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1  Introduction 

 

A critical part of domain modeling in Intelligent Tutoring Systems is to 

determine how the domain content relates to skills and to knowledge that 

we aim the student to learn about. This task can be achieved through 

data driven techniques. If domain content is associated with a set of 

questions or exercises, student performance data over theses items can 

be used to find the latent skills behind the content. 

 

Data driven techniques that map items to skills fall within two main 

categories: (1) entirely driven from student data performance, or (2) 

starting with an expert given mapping and refined based on this data. 

Entirely data driven techniques are appealing because they dispense the 

tedious efforts required to do the mapping by content experts. However, 

the mapping obtained from such methods may be hard to interpret and 

will almost surely contain latent skill factors that do not match the 

pedagogical structure of the learning content. For this reason, the 

refinement of expert given mappings has greater utility in most contexts 

and this chapter focuses on this specific problem. 

 

Another fundamental distinction to be made is whether the data includes 

a time component. In learning environments, students learn as they 

interact with the system. A single student's skills mastery profile 

changes in time and within the same data sample. A number of studies 

have focused on refining the item to skills mapping with this type of 

dynamic data, namely Stamper and and Koedinger (2011), Koedinger et 

al.(2013), and Aleven and Koedinger (2013). Simplifying measures such 

as taking into account only the first attempt and ignoring hints and 



scaffolding can alleviate the complexity of analyzing this type of data 

(see for eg. González-Brenes, 2015). 

 

The modeling of task to KC/skills for models that include a time 

dimension, and from data that has a time dimension, is the focus of a 

previous volume’s chapter of the current series (Aleven and Koedinger, 

2013). In this chapter, we will focus on static data, where we assume the 

data is a snapshot in time of the student's skill profile and return in the 

discussion on the question of how this assumption can be dealt with. 

 

2  Background concepts 

 

Before discussing the item to skills refinement models, let us introduce 

the background concepts and models. 

 

2.1  Q-matrices 

 

The mapping of items to latent skills is often referred to as a Q-matrix. 

Rows of the matrix are the items and columns are the skills. Q-matrices 

are generally represented as Boolean matrices. The items can represent 

question, exercises, or any task that has a clear outcome. Skills are also 

termed Knowledge Components (KC) (Aleven & Koedinger, 2013). 

 

There are three distinct ways how skills can be considered related to 

tasks:  

 

(1) Conjunctive: all skills are required to successfully complete the 

task. 

(2) Disjunctive: any skill is sufficient. 

(3) Compensatory or additive: all skills contribute to increase the 

chances of success.   

 

All three versions of Q-matrices obviously entail different student skills 

models that might be used in a running system. Furthermore, skills can 



be continuous or discrete, which also entails different models. And so 

does the time factor. If learning occurs in the data, the models have to 

account for it. 

 

However, we should emphasize that although the skills model depend on 

the type of Q-matrix and on whether the data has a time dimension, the 

Q-matrix does not. Whether a task involves skills or not is independent 

of the model, and of the time factor. 

 

2.2  Factorization framework 

 

A valuable framework for conceptualizing the relationship between a 

Q-matrix Q , the student skill profiles matrix P , and the student test 

outcome results matrix R , is to define the relationship as a product:  

 T=R PQ  (1) 

 

For example, the following matrix product would correspond to a 

compensatory version of a Q-matrix in which the rows are normalized to 

sum to 1:  

 
 

Using the negation operator   defined as:  

 
we can define a conjunctive Q-matrix as the product (assuming a 

normalized Q-matrix):  

 T=  R P Q  (3) 

and a disjunctive Q-matrix as:  

 T= R P Q  (4) 



 by redefining the first condition of the negation operator (1 if > 0x ). 

 

2.3  Cognitive diagnosis models and Q-matrix refinement 
 

Every Q-matrix refinement model has an underlying model, often called 

a cognitive diagnosis model, or CDM. Common models can be 

described using the matrix factorization framework. For example, the 

DINA and DINO models described below. 

 

DINA and DINO. DINA and DINO are two well known models for 

cognitive modeling. The DINA model relies on a conjunctive Q-matrix 

that corresponds to equation (3), whereas the DINO relies on a 

disjunctive Q-matrix that corresponds to equation (4). However, these 

models also include the guess and slip factors that respectively define 

the probability of a good response given a predicted 0  in the R  matrix 

and a probability of an incorrect response given a predicted 1. An 

adaptation of the factorization framework to accommodate the 

uncertainty introduced in DINA and DINO is to consider the R  matrix 

as a probability matrix and to substitute the 0's and the 1's respectively 

by the guess  and (1 )slip  factors. 

 

Let us introduce a distinction in the notation and refer from here on to 

R̂  as the predicted student response outcome (for eg. the product of an 

estimated student profiles matrix, P̂ , and a Q-matrix, Q ) and to R  as 

an observed student response outcome matrix. 

 

Many models consider the estimated student response outcome matrix, 

R̂ , to be a probability matrix. For example, taking the logit of R̂  

( log( / (1 )ij ijr r ) and the log of T
P̂Q  leads to flexible log-odds CDM 

(Hensen, Templin, & Willse, 2009) 

 

But regardless of the specific model used for Q-matrix refinement, the 

principle of refinement follows a general framework. Given a cognitive 

diagnostic model and an estimated student profiles matrix P̂ , the 



refinement process can be considered as searching the space of 

Q-matrices for a matrix that will minimize the difference between R  

and R̂ . The difference can be the RSS ( 2ˆ|| ||R R ), or any other 

reasonable loss function. 

 

In fact, minimizing the loss function is the same objective whether we 

are looking at estimating the student profiles or any other parameter of 

the model. What is unique to the process of Q-matrix refinement is the 

initial starting point: the expert's matrix. If we were to look for a 

Q-matrix that solely optimizes prediction, we could instead start from a 

random Q-matrix or use heuristics to guess a strategic initial Q-matrix. 

In other words, the process looks for a local minima starting from a 

point in the Q-matrix space that corresponds to the expert Q-matrix. 

 

3  Refinement Methods 

 

The literature on Q-matrix refinement methods has exploded in recent 

years, both for static data (de la Torre & Chiu, 2015; Barnes, 2010; 

Desmarais & Naceur, 2013; Xiang, 2013; Chung, 2014; H. Li & Suen, 

2013; Qin et al., 2015; Romero, Ordoñez, Ponsoda, & Revuelta, 2014; 

Köhn, Chiu, & Brusco, 2015; Nižnan, Pelánek, & Řihák, 2014; Xu & 

Zhang, 2015) and for dynamic data in which student learning occurs 

(Stamper & Koedinger, 2011; Koedinger et al. 2013; Aleven & 

Koedinger, 2013; González-Brenes, 2015; N. Li, Cohen, Koedinger, & 

Matsuda, 2011). In addition to algorithms that take as input student 

response outcome data, we find the emergence of methods that integrate 

text analysis to label and optimize the search for better Q-matrices 

(Goutte, Léger, & Durand, 2015; N. Li, Cohen, & Koedinger, 2013; 

Matsuda, Furukawa, Bier, & Faloutsos, 2014). 

 

This is a clear sign of the importance of the problem as well as of the 

vitality of the research on the topic. Some studies have shown that using 

data-driven techniques of refinement generally result in Q-matrices that 

have better predictive power and are a better fit to the data in general 



(Aleven & Koedinger, 2013; Durand, Belacel, & Gutte, 2015; Matsuda 

et al., 2014). 

 

We first review below three examples of Q-matrix refinement 

algorithms, and show how such algorithms can be combined to obtain 

substantial gains in the next section. The two first ones are based on the 

DINA model, whereas the last one is based directly on equation (3). 

 

3.1  minRSS 

 

For a given Q-matrix, there is an ideal response pattern (ideal response 

vector) for each skill pattern (profile vector). If there are no slip and 

guess factors, then the response pattern for every category of student 

profile is fixed. A reasonable assumption is to assume the real response 

pattern should not differ much from this ideal response pattern. Then the 

problem is how to measure the difference between the real pattern and 

ideal pattern. The most common metric for binary data is Hamming 

distance, that is  
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where r  is the real response vector while   is the ideal response 

vector. J  is the number of latent skills. Chiu and Douglas (2013) 

refined this metric based on the idea that if an item has a smaller 

variance (or entropy), then it should be given higher weight. The 

formula is  
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where jp  is the proportion of correct answers of item j . Equipped 

with this metric, we can find the ideal response matrix that best fits the 

data, and then find the correspondent profile matrix P . With these 

results, a powerful method was proposed to update the Q-matrix (Chiu, 

2013). First, a squared sum of errors for each item k  can be computed 

by  
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where N  is the number of respondents. Then, the item with the highest 

RSS  is chosen to update its correspondent q-vector. All the other 

possible q-vectors are tested to calculate their RSS  and the q-vector 

giving the lowest RSS  is chosen to replace the original one. We name 

this method minRSS based on this minimization objective. The Q-matrix 

is thus updated accordingly, and the whole process will be repeated. The 

previous changed q-vector is taken out of searching pool for the next 

iteration. The whole procedure terminates when the RSS  for each item 

no longer changes. This method has a consistency property which was 

shown by Wang & Douglas (2015). That is, it has good performance 

under different underlying conjunctive models. 

 

3.2  maxDiff 
 

Under the setting of DINA model, for every item j , there are two model 

parameters, slip 
js  and guess 

jg . de la Torre (2008) proposed that a 

correctly specified q-vector for item j  should maximize the difference 

of probabilities of a correct response between examinees who have all 

the required attributes and those who do not. For a model invovled with 

K  possible skills, there are 2K  possible q-vectors(i.e skill combination). 

Denote these possible q-vectors by l , 0,1,...,2 1Kl   , then 
jq  is the 

correct q-vector if  

 = [ ( =1| =1) ( =1| = 0)] = [ ]j j ll j ll jl
l l

q argmax P X P X argmax      

for , 1,2,...,2 1Kl l    and 
=1

=
K
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   . That is also why we call it 

maxDiff. An interesting observation is since ( =1| =1) =1j ll jP X s    and 

( =1| = 0) =j ll jP X g  , then  

 = [1 ( )]j j j
l

q argmax s g    

that is, maximizing the difference is equivalent to minimize the sum of 

the slip and guess parameters. A natural idea is to test all q-vectors to 

find the maximum 
jl  but that is computationally expensive. de la Torre 



(2008) proposed a greedy algorithm that adds skills into a q-vector 

sequentially. First, 
jl  is calculated for all q-vectors which contains 

only one skill and the one with biggest 
jl  is chosen. Then, 

jl  is 

calculated for all q-vectors which contains two skills including the 

previously chosen one. Again the q-vector with the largest 
jl  is chosen. 

This whole process is repeated until no skills increases 
jl . However, 

this algorithm requires knowing 
js  and 

jg  in advance. For real data, 

they are calculated by EM (Expectation Maximization) algorithm (de la 

Torre, 2009). 

 

3.3  ALSC 

 

ALSC (Conjunctive Alternating Least Squares Factorization) is a 

common matrix factorization (MF) technique. Desmarais and Naceur 

(2013) proposed to factorize student test results into a Q-matrix and a 

skills-student matrix with a least squares estimate. 

 

Contrary to the other two methods, it does not rely on the DINA model 

as it has no slip and guess parameters. ALSC decomposes the results 

matrix R  based on the least squares estimate. 

 

The factorization consists of alternating between estimates of P  and Q  

until convergence. Take conjunctive model for example, starting with 

the initial expert defined Q-matrix 0Q , an initial least-squares estimate 

of P  is obtained:  

 
T 1

0 0 0 0
ˆ = ( ) P RQ Q Q  (5) 

which is the least squares solution of equation (3). Then, a new estimate 

of the Q-matrix, 1Q̂ , is again obtained by the least-squares estimate:  

 T T 1 T

1 0 0 0
ˆ ˆ ˆ ˆ= ( )   Q P P P R  (6) 

And so on until convergence. Alternating between equations (5) and (6) 

yields progressive refinements of the matrices ˆ
iQ  and  ˆ

iP  that more 

closely approximate R , the observed student response outcome matrix. 



The final ˆ
i

Q  is rounded to yield a binary matrix. 

 

4  Combining techniques with ensemble algorithms 

 

The effectiveness of a Q-matrix refinement technique may depend on 

specific characteristics of the data, or on characteristics of the matrix 

itself. An algorithm that can learn the conditions under which an 

approach is more likely to give a reliable answer can, in principle, 

provide better refinements than any algorithm alone.  

 

A critical factor for the success of the combination approach is the 

definition of effective factors to allow the learning of how to combine 

the output of the Q-matrix refinement algorithms. Let us focus on one of 

these factors, stickiness, as an informative example. 

 

Stickiness represents the rate of a given algorithm's false positives for a 

given cell of a Q-matrix. A false positive is considered a recommended 

change in the Q-matrix when the ground truth tells us it is wrong: no 

changes should be recommended. The rate is measured by “perturbating” 

in turn each and every cell of the Q-matrix, and by counting the number 

of times the cell is a false positive. The decision tree can use the 

stickiness factor as an indicator of the reliability of a given Q-matrix 

refinement algorithm’s suggested value for a cell. Obviously, if a cell's 

stickiness value is high, the reliability of the algorithm's suggestion will 

be lower. 

 

The question is how to train a decision tree with enough data to use the 

stickiness and other factors? An original idea introduced in the approach 

is to use synthetic data for which we know what is the Q-matrix ground 

truth. Random matrices with a similar ratio of 0/1 are generated and the 

perturbation process described above is applied to generate tens of 

thousands of tuples with the following elements:    

1. Target value 

2. Predicted values from the three algorithms studied 



3. Stickiness   

4. A few other characteristics of the skill and the item involved   

 

These elements represent the input to a decision tree that essentially 

learns which of the predicted values (2.) are most likely to be correct 

given the contextual factors (3. and 4.) 

 

Based on the decision tree combination approach described above, 

Desmarais et al. (2015) obtained a substantial gain in accuracy over the 

best of the three refinement algorithms. Considering on an equal basis an 

error as not recovering the perturbated cell and recommending changes 

to non perturbated cells, they obtained an error reduction in the range of 

50% using real data over Q-matrices defined by experts and around 85% 

using DINA-based synthetic data for the same matrices. 

 

The combination approach can be considered an ensemble technique in 

the machine learning field. Another well-known ensemble technique is 

to combine a decision tree with boosting. Boosting consists in assigning 

a weight to each individual observation in the loss function. The weight 

is increased when the predicted value differs from the observed one, and 

the classifier, namely the decision tree in our case, is trained with the 

new weighted loss function. Using the Adaboost boosting algorithm, an 

additional improvement in error reduction of 18% for real data and 46% 

for synthetic data is obtained (Xu & Desmarais, 2016). 

 

In terms of correct and incorrect refinements, the ensemble technique, 

which combines the three algorithms with a boosted decision tree, is 

able to recover almost all of the perturbated cells to their original value. 

It improves the rate of recall of perturbated cells from around half to 

close to all. However, in spite of these improvements, it still introduces a 

small number of incorrect refinements (proposed changes to cells that 

were not perturbated). These incorrect refinements can prove disrupting 

to an expert who uses a Q-matrix refinement tool, as it entails an effort 

to analyze and assess the proposed refinements, and future efforts should 

focus on reducing this number. 



 

5  Discussion 

 

An important finding from the work with ensemble techniques is the 

demonstration of the complementarity of Q-matrix refinement 

algorithms, at least the three algorithms used in the ensemble studies 

reported in section 4. The gains to recover perturbed cells to their 

original value are remarkable and the performance is close to perfect. 

And whilst the number false refinements remains disrupting, it is not to 

the extent to undermine the value of the recommended changes. 

 

Can ensemble techniques extend to algorithms to map items to skills 

with dynamic data? Can we assume the algorithms to refine the mapping 

of item to skills/KC for dynamic data are also complementary? It is 

reasonable to believe that similar gains could be obtained if we can 

assume the complementarity is present. Simplification such as using the 

first trial (for eg. González-Brenes, 2015) may permit greater variability 

of approaches, and therefore complementarity in the sources of 

information that can be combined in an ensemble technique. 

 

6  Recommendations and Future Research 

 

The CTAT tools described in Aleven and Koedinger (2013) for helping 

an expert to map exercises, items, and tasks to underlying skills are 

excellent examples of valuable outcomes of models and algorithms that 

can use data to help an expert refine a Q-matrix (or a KC model in their 

terminology). These tools allow the comparison of Q-matrix versions, 

assessment of their fit in terms of predictive power and other measures 

of fit, and provide different means to refine them. 

 

The approaches and algorithms reviewed in this chapter should lead to 

such tools, or complement them. They help identify weaknesses in a 

Q-matrix at the item level, pinpointing missing or irrelevant skills 

associated with tasks, and also at the skill level: a whole column may 



show anomalies that suggest a skill may be ill-defined and unfit to the 

data. 

 

As emphasized before, the Q-matrix refinement algorithms reviewed in 

this chapter make the assumption that learning does not occur in the data. 

This is a serious limitation for data collected from learning environments 

where learning does occur. Important questions to address are therefore 

what are the consequences of the violation of this assumption and how 

can we mitigate the adverse effects and work around them? 

 

An avenue to explore is to transform the dynamic data into a static view. 

The dynamic cognitive modeling models can generally be 

conceptualized as a factorization model, akin to the factorization of 

equation (1), but the P  and the R  matrices have a third dimension 

which is time. They are then considered tensors models (see Thai-Nghe, 

Horváth, & Schmidt-Thieme, 2011). In such models, it is possible to 

predict the student response outcome data at a given time slice, thereby 

transforming the dynamic data into a static view that the models 

reviewed in this chapter can handle. 
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