
Boosted Decision Tree for Q-matrix Refinement

Peng Xu
Polytechnique Montreal
peng.xu@polymtl.ca

Michel C. Desmarais
Polytechnique Montreal

michel.desmarais@polymtl.ca

ABSTRACT
In recent years, substantial improvements were obtained in
the effectiveness of data driven algorithms to validate the
mapping of items to skills, or the Q-matrix. In the cur-
rent study we use ensemble algorithms on top of existing Q-
matrix refinement algorithms to improve their performance.
We combine the boosting technique with a decision tree.
The results show that the improvements from both the de-
cision tree and Adaboost combined are better than the de-
cision tree alone and yield substantial gains over the best
performance of individual Q-matrix refinement algorithm.

1. INTRODUCTION
A Q-matrix, as proposed by Tatsuoka (Tatsuoka, 1983), is
a term commonly used in the literature of psychometrics
and cognitive modeling that refers to a binary matrix which
shows a correspondence between items and their latent at-
tributes. Items can be questions or exercises proposed to
students, and latent attributes are skills needed to succeed
these items. Usually, a Q-matrix is defined by a domain
expert. However, this task is non trivial and there might
be errors, which in turn will result in erroneous diagnosis of
students knowledge states (Rupp & Templin, 2008; Madison
& Bradshaw, 2015). Therefore, better means to validate a
Q-matrix is a highly desirable goal.

A fair number of algorithms have emerged in the last decade
to validate an expert given Q-matrix based on empirical data
(see for eg. recent work from Chen, Liu, Xu, & Ying, 2015;
de la Torre & Chiu, 2015; Durand, Belacel, & Goutte, 2015).
Desmarais, Xu, and Beheshti (2015) showed that Q-matrix
refinement algorithms can be combined using an ensemble
learning technique. They used a decision tree and the results
show a substantial and systematic performance gain over the
best algorithm, in the range of 50% error reduction for real
data, even though the best algorithm is not always the same
for different Q-matrices.

The encouraging the results obtained by combining the out-

put of Q-matrix refinement algorithms leads us to pursue
further along the line of using ensemble learning, or meta-
learning techniques. In particular, a common approach is
to use boosting with a decision tree algorithm. This is the
approach explored in the current study.

2. THREE TECHNIQUES TO Q-MATRIX
VALIDATION

Our approach relies on meta-learning algorithms whose prin-
ciple in a general way is to combine the output of existing
algorithms to improve upon the individual or average results.
In our case, the approach combines a decision tree trained on
the output of Q-matrix validation algorithms with boosting,
a weighted sampling process in the training of the decision
tree to improve its accuracy. In this section, we first de-
scribe the Q-matrix validation techniques before describing
the decision tree and boosting algorithms.

2.1 minRSS
The first Q-matrix refinement technique that serves as in-
put to the decision tree is from Chiu and Douglas (2013).
We name this technique minRSS. The underlying cognitive
model behind minRSS is the DINA model(see De La Torre,
2009).

For a given Q-matrix, there is a unique and ideal response
pattern for a given a student skills mastery profile. That
is, if there are no slip and guess factors, then the response
pattern for every category of student profile is fixed. The
difference between the real response pattern and the ideal re-
sponse pattern represents a measure of fit for the Q-matrix,
typically the Hamming distance. Chiu and Douglas (2013)
considered a more refined metric. The idea is if an item has
a smaller variance (or entropy), then it should be given a
higher weight in measure of fit. A first step is to compute
the ideal response matrix for all possible student profile,
and then to find the corresponding student profiles matrix
A given observed data. First, a squared sum of errors for
each item k can be computed by

RSSk =

N∑
i=1

(rik − ηik)2

where r is the real response vector while η is the ideal re-
sponse vector, and N is the number of respondents. Then,
the worst fitted item (highest RSS) is chosen to update its
correspondent q-vector. Given all permutations of the skills
for a q-vector, the q-vector with the lowest RSS is chosen to



replace the original one. The Q-matrix is changed and the
whole process repeated, but the previously changed q-vector
is eliminated from the next iteration. The whole procedure
terminates when the RSS for each item no longer changes.
This method was shown by Wang and Douglas (2015) to
yield good performance under different underlying conjunc-
tive models.

2.2 maxDiff
Akin to minRSS, the maxDiff algorithm relies on the DINA
model. De La Torre (2008) proposed that a correctly spec-
ified q-vector for item j should maximize the difference of
probabilities of correct response between examinees who have
all the required attributes and those who do not. A natural
idea is to test all q-vectors to find that maximum, but that is
computationally expensive. De La Torre (2008) proposed a
greedy algorithm that adds skills into a q-vector sequentially.
Assuming δjl represents the difference to maximize, the first
step is to calculate δjl for all q-vectors which contains only
one skill and the one with biggest δjl is chosen. Then, δjl is
calculated for all q-vectors which contains two skills includ-
ing the previously chosen one. Again the q-vector with the
biggest δjl is chosen. This whole process is repeated until
no addition of skills increases δjl. However, this algorithm
requires knowing slip and guess parameters of the DINA
model in advance. For real data, they are calculated by EM
(Expectation Maximization) algorithm (De La Torre, 2009).

2.3 ALSC
ALSC (Conjunctive Alternating Least Square Factorization)
is a common matrix Factorization (MF) algorithm. Desmarais
and Naceur (2013) proposed to factorize student test results
into a Q-matrix and a skills-student matrix with ALSC.

ALSC decomposes the results matrix Rm×n of m items by n
students as the inner product two smaller matrices:

¬R = Q¬S (1)

where ¬R is the negation of the results matrix (m items by
n students), Q is the m items by k skills Q-matrix, and ¬S is
negation of the the mastery matrix of k skills by n students
(normalized for rows columns to sum to 1). By negation, we
mean the 0-values are transformed to 1, and non-0-values
to 0. Negation is necessary for a conjunctive Q-matrix. As
such, the model of equation (1) is analogous to the DINA
model without a slip and guess parameter.

The factorization consists of alternating between estimates
of S and Q until convergence. Starting with the initial ex-
pert defined Q-matrix, Q0, a least-squares estimate of S is
obtained:

¬Ŝ0 = (QT
0 Q0)−1 QT

0 ¬R (2)

Then, a new estimate of the Q-matrix, Q̂1, is again obtained
by the least-squares estimate:

Q̂1 = ¬R¬ŜT
0 (¬Ŝ0 ¬ŜT

0 )−1 (3)

And so on until convergence. Alternating between equa-
tions (2) and (3) yields progressive refinements of the ma-

trices Q̂i and Ŝi that more closely approximate R in equa-
tion (1). The final Q̂i is rounded to yield a binary matrix.

3. DECISION TREE
The three algorithms for Q-matrix refinement described in
the last section are to be combined to yield with a decision
tree to obtain an improved refinement recommendation, and
further improved by boosting. We describe the decision tree
before moving on to the boosting method.

Decision tree is a well-know technique in machine learning
and it often serves as an ensemble learning algorithm to
combine individual models into a more powerful model. It
uses a set of feature variables (individual model predictions)
to predict a single target variable (output variable). There
are several decision tree algorithms, such as ID3 (Quinlan,
1986), C4.5 (Quinlan, 1993), CART (Breiman, Friedman,
Stone, & Olshen, 1984). We used rpart function from the
R package of the same name (Therneau, Atkinson, & Ripley,
2015). It implements the CART algorithm. This algorithm
divides the learning process into two phases. The first phase
is for feature selection, or tree growing, during which the
feature variables are chosen sequentially according to Gini
impurity (Murphy, 2012). Then in the second phase, the
pruning phase, deep branches are split into wider ones to
avoid overfitting.

A decision tree is a supervised learning technique and there-
fore requires training data. To obtain training data of suf-
ficient size, Desmarais et al. (2015) use synthetic data from
Q-matrices generated by random permutations of the per-
turbated Q-matrix. Since the ground-truth Q-matrix of syn-
thetic data is known, it becomes possible to generate train-
ing data containing the class label. The training set for
decision tree can take this form:

Algorithm target prediction Other factors
Target minRSS maxDiff ALSC ...

1 1 0 1 ...
0 0 1 0 ...
... ... ... ... ...

The other factors considered to help the decision tree to im-
prove prediction are the number of skills per row (SR), num-
ber of skills per column (SC). Moreover, a feature named
stickiness is introduced and makes a critical difference. It
measures the rigidity of cells under each validation meth-
ods. Stickiness represents the rate of a given algorithm’s
false positives for a given cell of a Q-matrix. The rate is
measured by “perturbating” in turn each and every cell of
the Q-matrix, and by counting the number of times the cell
is a false positive. The decision tree can use the stickiness
factor as an indicator of the reliability of a given Q-matrix
refinement algorithm suggested value for a cell. Obviously,
if a cell’s stickiness value is high, the reliability of the corre-
sponding algorithm’s refinement will be lower.

4. BOOSTING
The current work extends the idea of using a decision tree
with another meta-learning technique named boosting.

Boosting (Schapire & Freund, 2012) serves as a meta-learning
technique for lifting a base learner. It operates on weights
of the loss function terms. For a training set of N samples



and a given loss function L, the global loss is

Loss =

N∑
i=1

L(yi, f(xi))

Different ways of choosing loss function yield different boost-
ing algorithm. The most famous algorithm for boosting is
Adaboost (Freund & Schapire, 1997), which is especially set
for binary classification problem and uses exponential loss.

In our case, the base learner is the decision tree. Adaboost
trains the decision tree for several iterations, but with a dif-
ferent weighted training data for each iteration. That is,
each time a decision tree is trained, the wrongly predicted
data records in the current iteration will be assigned higher
weights in the computation of the loss function for the next
training iteration of the decision. The final output of Ad-
aboost is a sgn function (sign function) of a weighted sum
of all “learners” trained in the whole procedure (the decision
tree with different weights vectors).

For a training set of N samples, the whole procedure for
Adaboost is shown below (Murphy, 2012):

Initialize ωi = 1/N
for i = 1 to M do

Fit the classifier φm(x) to the training set using weights
w

Compute errm =

N∑
i=1

ωiI(ỹi 6=φm(xi))

N∑
i=1

ωi

Compute αm = log[(1− errm)/errm]
set ωi ← ωi exp[αmI(ỹi 6= φm(xi)]

end for

return f(x) = sgn(
M∑
m=1

αmφm(x))

In which M is the number of iterations (10 in our experi-
ment), ωi is the weight for i-th data, I(·) is the indicator
function, ỹi ∈ {1,−1} is the class label of training data, and
φm(x) is the decision tree model in our case.

Boosting has had stunning empirical success (Caruana &
Niculescu-Mizil, 2006). More detailed explanation and anal-
ysis of boosting can be found in Bühlmann and Hothorn
(2007) and Hastie, Tibshirani, and Friedman (2009). The
Adaboost algorithm was implemented in this experiment to
improve the results obtained by Desmarais et al. (2015). The
results are reported in section 7.

5. METHODOLOGY AND PERFORMANCE
CRITERION

To estimate the ability of an algorithm to validate a Q-
matrix, we perturbate a “correct” Q-matrix and verify if the
algorithm is able to recover this correct matrix by identify-
ing the cells that were perturbated while avoiding to classify
unperturbated cells as perturbated. In this experiment, only
one perturbation is introduced. For synthetic data, the “cor-
rect” matrix is known and is the one used in the generation
of the data. For real data, we assume the expert’s is the
correct one, albeit it may contain errors.

Table 1: Q-matrix for validation

Name
Number of

Description
Skills Items Cases

QM1 3 11 536 Expert driven from
(Henson, Templin, &
Willse, 2009)

QM2 3 11 536 Expert driven from
(De La Torre, 2008)

QM3 5 11 536 Expert driven from
(Robitzsch, Kiefer,
George, & Uenlue,
2015)

QM4 3 11 536 Data driven, SVD
based

In order to use a standard performance measure, we define
the following categories of correct and incorrect classifica-
tions as the number of:

• True Positives (TP): perturbed cell correctly recov-
ered
• True Negatives (TN): non perturbed cell left un-

changed
• False Positives (FP): non perturbed cell incorrectly

recovered
• False Negatives (FN): perturbed cell left unchanged

We give equal weight to perturbed and unperturbed cells
and use the F1-score, or F-score for short. The F-score is
defined as

F = 2 · precision · recall
precision+ recall

In which precision is calculated by the model accuracy on
non-perturbated cell while recall is calculated by the model
accuracy on perturbated cell.

6. DATASET
For the sake of comparison, we use the same datasets as the
ones used in Desmarais et al. (2015). Table 1 provides the
basic information and source of each dataset.

7. RESULT
The results of applying Adaboost over the decision tree (DT)
are reported in table 2 for synthetic data and Table 3 for real
data. The individual results of each algorithm are reported
(minRSS, maxDiff, and ALSC), along with the decision tree
(DT) and the boosted decision tree (BDT). Different im-
provement over baselines are reported as:

• DT %Gain: the Decision Tree (DT) improvement
over the best of the three individual algorithm (minRSS,
maxDiff, ALSC)

• BDT %Gain: Boosted Decision Tree improvement
over the DT performance, which corresponds to the
gain we get from boosting.

Let us focus on the F-Score which is the most informative
since it combines results of the perturbed and non perturbed



Table 2: Results for synthetic data

Individual Ensemble
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Accuracy of perturbated cells

1 0.809 0.465 0.825 0.946 (69.4%) 0.951 (9.2%)
2 0.069 0.259 0.359 0.828 (73.2%) 0.903 (43.5%)
3 0.961 0.488 0.953 1.000 (99.7%) 1.000 (0.0%)
4 0.903 0.489 0.853 0.956 (54.3%) 0.971 (33.9%)

X 0.685 0.425 0.747 0.933 (74.2%) 0.956 (21.7%)

Accuracy of non perturbated cells

1 0.970 0.558 0.387 0.990 (65.1%) 0.990 (0.0%)
2 0.987 0.529 0.431 0.989 (20.5%) 0.996 (59.1%)
3 0.950 0.258 0.736 0.994 (88.9%) 1.000 (100.0%)
4 0.966 0.559 0.391 0.997 (92.2%) 0.998 (19.2%)

X 0.968 0.476 0.486 0.993 (65.3%) 0.996 (49.4%)

F-score

1 0.882 0.507 0.527 0.968 (72.4%) 0.970 (7.4%)
2 0.128 0.348 0.392 0.902 (83.8%) 0.947 (46.1%)
3 0.955 0.337 0.831 0.997 (93.5%) 1.000 (100.0%)
4 0.934 0.522 0.536 0.976 (64.0%) 0.984 (33.6%)

X 0.725 0.429 0.571 0.961 (78.4%) 0.975 (46.4%)

Table 3: Results for real data

Individual Ensemble
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Accuracy of perturbated cells

1 0.485 0.167 0.515 0.758 (50.0%) 0.758 (0.0%)
2 0.345 0.093 0.564 0.618 (12.5%) 0.764 (38.1%)
3 0.212 0.091 0.364 0.818 (71.4%) 0.818 (0.0%)
4 0.394 0.111 0.576 0.576 (0.0%) 0.818 (57.1%)

X 0.359 0.115 0.505 0.692 (33.5%) 0.789 (23.8%)

Accuracy of non perturbated cells

1 0.435 0.670 0.418 0.606 (−19.4%) 0.606 (0.0%)
2 0.875 0.929 0.110 0.956 (37.9%) 0.966 (21.4%)
3 0.661 0.830 0.219 0.785 (−26.2%) 0.752 (−15.1%)
4 0.520 0.889 0.148 0.546 (−308.7%) 0.658 (24.7%)

X 0.623 0.829 0.224 0.723 (−79.1%) 0.746 (8.0%)

F-score

1 0.459 0.267 0.461 0.673 (39.4%) 0.673 (0.0%)
2 0.495 0.168 0.184 0.751 (50.6%) 0.853 (40.9%)
3 0.321 0.164 0.273 0.801 (70.7%) 0.784 (−8.7%)
4 0.448 0.198 0.235 0.560 (20.3%) 0.730 (38.5%)

X 0.431 0.199 0.288 0.696 (45.25%) 0.760 (17.8%)

cells of the Q-matrix. For synthetic data, the error reduction
of boosting over the gain from the decision tree is substan-
tially improved for all Q-matrices. The range of improve-
ment is from 7% to 100%. For real data, two of the four
Q-matrices show substantial improvements of around 40%,
whereas the other two show no improvements, even a de-
crease of 8.7% for Q-matrix 3 which is characterized by a
single skill per item. However, let us recall that we assume
the expert Q-matrices are correct, which may be over opti-
mistic. Violation of this assumption could negatively affect
some of the Q-matrices scores for real data.

Note that QM3 has an inconsistent 100% gain from boost-
ing with synthetic data compared to a small loss is obtained
with real data. The value of 100% should be taken cau-
tiously because the F-score difference is measured close to
the boundary of 1 and therefore the result of only a few
cases in our sample. Nevertheless, the fact that a very high
F-score is obtained for synthetic data compared to real data
does raise attention and might be related to the fact that it
is the only single skill per item matrix.

8. CONCLUSION
This study shows that the gain obtained from combining
the output of multiple Q-matrix refinement algorithms with
a decision tree can be further improved with boosting. The
results for synthetic data show an F-score error reduction
from boosting over the DT score of close to 50% on average
for all four Q-matrices, and a 18% reduction for real data.
Compared with the score of the three individual refinement
algorithms, minRSS, maxDiff, and ALSC, the combined en-
semble learning of decision tree is very effective.

However, we find strong differences between the Q-matrices.
For eg., QM2 benefits of improvements close to 50% (QM2),
while QM1 has a null improvement for real data and only
7.4% for synthetic data. In that respect, the boosting does
not provide a gain that is as systematic as the one obtained
from the DT which is positive for all matrices.

An important advantage of the meta-learning approach out-
lined here is that it can apply to any combination of algo-
rithms to validate Q-matrices. Future work could look into
combining more than the three algorithms of this study, and
add new algorithms that potentially outperform them. And
if the current results generalize, we would expect to make
supplementary gains over any of them.

However, an important category of data over which we would
like to apply this approach is for dynamic student perfor-
mance data, where learning occurs (see for eg. Matsuda,
Furukawa, Bier, & Faloutsos, n.d.).
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