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Abstract. The validation of models for skills assessment is often con-
ducted by using simulated students because their skills mastery can be
predefined. Student performance data is generated according to the pre-
defined skills and models are trained over this data. The accuracy of
model skill predictions can thereafter be verified by comparing the pre-
defined skills with the predicted ones. We investigate the faithfulness of
different methods for generating simulated data by comparing the pre-
dictive performance of a Bayesian student model over real vs. simulated
data for which the parameters are set to reflect those of the real data as
closely as possible. A similar performance suggests that the simulated
data is more faithful to the real data than for a dissimilar performace.
The results of our simulations show that the latent trait model (IRT) is a
relatively good candidate to simulate student performance data, and that
simple methods that solely replicate mean and standard deviation distri-
butions can fail drastically to reflect the characteristics of real data.

1 Introduction

Student cognitive diagnosis is commonly defined as estimating the probability of mastery
of a set of skills by a given student. However, skills mastery cannot be directly measured.
Instead, it is measured by observing performance results over a task, such as the successes
or failures over a set of question items or exercises.

How can the accuracy of a cognitive diagnosis model be validated without direct measures
of skill mastery? There are at least three, non exclusive means around this issue :

1. Obtain indirect and independent measures of skill mastery. Many studies rely on an
independent source to estimate skill mastery and match the model prediction with
this independent source. For example, Vomlel [9] asked experts to determine if a
student mastered a set of skill in fraction algebra based on their answers to a test.
The test data was used for training a Bayesian Network model and the prediction of
the model was matched against the experts’ judgment.



2. Match predictions over observed items only. Another approach consists in using
solely the predicted outcome of observable items that can be directly matched to
real data. No attempt is made at estimating skill mastery, and instead the approach
relies on the assumption that hidden skills are correctly assessed if observed
performance is accurately predicted.

3. Generate simulated data. The approach we investigate here consists in generating
student performance data according to a predefined model for which skill mastery is
defined for each student. This approach is commonly used in psychometric research
where latent response models are validated against simulated data (see for eg. [4]).
The approach has also been used for cognitive modeling within a number of studies
and over different models such as the DINA [1] and a the Bayesian Network
approach [7], to name but a few examples.

The obvious advantage of having predefined skills with simulated data is, however,
plagued by the issue that the underling skill model may not reflect the reality. The models
can be over simplistic, or they can misrepresent the relationships between skills and
performance, and among skills themselves.

We investigate this issue by using four models of skills to generate simulated student data.
We look at how close are the performances of a student model trained over real and
simulated data, while ensuring that the simulated data reflects as closely as possible the
characteristics of the real data. The student model for this study is a Bayesian approach to
cognitive modeling, POKS [5].

The first data generation model is one of the simplest possible and it serves as a baseline.
The probability of item outcome (generally defined as a success or a failure to a test item
question, or to an exercise) is a function of the expected values from marginal
probabilities of item success rate and student scores. The second data generation model
relies on a Q-Matrix that defines the links between items and skills. The matrix is used to
assign skill outcome probabilities, from which a data sample can be generated. A third
approach is based on a standard approach in Monte Carlo simulations in which sample
data is generated by a technique that preserves the correlations among variables (among
items in our case). The fourth approach is based on latent trait modeling (IRT—Item
Response Theory) [2].

A number of studies on generating simulated student data have been conducted for the
latent trait (IRT) approach [10][3][6], but they were all done within the IRT framework,
using the same underlying latent trait models both for simulating the data and for
measuring the predictive accuracy of the student model constructed from this data. On the
contrary, the current study uses a Bayesian approach as the student model and a makes
comparison of widely different approaches in addition to IRT.

We explain each of the simulated data generation approach in greater details below before
moving to the experiments and the results.



2 Expected Outcome Based on Marginal Probabilities

The simplest model for generating simulated data is based on the expected item outcome
according to marginal probabilities, as represented by the student general skill level and
the item difficulty. This model presumes of no conceptual or skill structure behind the
items set. Each item is considered independent of the other and the outcome solely
depends on the item difficulty and the ability of the student.

Within this framework, the generation of sample test outcome can be conceptualized as a
random sampling process using the expected probabilities. Assuming two vectors of
probabilities: (1) S, that represents the skills mastery level of students, and (2), Q, that
represents the (inverse) difficulty of items, then, the outer product of the two vectors is a
matrix X = Q× S where each element, mij , represents the expected probability of
student i mastering item j. In the current study, we forced the sampling process to exactly
replicate the distribution of scores, S, by sampling a pedefined number of successes for
each examinee.

Since the probability of an item xij being considered a success is solely dependent on the
marginal probabilities, Qi and Sj , we will refer to this model as the Marginal Probabilities
sampling.

3 Q-Matrix Sampling

The second model we explore is based on a Q-matrix [8] which defines the links between
items and skills. For example, assuming we have I items and K skills, and a response
matrix of N students, then the Q-matrix and the response matrix are defined as:

Q =

 q1,1 · · · q1,K
... . . . ...
qI,1 · · · qI,K

 ,X =

 x1,1 · · · x1,I
... . . . ...

xN,1 · · · xN,I


For example, if an item x1 involves only skills k2 and k3, then q1,2 and q1,3 will be set to 1,
and all other entries for that item, q1,• will be set to 0.

The skill mastery of a set of students can be computed as the dot product of the two
matrices: X ·Q.

The generation of sample data from this Q-matrix consists in defining the probability of an
item outcome as a function of the level of mastery of the set of skills it involves. By
defining skill mastery in the range [0,1] (for which case the Q-matrix corresponds to a
capability matrix as defined in [1]), then, the probability of a successful outcome to an
item xi is defined as the smallest of the mastery value of each skill involved for xi. This is
a heuristic estimate that reflects the requirement that all skills must be involved in order to
correctly answer xi.

Akin to the process described for marginal probability sampling, we can ensure that the
scores distribution perfectly matches the real by fixing the number of item successes per



examinee. Sampling thus proceeds in a similar manner to the marginal probabilities
sampling model, with the difference that instead of marginal probabilities, the item
probabilities are derived from concept mastery. In turn, concept mastery is derived, in our
experiment, from the student concept mastery distribution of the sample data and the
capability matrix.

4 Covariance Matrix

Another mean of generating simulated student performance data is based on the idea of
preserving the covariance (correlation) among items. This method is commonly used in
Monte Carlo simulations. In the context of student test data, the method would stipulate
that question items are interrelated and that a representative sample of simulated test data
preserves the structure of correlation among items. This assumption is not unreasonable as
we would, for example, expect that items of similar difficulty and that draw from the same
skill set to show correlated student response patterns.

The generation of sample data based on item covariance relies on the Cholesky
decomposition of the item covariance matrix. Assuming L is the upper triangular matrix
of the Cholesky decomposition of the item covariance matrix, a first step is to generate a
sample of correlated variables as:

S = NL

where N is an N × I matrix (number of students by number of items) of normally
distributed independent random values having a mean of 0 and a standard deviation of 1.
The sample data S will be an N × I matrix for which the item covariance matrix will
approach the real data item covariance. It will have an expected mean of 0. The second
step is to fit the distribution of this data’s item success rate to the real data by adding the
vector of real data item means to each row of S and, finally, to transform values to binary
item outcome, setting values above 0.5 to 1 and 0 otherwise.

5 Latent Trait Models (IRT)

The last method of generating simulated student performance data relies on Item
Response Theory, also known as latent trait modeling. As mentioned above, some authors
have studied the faithfulness of this approach to replicate real data [10][3][6]. We refer the
reader to [3] for a more elaborate description of this approach1

We use a 2 parameter logistic IRT model for generating the simulated data. According to
this model, the probability of a successful outcome by an examinee s to an item i is
defined as:

P (Xi | θs) =
1

1 + e−ai(θs−bi)

1Available from the ERIC Web Portal http://eric.ed.gov/ under ref. ED414297 (accessed April
23, 2010).



where θs is the student’s ability level, and where ai and bi are respectively the
discrimination and difficulty levels of item i. The values for these three variables are
directly estimated from the real data sample and therefore it is possible to replicate
simulated data that reflects the real data. Estimates of the discrimination parameter is
obtained with the R ltm package2 and values for item difficulty and examinee ability are
directly obtained through the logit transformation of the item average success rate and
examinee percentage score. We also limit discrimination to values to the interval [0,4] and
difficulty values to [-4,4], as is commonly done for IRT with small samples.

6 Experiments

We mentioned in the introduction that the issue with simulated student performance data
is to determine how far the simulated data is representative of the complexity of the real
student performance. To address this question, we train the POKS student model [5] over
real and simulated data sets and compare its predictive performance across each condition.
The simulated data sets are generated to closely resemble the real data according to the
underlying model. The four models described above are used for simulated data: (1) MP
sampling, marginal probability sampling (section 2), (2) QM sampling, Q-matrix
sampling (section 3), (3) Covariance, sampling based on preserving item covariance
using the Cholesky decomposition (section 4), and finally (4) IRT, sampling based on the
latent trait modeling (section 5).

6.1 Adaptive Testing Simulation

The results of the different simulated data models are compared in the context of
simulated adaptive testing with the POKS model. The process of adaptive testing consists
in choosing the most informative item to present to the student and to infer the outcome of
other items based on the pattern of previous item outcomes.

The performance is measured as the percent-correct predicted item outcome. Items that
have been asked represent observed evidence and are considered correct by definition.
Thus, performance after all items have been observed always converges to 100%. At the
beginning, when no items are observed, item outcome is based on average item success
rate: if an item has a success rate above 50%, it is considered mastered, and not mastered
otherwise. As new items are observed, the POKS model computes the probability of
mastery of each item based on the pattern of previous item outcome, and the predictions
are compared to the actual data to compute the percent correct performance.

In this experiment, a cross-validation process is used for the College mathematics data set
and a leave-one-out process is used for the Unix data set because of the small number of
records.

2cran.r-project.org/web/packages/ltm/ltm.pdf



6.2 Data Sets

The characteristics of the real data sets from which the simulated data is generated can be
very influential in this investigation and therefore we provide some details about them
here. The experiment is conducted over two data sets:

1. Unix. The Unix data set contains 34 questions items that have all been answered by
48 respondents. The average success rate is 53% and it contains a large array of
skills and difficulty, with test scores varying from 1/48 to 45/48, and item success
rate varying from 1/34 to 34/34.

Skills decomposition of this data is done over 9 topics ( ”sys-admin”, ”awk”,
”basic” ”directories”, ”file permissions”, ”input-output redirection”, ”printing”,
”regular expressions” ”shell language”). These topics contain from 3 to 7 items and
only one topic is associated with an item. In other words, the row sums of the
Q-matrix is always 1.

2. College Mathematics. The Math data set is composed of 59 items, which were
administered to 250 freshmen students at Polytechnique Montreal. Each item was
analyzed by two domain experts who determined if it involved one of the following
topics : (1) Algebra, (2) Geometry, (3) Trigonometry, (4) Matrices and Vectors, (5)
Differential equations and (6) Integrals. Mean student score is 57%, ranging from
9/59 to 55/59.

Contrary to the Unix data set, most items are linked from two to four topics (only 17
are single topic, 32 are linked to two topics, 9 to three topics, and 1 to four topics).

The simulated performance data is generated to reflect as closely as possible the
characteristics of the two real data sets. The similarity of the simulated data can be
compared to the real one by looking at the correlation between success rates of students
and items. Table 1 reports a number of similarity measures that represent the averages for
10 simulated data sets (numbers in parenthesis represent the standard deviations):

• Mean and Sim. mean: The percentage of correct responses over the whole data set.
This number is to be compared to 53% for Unix and 57% for Math. The data
generation process for the QM sampling and MP sampling methods were devised to
match exactly this parameter.

• Cor. exami.: Pearson correlation between the simulated and real respondent test
scores.

• Cor. items: Pearson correlation between the simulated and real average item scores.

• Cor. concepts: Pearson correlation between the simulated and real average concept
mastery scores of students. Concept mastery for the students is computed on the
basis of the dot product X ·Q (see section 3), but with a normalization that ensures
the scores range is between [0,1]. This normalization corresponds to the notion of a
capability matrix (see [1]).



Table 1: Similarity of simulated data with real data

Unix Mean Sim. mean Cor. items Cor. exami. Cor. concepts % diff.
QM .53 .53 (.00) .93 (.01) .80 (.03) .81 (.02) 26 ( 1)
MP .53 .53 (.01) .55 (.08) .64 (.10) .28 (.05) 43 ( 2)
IRT .53 .57 (.01) .98 (.00) .98 (.01) .88 (.00) 15 ( 1)

Covariance .53 .53 (.04) .97 (.01) .03 (.13) .40 (.06) 38 ( 1)
Math Mean Sim. mean Cor. items Cor. exami. Cor. concepts % diff

QM .57 .57 (.00) .84 (.01) .03 (.05) .57 (.02) 44 ( 0)
MP .57 .57 (.00) .55 (.04) .78 (.04) .20 (.03) 47 ( 0)
IRT .57 .62 (.00) .83 (.01) .89 (.01) .44 (.01) 40 ( 0)

Covariance .57 .56 (.02) .98 (.00) .07 (.10) .11 (.05) 42 ( 0)

• % diff.. Percentage of items with different outcome.

The patterns of similarity vary considerably across the different sampling methods, but the
most consistent one is the IRT method, in particular for the Unix data set, with
correlations of 0.98 for both item success rate and examinee scores. Whilst these
correlations are very high, we find that 15% of items differ from the real to the generated
samples. We will see from the data in table 2 that this 15% difference can considerably
degrade the predictive performance if the items are chosen at random.

7 Results

The CAT simulations experiment results are reported in Figure 1. The graphs depict the
predictive performance of POKS over the two data sets. The percent correct number of
item outcome prediction (accuracy) is reported over the different experimental conditions.
Both graphs start a 0% observations, where the accuracy corresponds to guesses based on
item average success rate. They end at 100% of questions observed for each data set,
where the accuracy converges to 1 because observed item outcome are considered
correctly “predicted”. For indicative purpose, a straight line is drawn that starts at the
initial guess of the real data, (0, y0), and ends at (1,1). It corresponds to the theoretical
baseline accuracy of random guesses over non-observed items and provides an idea of the
prediction gain obtained with the student model (note that only the real data line is drawn).
Standard errors over simulation runs are not shown on the graphs to avoid cluttering, but
they are at most around 7% and have no significant affect on the general patterns observed.

The different curves correspond to the four methods respectively described in section 2 to
section 5 (see section 6 for label correspondance).

Table 2 provides a single score for the predictive performance, termed here the accuracy
gain. This score represents the gain from guessing the outcome based on the initial
probabilities of items and its range is [0,1]. It provides a simple means of comparing the
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Figure 1: Results predictive accuracy simulation experiments with real student performance
data compared with different models of simulated student data.

Table 2: Global accuracy gain over baseline

Real QM MP IRT Covariance 15%
Unix 0.77 (0.0∗) 0.43 (0.07) 0.14 (0.06) 0.80 (0.01) 0.58 (0.06) 0.29 (0.04)
Math 0.40 (0.02) 0.04 (0.01) 0.08 (0.01) 0.34 (0.01) 0.37 (0.01) 0.20 (0.03)
∗Deterministic leave-one-out simulation

overall predictive performances across the simulations and corresponds to the error
reduction averaged over all intervals. It is computed as:

accuracy gain =
1

N

N∑
i

yi − ŷi
1− ŷi

where N is the total number of intervals (we arbitrarily use 50), yi is the accuracy at
interval i (the x value) and ŷi is the baseline accuracy at that same interval as represented
by the straight diagonal of the figures (there exists one diagonal per curve but only the one
for the real curve is represented in the figures).

For indicative purposes and in addition to the four methods, table 2 also reports a score
corresponding to randomly changing the values of item outcome for 15% of the items,
which is the proportion of items differing from the IRT simulated data to the real data.

In the case of the Unix data, the results indicate that the IRT method is able to generate
data over which the POKS model is similar the performance, with accuracy gains of 0.77



for real data agains 0.80 for IRT. The Covariance method comes second with a
performance of 0.58 instead of 0.77.

In the case of the Math data, the general predictive performance of all methods is
substantially lower than for the Unix data. The Covariance and IRT methods both yield
performance relatively close to the real data, but this time the Covariance method is closer
to the real data performance.

8 Discussion

This investigation is limited to two real world data sets and to predictions based on a
single student model, namely POKS. As such, further investigations are necessary to draw
stronger conclusions. Nevertheless, we can still hint at some conclusions. First, the
simpler methods of generating data, based on marginal probabilities and on concept
mastery, yield simulated data that do not appropriately reflect the underlying structure of
the real student performance data. However, the IRT method, based on the 2 parameter
model (difficulty and discrimination), does appear to reflect the characteristics of real data,
but not systematically for all data sets, as a non neglectible difference can be observed in
the case of the Math data set. Furthermore, the Covariance method actually generates data
for which the predictive accuracy is slightly closer to real data then the IRT method is. It
also is close overall to the real data, standing at 0.37 accuracy gain compared to 0.40 for
real data.

This investigation focused on models for generating data which allow their parameters to
replicate real data characteristics, namely items difficulty, student skill levels, concept
mastery as defined by the Q-matrix, and item covariance. Not all models allow this
replication as readily as for these approaches. The DINA model used in [1] contains
parameters that cannot be readily estimated from data, such as performance slips.
Validating the faithfulness of such models is a desirable endeavour that would require
means to estimate such parameters and constitutes an interesting research avenue.
Indirectly, such investigations are in fact a means to validate if a model can actually reflect
the characteristics of real data and, thus, they can be considered as an assessment of the
external validity of a student model.

Turning back to the fundamental question of whether we can rely on simulated data to
validate a student model, the simulations in this study suggest that simulated data from the
2 parameter IRT model can appropriately reflect some data set characteristics, but not with
equal faithfullness for all data sets. It suggests that the validation of a model based on the
indirect and independent measures of skill mastery may be indispensable to ensure a
proper validation, as we outlined in the introduction. Alternatively, we could argue that
the approach which consists in validating predictive performance over observable items
only is just as indispensable. If we assume that the accuracy of a model for predicting item
outcome is directly and monolitically linked to the accuracy of non observable parameters
estimates of a model, then item outcome represents a good indirect measure of skills and
concept mastery.
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