knowledge state. This phenomenon occurs when a
knowledge item has two alternative prerequisites. For exam-
ple, one individual might learn to add two fractions by first
transforming them into a common denominator, whereas
someone else might have learned to transform them into dec-
imal form first, and then transform it back into a rational
form. If each of them ignores the other individual’s method,
then the intersection of their knowledge states yields a state
with the mastery of the fraction addition problem while none
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Figure 2: A simple knowledge space composed
of 4 items ({a, b, c, d}) and with a partial or-
der that constrains possible knowledge states to
{∅, {d}, {b, d}, {c, d}, {b, c, d}, {d, b, c, a}}.

of the two alternative prerequisite knowledge items is mas-
tered.

It can be seen that the theory of knowledge spaces makes
no attempt to structure knowledge in a hierarchy of con-
cepts or any other structure containing latent variables (often
called latent traits). The knowledge state of an individual is
solely defined in terms of observable evidence of skills such
as test question items. Of course, that does not preclude the
possibility to re-structure knowledge items into higher level
concepts and skills. In fact, this precisely is what a teacher
does for developing a quiz or an exam, for example.

Item to Item Structures and Partial Orders
For our purpose, we make the assumption/approximation
that knowledge spaces are closed under union and intersec-
tion and ignore the possibility of representing alternate pre-
requisite knowledge items. We refer to this variant as partial
order knowledge structures, or POKS. Such structures can
be represented by a DAG (Directed Acyclic Graph)1, such as
the one in Figure 2, because we further impose the assump-
tion of closure under intersection. This assumption allows
a considerable reduction the space of knowledge states. It
greatly simplifies the algorithms for inducing a knowledge
structure from data and reduces the amount of data cases re-
quired. Whether this assumption is warranted for knowledge
assessment is a question we investigate empirically here.

Although a POKS network like the one in Figure 2 can
be conveniently represented graphically by a DAG that re-
sembles to a BN, the semantics of links is different. BN di-
rected links usually represent causal relationships (although
they can represent any kind of probabilistic relationship) and
the structure explicitly represents conditional independence
between variables. A Knowledge space directed link is sim-
ilar to a logical implication relation, but it represents a pre-
requisite, or, to use Doignon and Falmagne terminology, a
surmise relation. For example, if we have a surmise rela-
tion A � B, it implies that the mastery of B will precede
the mastery of A, and thus if a student has a success for A,

1See Doignon & Falmagne (1999) for a formal proof and thor-
ough analysis of the formal properties of knowledge spaces.



that student is likely to have a success for B.

The Induction of Item to Item Structures from
Data

Item to item structures that are compliant with Partial Order
Knowledge Structures (POKS) can be learned from data and
we will describe two Bayesian frameworks for this purpose:
a general Bayesian Network and a Naı̈ve Bayes framework.
We describe each of these two approaches and compare their
respective predictive performance.

Bayesian Network Induction
In spite of the semantic differences between the links of a
BN and those of an item to item structure like Figure 2’s, the
relations of both structures can be thought of as probabilis-
tic implications between nodes. Both can represent evidence
that influences the probabilities of neighboring nodes, in ac-
cordance to a Bayesian framework. It follows that any BN
structural learning algorithm is a reasonable candidate for
learning item to item structures. However, it must be em-
phasized that the semantics of a POKS structure is different
from a BN and that, consequently the structure induced by a
BN would have a different topology than the corresponding
POKS, as we see later.

We conducted a study on learning item to item BN struc-
tures with the K2 (Cooper & Herskovits 1992) and PC al-
gorithms (Spirtes, Glymour, & Scheines 2000). These algo-
rithms are regularly used in the BN learning literature.

K2 The general principle of the K2 algorithm is to max-
imize the probability of a given topology given observed
data. It uses a greedy search algorithm over the space of net-
work topologies (Cooper & Herskovits 1992). The search
is constrained by a given initial node ordering pattern to re-
duce the search space. For our experiments we use the topo-
logical order obtained from running the Maximum Weight
Spanning Tree (MWST) algorithm by (Chow & Liu 1968)
to derive a network topology, and by extracting a topologi-
cal order from this structure. François & Leray (2003) has
shown that the initial DAG obtained by the MWST is an ef-
fective replacement to a random ordering.

PC In contrast to searching the space of network topolo-
gies using a global Bayesian metric to score the topologies,
the PC algorithm (Spirtes, Glymour, & Scheines 2000) falls
into the constraint-based structural learning approach. It
uses local conditional independence tests between a set of
nodes to determine the network topology. Heuristic search
consists in adding and deleting links according to the results
of the independence tests and the search strategy. Murphy
(2001) reports that the PC algorithm is in fact a faster but
otherwise equivalent version of the IC algorithm from Pearl
& Verma (1991).

In the experiment reported below, the BN parameters for
both algorithms were initialized with Dirichlet uniform pri-
ors, which correspond to Beta priors in the case of binomial
variables. We use the original Bayesian metric of Cooper &
Herskovits (1992) to score the structures.

The PC algorithm must be given a value for the interaction
test significance level. We use a value of 0.2.

We use Ken Murphy’s BNT package for learning
the BN structures of all the experiments conducted
(http://www.cs.ubc.ca/˜murphyk/Software/
BNT/bnt.html). Note that it was not possible to test
the PC algorithm for the Unix test because of resource
limitations with MatlabTM.

POKS Structural Induction
The second approach for inducing the relations among items
is based on Desmarais, Maluf, & Liu (1996). We refer to it
as the POKS induction algorithm. This approach to learn-
ing can be considered as a constraint-based structural learn-
ing approach since it uses conditional independence tests to
determine the structure. It can also be considered a Naı̈ve
Bayes approach because it makes a local independence as-
sumption that greatly simplifies the structural learning and
evidence propagation algorithms.

Given the local independence assumption, the POKS in-
duction algorithm relies on a pairwise analysis of item to
item relationships. The analysis attempts to identify the
order in which we master knowledge items in accordance
to the theory of knowledge spaces (Doignon & Falmagne
1999). However, it imposes a stronger assumption than their
original work, namely that the skill acquisition order can be
modeled by a directed acyclic graph, or DAG.

The tests to establish a relation A → B consists in three
conditions for which a statistical test is applied:

P (B|A) ≥ pc (1)

P (A|B) ≥ pc (2)
P (B|A) 6= P (B) (3)

Conditions (1) and (2) respectively correspond to the
confidence to predict that B is true given that A is observed
true (mastered), and the confidence that A is false (non
mastered) given that B is false. The third condition verifies
that the conditional probabilities are different from the non
conditional probabilities (i.e. there is an interaction between
the probability distributions of A and B). The first two
conditions are verified by a Binomial test with parameters:

pc the minimal conditional probability of equations (1)
and (2),

α the alpha error tolerance level.
The conditional independence test is verified by the Fisher
exact test. The χ2 test could also be used. See Desmarais,
Maluf, & Liu (1996) or Desmarais & Pu (2005) for further
details about the parameters.

For this study, pc is set at 0.5. Condition (3) is the inde-
pendence test verified through a χ2 statistic with an alpha
error set to α < 0.2. The greater the values for α, the more
relations will be retained in the POKS network.

Inference
Once we obtain an item to item structure, a probability of
success over all items can be computed from partial evi-
dence (a subset of observed items). We will evaluate the



validity of the two frameworks over their item outcome pre-
dictive ability. We do not attempt to assess the actual item
to item structures themselves, because we have no means to
determine their true structures. In fact, that issue belongs to
the field of cognitive science and was already thoroughly in-
vestigated by Doignon and Falmagne (Doignon & Falmagne
1999, see) and a number of other researchers. Our interest
lies in the predictive power of the models which is measured
by their ability to perform accurate assessment.

Inference in BN For the BN structure, there exist a num-
ber of standard and well documented algorithms (refer to
Neapolitan, 2004, for eg.). We use the junction-tree algo-
rithm (Jensen 1996) which preforms an exact computation
of posterior probabilities within a tree whose vertices are de-
rived from a triangulated graph, which is itself derived from
the DAG in the BN.

Inference in POKS For the POKS framework, computa-
tion of the nodes’ probabilities are essentially based on stan-
dard bayesian posteriors under the local independence as-
sumption. Given a relation E → H , where E stands for
an evidence node (eg. a knowledge item) and H stands for a
hypothesis node (eg. a prerequisite of E), the posterior prob-
ability of H is computed from the odds likelihood version of
Bayes’ Theorem:

O(H |E) = O(H)
P (E |H)
P (E |H)

(4)

where O(H) is the prior odds ratio and O(H|E) represents
the odds of H given evidence of E, and assumes the usual
odds definition O(H|E) = P (H|E)

1−P (H|E) .
In order to make inference from combined evidence

sources, the knowledge structure inference process makes
the local independence assumption. In the standard
Bayesian network graphical notation, this assumption cor-
responds to the network in Figure 3. Given that assumption,
the computation of a joint probability of evidence nodes,
E1, E2, . . . , Ei, and the hypothesis node, H , is a straight-
forward product of likelihood ratios. For example, assum-
ing that we have n number of relations of the form Ei → H ,
then it follows from this assumption that:

P (E1, . . . , En |H) =
n∏
i

P (Ei |H) (5)

From equation (5), it follows that the probability update
of H given E1, ..., En can be written in following posterior
odds form:

O(H |E1, E2, . . . , En) = O(H)
n∏
i

P (Ei |H)
P (Ei |H)

(6)

Local independence is a strong assumption that is a char-
acteristic of the Naı̈ve Bayes framework. It greatly sim-
plifies the amount of data required to calibrate conditional
probabilities. Although this assumption is very likely vio-
lated to a certain degree in many cases, it was shown to be
relatively robust in many situations (Domingos & Pazzani
1997). The extent to which the violation affects the model
performance is empirically explored in the following sec-
tion.

H

E_1 E_2 ... E_n

Figure 3: A Naı̈ve Bayes network.

Predictive Performance of Item to Item
Structures

The BN and POKS structural learning approaches of item
to item structures are compared over their ability to predict
item response outcome. We use data from real tests to con-
duct simulations and measure the performance of each ap-
proach for predicting the outcome over the full set of item
answers from a subset of observed answers. This validation
technique is identical to the ones used by Vomlel (2004) and
Desmarais & Pu (2005).

Simulation Methodology

The experiment consists of simulating the question answer-
ing process with the real subject data. The process starts
with an initial estimate of each item probability based on
the data sample. For a given subject, an item is chosen as
the next observed evidence and the actual subject’s answer
is fed to the inference algorithm. An updated probability of
success for each item is computed given this new evidence,
and a new item is chosen next based on the updated proba-
bility. This cycle is repeated until all items are “observed”.
After each observed item, we compare the estimated proba-
bilities with the real answers to obtain a measure of how ac-
curate the predictions are. All items for which the estimated
probability of success is above 0.5 are considered mastered,
and all others are considered non-mastered. Observed items
are bound to their true value, such that after all items are
administered, the score always converges to 1.

The simulations replicate a context of computer adaptive
testing (CAT) where the system chooses the question items
in order to optimize skills assessment. This context is typi-
cal of study guide applications, where a quiz is administered
prior to providing pedagogical assistance (Falmagne et al.
2006; Dösinger 2002). However, the choice of question may
not entirely be driven by the need to optimize skills assess-
ment, but also by an adaptive pedagogical strategy such as
in Heller et al. (2006), for example.

For this experiment, the choice of the question to ask is
determined by an entropy reduction optimization algorithm.
The same algorithm is used for both the BN and POKS
frameworks and is described in Vomlel (2004) and also in
Desmarais & Pu (2005). Essentially, the choice of the next
question to administer corresponds to the one that reduces
the entropy of a set of network nodes. The algorithm will
choose the item that is expected to reduce entropy the most.
Items with very high or low probability of success are gener-
ally excluded because their expected entropy reduction value
will be low.



Table 1: Data sets

Data set nb.
items

nb. cases

Training Test Total

Average
success
rate

Arithmetic 20 100 49 149 61%
Unix 33 30 17 47 53%

Data Sets

The data sets are taken from two tests administered to human
subjects :

1. Arithmetic test. Vomlel (2004) gathered data
from 149 pupils who completed a 20 question items
test of basic fraction arithmetic. This data has the advan-
tage of also containing independent concept assessment
which we will return to when assessing the approaches’
ability to predict concepts.

2. UNIX shell command test. The second data set is com-
posed of 47 test results over a 33 question items test on
knowledge of different Unix shell commands. The ques-
tions range from simple and essential commands (eg. cd,
ls), to more complex data processing utilities (eg. awk,
sed) and system administration tools (eg. ps, chgrp).

For each data set, a portion of the data is used for training
and the remaining ones for testing. Table 1 provides the
size of the training and testing sets along with the average
success rate of each test.

For each data set, six training and test sets were randomly
sampled from both corpus. All performance reports repre-
sent the average over all six sampled sets.

Learned Structures

Over all six randomly sampled sets, the POKS structural
learning algorithm created structures that, for the arith-
metic data set, contains between 181 and 218 relations, of
which 117 to 126 are respectively symmetric, for an average
between 9.1 to 10.9 links per node. For the Unix data set,
the number of relations varies between 582 and 691, with
the number of symmetric relations that varies between 348
and 297. The average relations per node varies between 17.6
to 20.9. The structure of the Unix data set is thus much more
populated with an average link per node about twice that
of the arithmetic test. These structures are too dense to be
shown graphically here.

For the BN structural learning results, Figure 4 displays
the first two structures (of the six sample runs) learned with
the K2 algorithm with the arithmetic data set. It can be seen
that the topology differs significantly between the two net-
works shown in this figure. In general, about only half of
the relations are common between BN from two samples.
However, and as mentioned, we do not focus on the actual
topologies in this study but solely on the ability of the in-
duced structures to perform accurate inferences.
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Figure 4: Two examples of BN structures learned with the
K2 algorithm.

Results
Figure 5 reports the simulations results. It shows that, for
both data sets, the POKS algorithm yields more accurate
predictions of item outcome than the two BN algorithms.
As a comparison, a random item selection strategy that does
not make any inference would yield a straight line starting
at the same first data point of the POKS curve, and ending
at 1.

Although the difference is only a few percentage points,
it is relatively significant, at least for the Unix data set. For
example, after 20 items, the difference between the BN and
POKS for the Unix data set is about 95% compared to 98%
(see Figure 5). Although this represents a 3% difference in
absolute values, it actually represents a 60% relative reduc-
tion in terms of the remaining error. In other words, the
system would reduce the number of wrong decisions by a
factor of over 2. In a context where, for example, we need
strong confidence that a specific item is mastered and avoid
making wrong decisions from an incorrectly assessed item,
the difference in reliability can be quite meaningful.

The relative error reduction between both tests of the BN
vs. POKS algorithms is significantly greater for the Unix
than for the arithmetic test. This is potentially due to the
fact that this test was meant to discriminate between a wide
range of expertise, from basic file manipulation commands
to sophisticated data manipulation scripts. In contrast, the
arithmetic test is more focused on closely related skills and
notions typical of early high school children. Moreover, the
span of scores is wider for the Unix test than for the arith-
metic one, with a respective variance of 29% compared to
25%. As a consequence, the ordering between items that
is typical of knowledge structures is more likely to appear
for the Unix than for the arithmetic test. Yet, another ex-
planation is that POKS may be more robust to small sample



size than the BN algorithms (recall that 30 training cases are
used for the Unix data set whereas 100 are used the arith-
metic one). These issues remain to be investigated.

We also note that the PC algorithm performs better than
the K2 algorithm, apparently due to more accurate priors.
However, the difference quickly vanishes after 2 items ob-
served, after which the difference is insignificant.

Figure 6 reports the variability of the estimates across sub-
jects, averaged over the six random samples. The actual
variance of subject results for a single sample is actually
wider, but for the purpose of comparing the approaches we
average over the six runs. The plot represents the median
and quartiles for the different algorithms. The middle line
of a box indicates the median and the upper and lower re-
gions of the box spans over roughly one quartiles around
the median. The ‘whiskers’ represent the outer quartiles and
outliers are shown as individual data points. The arithmetic
result ‘boxplot’ of Figure 6 contains three series of boxes.
The first corresponds to the POKS results and the next two
are for the BN results of the PC and K2 algorithms. The
Unix plot contains only the POKS and K2 algorithm results.

Discussion
The better performance of the POKS approach over a BN
approach may appear surprising since both schemes rely
on the Bayesian framework and the POKS approach makes
stronger assumptions than the BN approach. However, this
is not an exception as the Naı̈ve Bayes framework, which
shares the local independence assumption with POKS, was
shown very effective in many context (Domingos & Pazzani
1997). The context of POKS may well be the case too.

From Observable Nodes to Concepts
Assessment

So far, we showed how to learn a student model that contains
solely observable nodes, namely items that can represent test
questions or, more generally, any observable manifestations
of a skill that a student could master, or fail to master. How-
ever, the systems that can make use of student models, be
it adaptive hypertext, intelligent tutoring system, or study
guides, need to work at the level of concepts, not at the item
level. Linking observable items to hidden concept nodes is
thus a problem that every student modeling approach based
on BN has had to tackle.

This is generally done by defining a hierarchy, with items
as leaf nodes and concepts and misconceptions as higher
level nodes (see Figure 1). However, a number of issues
remain on how to define and parametrize the BN structure.
In particular, given that concept nodes are not directly ob-
servable, how can the conditional probabilities be derived
without prior data? How can the topology be defined?

Let us briefly review some of the previous work on us-
ing BN to link items to concepts and introduce the approach
tested in this study.

Previous Work with BN
VanLehn et al. (1998) investigated some variations on
Pearl’s noisy-And model (Pearl 1988) to link observable
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Figure 6: Box plots of the variance across subjects (49 for
Arithmetic and 17 for Unix) and averaged over the six ran-
dom samples. Central quartiles are within the box whereas
the two extreme quartiles are represented by the “whiskers”.
The middle line in the box represents the median and out-
liers are represented by data points. Only the K2 results are
shown for Unix.

items to concepts, and found them effective with simulated
student test data. Whereas this technique represents a means
to introduce evidence from items into a BN in the absence
of the required conditional probability tables, Millán et al.
(2000) introduces a means to fill such tables in the absence
of sufficient data. They used a combination of expert judg-
ments and IRT’s logistic function to parametrize the condi-
tional probabilities between test items and concepts.

Vomlel (2004) explored a number of learning approaches
to define the structure of a BN of concepts and misconcep-
tions in arithmetic. His study is noteworthy because he used
independent concept mastery assessment data for the BN
structural learning and conditional probability calibration.
The best model was derived by an iterative process, where
initial structures are first derived from the data and using the
PC algorithm, and constraints on the structure is imposed
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Figure 5: Item prediction performance. The graph on the left reports the accuracy of item outcome predictions for the Arithmetic
test averaged over all 49 test cases. The graph on the right reports the Unix accuracy and it is averaged over 17 test cases. Each
line represents averages over 6 simulation samples.

by domain experts to refine the structure. We return to this
study since its results are used in the current study.

Rule Space, Weighted Means
Of course, not all approaches rely on a BN, and other tech-
niques such as Tatsuoka’s Rule Space or a simple weighted
means are valid alternatives to assess concepts.

Tatsuoka (1983) introduced the concepts of Rule space
and Q-matrices. Each “rule” (concept or skill) that is neces-
sary to be successful at each test item is indicated in a ma-
trix of rules by items. A probabilistic version of this frame-
work actually corresponds to the approach of VanLehn et
al. (1998) mentioned above. See also Barnes (2003) and
Winters (2006) who investigated a number of probabilistic
approaches of using Q-matrices and a number of other tech-
niques for knowledge assessment.

An simple alternative to the Q-matrix is to decompose the
mastery of a given concept as a weighted mean of items,
much in the same manner as every teacher does when points
are allotted to different test items in a exam. That approach
has the advantage of being readily understood by teach-
ers who frequently go through this process of determining
which test items assess which concepts or topics.

Augmenting the Observed Evidence Set
Assuming we linked observable evidence to concepts that
are linked within a BN, we could use the item to item model
to augment the initial set of observed evidence and feed this
augmented evidence set to the concept level model. For
example, an item to item model could feed a BN with an
augmented response vector that complements the informa-
tion used by the BN at the concept level. To the extent that
the item to item model provides an accurate assessment, we
would expect that the assessment at the concept level would

also be improved.
This scheme is further detailed and evaluated in the next

section.

Evaluation of the Augmented Evidence
Scheme

In accordance to the objective of assessing concept mastery
from observable items, we investigate the effectiveness of
combining item-to-item structures with a BN that contains
concept and misconception nodes in accordance with the
scheme outlined in the previous section. We used an ex-
isting hierarchical BN and combined it with a POKS built
from the same data. The BN is taken from Vomlel (2004).
Vomlel defined a list of 20 concepts and misconceptions and
defined a BN structure over these nodes. The BN parame-
ters are calibrated with the same data as the arithmetic test
in table 1, and also with data from an independent assess-
ment by experts of each of the 149 pupils mastery of these
20 concepts. In addition to calibration, this independent as-
sessment of concepts also allows us to determine the concept
predictive accuracy of the algorithms.

In this experiment, we use the POKS inference engine as
a filter to augment the actual number of observations fed to
the BN. Hence, the initial set of items observed mastered and
non mastered is first given to the POKS module. All of the
yet unobserved items, for which the chances of mastery are
above (below) a given threshold, are considered mastered
(non mastered). They are then given to the BN as additional
evidence on top of the observed evidence.

More formally, assuming a set of observed responses S,
POKS infers a set of additional responses, S′. The orig-
inal set, S, is thereby augmented by the inferences from
POKS, S′ and the set of evidence fed to the BN represents
the union of S and S′. This process is illustrated in Fig-



ure 8. It is repeated for every new observation, from 0 to
all 20 items.

In order to determine that an item is considered inferred
by POKS, a threshold is used, δ. Every item for which the
probability of mastery of POKS is greater than 1− δ is con-
sidered mastered, whereas items with a probability smaller
than δ is considered non mastered.

Results
We assume that, with the POKS augmented set of evidence,
the BN estimated probability of concept and item mastery
will be more accurate than the non augmented set. This is
verified through a simulation using the same methodology
as the item-to-item simulation. However, in this case, we
can also report the accuracy of concept assessment based on
Vomlel’s independent concept assessment data and compare
with his original results..

The simulation results of the combination algorithm of
POKS and the BN are reported in figure 7. A threshold δ =
0.1 is used for this experiment. This value provided the best
results, although there were only small differences between
thresholds values of 0.30 to 0.95.

The graph reports the prediction accuracy for concepts
and items separately and for three conditions:

BN+POKS: augmented inferences.

BN: BN non augmented inferences.

POKS: replication of POKS item prediction performance
(replication of the arithmetic results in Figure 5). based
on global entropy (items and concepts).

The item prediction results reveal that the highest perfor-
mance is achieved when the BN inferences are augmented
by the observations from the POKS inferences. The perfor-
mance is significantly better than for the “non augmented”
BN condition, but only marginally better than for POKS
alone. These results suggest that item to item structures
can provide additional, complementary inference to the BN
when it comes to predicting item outcome.

In contrast to the item prediction results, the concept pre-
diction accuracy results reveal that all four conditions are
relatively similar. Surprisingly, the improvement seen for
the item outcome prediction does not transfer to the con-
cept prediction. A possible explanation is that by optimizing
item selection on item entropy reduction for the POKS+BN
condition, the gain from the augmented inferences is offset
by targeting item entropy over the global, combined concept
and item entropy. Another possibility is simply that the inde-
pendent concept assessment is not reliable enough to reveal
gains at the concept level. The span of accuracy for con-
cepts only ranges between 75% and 90% and the maximum
is almost reached after only 5 question items. There may be
no room for improvement with such data. Moreover, many
concepts have only 2 or 3 items from which to validate their
mastery, which may be too little for a reliable assessment.
In fact, we currently have no reason to expect that improve-
ments at predicting item outcome would not be reflected in
concept mastery assessment.
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Figure 7: Results of the simulation where the POKS infer-
ences are used to augment the observed set of items. A
threshold value of δ = 0.1 is used. Refer to the text for a
description of each curve.

Discussion
Learned item to item student models have the potential to
provide accurate, fine-grained skills assessment without the
drawbacks of requiring significant human effort and exper-
tise. This effort could be limited to the familiar task that ev-
ery teacher goes through during the elaboration of an exam:
linking and weighting items with respect to a list or a hierar-
chy of concepts.

This study shows that item to item structures can be con-
structed from data and yield effective predictive item out-
come models. Two approaches were investigated, namely
standard BN induction techniques and the POKS frame-
work, which stands closer to the Naı̈ve Bayes family of mod-
els.

Two simulations show that the POKS framework yields
better predictive results for item outcome prediction than



Figure 8: Combination algorithm of POKS with BN.

does the general BN framework. Although the stronger per-
formance of a Naı̈ve Bayes framework is by no means un-
common, we conjecture that, for this study, it is consequent
with the constrained nature of knowledge spaces closed un-
der union and intersection. The assumptions made by the
POKS framework may be appropriate for the knowledge
spaces and, consequently, allow the framework to be applied
effectively with small data sets as the ones we experimented
with. Moreover, the simplicity of the POKS framework is
reflected in the computational cost: In our simulations, the
POKS algorithms are faster than the BN algorithms by a fac-
tor of two orders of magnitude, both for model construction
and inference. This is attributed in part to the fact that POKS
does not use iterative algorithms but relies on a closed form
solution.

We further investigated how to link item to item structures
to an existing BN model, which offer high modeling flexi-
bility at the concept level and enjoy great recognition in the
student modeling community, and can lead to the re-use of
student models. The specific approach studied is to augment
the set of evidence from observed items using the item to
item inference scheme.

The results show that we can, indeed, improve item
outcome prediction with the augmented inference scheme.
However, we could not demonstrate improvements at the
concept assessment level from the simulation conducted.
This could be a limitation of the data set used, or it could be
a side effect of the item selection strategy that we can either
gear towards item or concept entropy reduction. Neverthe-
less, given that item outcome is determined by the student
skills and concept mastery, the improvement obtained at the
item outcome level should eventually lead to a better skills
assessment.

A number of issues remain open over the current study,
one of which is how general are the findings. We already
see a different pattern of results between the simulations
over the two data sets. We suggested that the Unix test
showed greater relative error reduction because it was de-
signed and tested over a very large span of expertise and is
therefore highly consistent with the knowledge space frame-
work. It is quite plausible that some domain of knowledge,
or some types of tests may not conform to the underlying
assumptions of POKS and knowledge spaces and therefore
the framework would not perform as well. Similarly, the BN
structural learning algorithms can display wide differences
depending on the nature of the data set and the sample size
(François & Leray 2003, see, for eg.,). As a consequence,

the effectiveness of item to item approaches may vary and
more investigations are required to address this issue.

Many of the qualities that we expect from a learned a stu-
dent modeling framework are found item to item. The ex-
periments we conducted showed their effectiveness for per-
forming knowledge assessment with models learned from
very small data sets (as few as 30 data cases for the Unix ex-
periment with POKS). Yet, they display all the advantages
of graphical probabilistic learned models, namely the au-
tomation of model building and the absence of human inter-
vention, which avoids the human expertise bottleneck and
subjectivity, and offers the possibility of estimating the reli-
ability of the diagnostic. We also showed how they can be
effectively used in combination with existing BN models to
yield accurate concept assessment and within a perspective
of reusing user models.
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