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Abstract. Uncovering the right skills behind question items is a diffi-
cult task. It requires a thorough understanding of the subject matter and
of the cognitive factors that determine student performance. The skills
definition, and the mapping of item to skills, require the involvement of
experts. We investigate means to assist experts for this task by using a
data driven, matrix factorization approach. The two mappings of items
to skills, the expert on one side and the matrix factorization on the other,
are compared in terms of discrepancies, and in terms of their performance
when used in a linear model of skills assessment and item outcome pre-
diction. Visual analysis shows a relatively similar pattern between the
expert and the factorized mappings, although differences arise. The pre-
diction comparison shows the factorization approach performs slightly
better than the original expert Q-matrix, giving supporting evidence to
the belief that the factorization mapping is valid. Implications for the use
of the factorization to design better item to skills mapping are discussed.
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1 Introduction

Mapping items to latent skills is a notoriously difficult task and intelligent help
to alleviate this difficulty would obviously be desirable. Although the complete
automation of uncovering the skills behind question items for cognitive engi-
neering purpose is beyond reach in the current state of research, means to help
determine the number of skills and the common skills between items is a rea-
sonable endeavour in the mid-term, and significant advances have been made
recently. We review the state of the art towards this goal in recent years, and
demonstrate how a matrix factorization technique can yield promising results to
this end.



2 Skills Modeling, Q-matrices, and Matrix Factorization

Because of its importance, the problem of mapping items to underlying skills
has been widely studied, and is still an ongoing topic of investigation in psycho-
metrics and in educational data mining (see, for eg., [9, 12, 11, 7, 4, 3, 1] for recent
contributions).

In the past ten years, a few groups of researchers have looked at linear models
of item to skills mapping and of skills assessment, with promising results. We
build upon this work which is briefly reviewed below.

2.1 Linear models

Linear models of skills are familiar to most teachers. An exam’s weighted sums
of individual score items, broken down by topic (skill), implicitly constitute a
linear model model. Also highly familiar in the psychometric field is the Q-matrix
formalism, investigated by Tatsuoka and her colleagues in the early 1980’s, which
maps skills to items [15, 16]. This formalism can also be considered a close parent
of linear models.

Linear models were put to the task of assessing student skills mastery [2, 20,
19, 18]. In the 2010 KDD Cup, a tensor model was developed to model student
skills and the mapping of items to skills. Thai-Nghe et al. used a multi-relational
matrix and tensor-based factorization to model skills and learning curves to pre-
dict student success [19, 18]. A comparison with the widely recognized Bayesian
Knowledge Tracing approach showed that it compares favorably [19].

The success of linear models and factorization methods raises the question
of whether these methods could also be successful in deriving Q-matrices that
maps items to skills. A few studies have shown that a mapping can, indeed,
be derived from data [21, 6]. Winters et al. showed that item topic extraction
can be obtained from different data mining techniques, one of which is matrix
factorization [21]. However, only very distinct topics like French and mathematics
can yield adequate mapping. This study was later corroborated by Desmarais [6]
who also used simulated data to show that the low discrimination power of some
topics might be explained by their lower weight in terms of skill factors, when
compared to other factors such as item difficulty and student ability. Recent
work by Lan et al. [10] combine a factor analysis framework, named SPARFA,
with Bayesian techniques to uncover skills behind task and to label these skills
from tags and from the question item texts.

The factorization methods in the studies mentioned above rely on the stan-
dard matrix operators (“dot product”), and therefore can be considered as com-
pensatory models of skills: each skill required adds to the chances of success of
an item. Barnes, Stampers, and other colleagues [1, 14] introduced a different
algorithm to implement conjunctive models of skills, where any required skill
missing will induce a failure to the item. We will borrow from this work and
from [8] to implement both conjunctive and compensatory models in the current
study. The foundations of these models is explained next.
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2.2 Results matrix, Q-Matrix, and skills matrix

Student test data can be represented in the form of a results matrix, R, with m
row items by n column students. We use the term item to represent exercises,
questions, or any task where the student has to apply a skilled performance
to accomplish it correctly. If a student successfully answers an item, the corre-
sponding value in the results matrix is 1, otherwise it is 0. Intermediate values
could also be used to indicate partial success.

A results matrix R can be decomposed into two smaller matrices:

R ≈ QS (1)

The process of matrix factorization is to determine the matricesQ and S fromR.
The Q matrix is equivalent in form to the Q-matrix developed in the cognitive
modeling field [16, 15], although various semantics apply to each formalism, such
as the conjunctive or compensatory versions explained below. This matrix is an
m items by k skills matrix that defines which skills are necessary to correctly
answer an item. It allows a “compressed” representation of the data that assumes
the item outcome results are determined by the skills involved in each item and
the skills mastered by each student. The k skills by n student matrix S represents
the student skills mastery profiles. The product of Q and S yields an estimated
results matrix R̂. The goal of factorization algorithms is to minimize ||R̂−R||.

As mentioned above, the Q-matrix (Q) can take different interpretations. A
conjunctive Q-matrix assumes all skills in an item row are necessary for success,
whereas a disjunctive Q-matrix assumes any skill is sufficient, and finally a
compensatory Q-matrix assumes each skill adds to item success, which can be
interpreted as increasing the chances of success if each item is either succeeded
or failed. Equation (1) corresponds to the compensatory version of the Q-matrix,
but it can be transformed into a conjunctive version through negation of the R
and S matrices [8].

3 Comparing a Q-matrix Induced from Data with an
Expert Defined Matrix

Given the factorization obtained from equation (1), the question we address
here is how to compare the matrix Q obtained from item outcome data, with
an expert defined Q-matrix, in the hope that this comparison can help validate
and improve the expert matrix.

3.1 Comparison Issues and Principle of the Proposed Method

One issue with the factorization of equation (1) is the interpretation of the Q
matrix obtained. Although factorization techniques allow, or require, the spec-
ification of the number of skills, k, the skills appear in matrix Q in some un-
predictable order. Moreover, the matrix can contain numerical values of various
signs and amplitude that may not lend themselves to a sharp interpretation.
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Another issue has to do with the factorization technique used. Some tech-
niques, such as non-negative matrix factorization (NMF), lead to non unique
and to local minima solutions. Experience shows that these solutions can be
widely different, worsening the problem of interpretation and comparison with
the expert Q-matrix.

To alleviate these issues, we rely on the principle of starting the factorization
process with an initial matrix Q set to the expert Q-matrix. Many factorization
algorithms could be used, as long as this condition can be met. The initial
condition ensures that the matrix Q obtained after minimizing ||R̂ − R|| will
minimally diverge from the initial one, thereby rendering the comparison with,
and enhancement of the expert’s Q-matrix more feasible.

3.2 Alternate Least-square Factorization (ALS)

The factorization method we use is the Alternate Least-square (ALS). Starting
with the results matrix R and an initial Q-matrix, Q0, a least-squares estimate
of the skills matrix Ŝ0 can be obtained by:

Ŝ0 = (QT
0 Q0)

−1 QT
0 R (2)

The initial matrix Q0 will be the expert defined Q-matrix. Then, a new estimate
of the Q-matrix, Q̂1, is again obtained by the least-squares estimate:

Q̂1 = RŜT
0 (Ŝ0 Ŝ

T
0 )

−1 (3)

And so on for estimating Ŝ1, Q̂2, etc. Alternating between equations (2) and (3)
yields progressive refinements of the matrices Q̂i and Ŝi that more closely
approximate R in equation (1). In our experiments, the convergence at a delta
of 0.001 occurs after 7–8 iterations and in a fraction of a second for factorizing a
matrix of dimension 20×536. This performance makes the technique many times
more efficient than factorizations that rely on gradient descent, for example.

It is worth mentioning that, by starting with non negative matricesQ0 andR,
the convergence process will generally end with positive values for both matri-
ces Qi and Si. The vast majority of values obtained are between 0.5 and 1.5 if
both the results matrix and the initial Q-matrix have {0,1} values. No regular-
ization terms are used in the current implementation of the algorithm to force
non-negative or integer values.

4 Experiments and Data

We use the ALS method described above to compare an expert defined Q-matrix
and a factor Q-matrix. Unless otherwise mentioned, factorization is based on
the conjunctive model of skills (see [8]), which essentially consists in using the
negation of the R matrix instead of the raw values.

The data comes from Tatsuoka’s fraction algebra problems [17] which is avail-
able through the R package CDM [13]. It is composed of 20 question items
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and 536 respondents (see table 1 in [4] for a description of the problems and of
the skills).

When cross-validation experiments are performed, they consists in breaking
down the data into 8 sets of 67 students each. Training is done on 7 of the 8 sets
and testing on the remaining set.

4.1 Visual comparison of Q-matrices

Figure 1 shows three versions of the Q-matrices. The left matrix is the one defined
by the expert, as provided in [13]. Dark cells represent the required skills. The
middle matrix is derived from the full data set. The gradients of colors represent
the values that range between 0.5 and 1.5, where the darker color indicate higher
values. The right matrix is the rounded version of the middle matrix: Real values
of the middle matrix are rounded to 0 or 1.

Fig. 1. Three Q-matrices of Tatsuoka’s fraction algebra items.

Five cells differ between the expert (left) and the ALS factorization (right)
matrices. They are highlited by three ellipses. Except for cell (8,3), all of the
differences are cells missing on the ALS matrix. We could bring back the miss-
ing values by tweaking the threshold to the 0/1 function, but that would come
at the cost of creating false positives. Their absence in the ALS factorized ma-
trix suggests that the corresponding skills may not contribute to the response
outcome as much as the other skills. Equally interesting are the different color
brightnesses in the true positive, suggesting that some skills may be more impor-
tant than others. Finally, we note that the differences all come from only 2 skills
(see [4] for a description of all skills):

(3): simplify before subtracting (eg. 3 1
2 − 2 3

2 , 4− 1 4
3 , 4

1
3 − 1 5

3 ),
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(8): reduce answers to simplest form (eg. 4 3
5 − 3 4

10 , 4
1
2 − 2 7

12 , 1
1
8 −

1
8 ).

The high level of discrepancies between the matrices for these two skills may hint
at some issues with these particular skills. This observation is congruent with
different analyis by DeCarlo of Tatsuoka’s Q-matrix and based on the DINA
latent factor model which identifies Skill 3 as a source of error: “Together, these
results suggest that the Q-matrix might be misspecified, in that Skill 3 should
not be included” (in [5], p. 20).

4.2 Validity of the ALS Q-matrix

The ALS method clearly meets the criteria of interpretation and ease of compari-
son with an expert defined Q-matrix. However, does the ALS Q-matrix represent
a “better” mapping of skills to items than the expert’s, or even a “good” mapping
at all?

Let us define the goodness of a Q-matrix by its ability to make accurate
predictions. Accordingly, we compare the expert Q-matrix and the ALS Q-matrix
over their performance for predicting response outcomes.

A cross-validation simulation is conducted and consists in predicting, in turn,
each of the 20 items given the answers of the other 19 items. The individual
respondents are split into 8 bins. The data from 7 bins serve for the training
(deriving the ALS Q-matrices) and the remaining bin serves for testing. 8-folds
simulations are conducted, one for each bin. The skills of each examinee are
assessed from 19 items based on the Q-matrix of the training phase. The item
that remains is used for testing prediction.

Skills are assessed according to equation (2). However, for skills assessment,
the Q-matrix requires response vectors of 20 items, whereas only 19 are given.
Therefore, the expected value is used in place of the missing item outcome to
predict: the geometric mean of the average item difficulty and the examinee
ability over the 19 given items is used (the value is not rounded to 0/1). Then,
the predicted item outcome is computed according to equation (1).

To assess the performance of the original, expert Q-matrix, the same process
as described above is used, except that there is no training phase. The expert
Q-matrix is used in place of the ALS Q-matrix derived from training.

The results of the simulation are reported in figure 2. Results from both
conjunctive and compensatory models are reported. The predictions based on
expected values are also reported. Expected values are computed according to
the method described above when assigning the value of the item to predict for
the ALS Q-matrix predictions. Note that the average success rate is 53%, and
therefore a 0-rule type of prediction (predicting all 1s) would yield 47% MAE.

The lower MAEs of the ALS Q-matrix, compared to the Original expert Q-
matrix in both the conjunctive and compensatory models, provide support for
the validity of the ALS Q-matrix. Not surprisingly, the expert Q-matrix performs
better under the conjunctive model than the compensatory. This is expected
to the extent that it was designed by experts as a conjunctive rather than a
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Fig. 2. Mean Absolute Error (MAE) predictive accuracy of Q-matrices with conjunc-
tive and compensatory models. Predictions based on expected values is also provided
for comparison. Standard deviation for ALS is 0.012 for the 8-folds simulation and
0.013 for the Original. A paired t-test of the conjunctive model shows the difference is
statistically significant (p = 0.001, pairing is per fold).

compensatory model. However, the ALS Q-matrix predictions have practically
the same accuracy for both models.

Turning to the question of whether the expert and ALS Q-matrices are “good”
at all, we compare the predictive performance of ALS Q-matrices derived from
the expert Q-matrix with ALS Q-matrices derived from random starting points.

We computed the MAE of ALS Q-matrices for randomly generated initial
Q-matrices. The MAE for this experiment based on 10-folds is 0.159 (sd. 0.001),
which is practically the same as the ALS Q-matrices obtained when the starting
Q-matrix is the expert one. However, convergence is slower, requiring between 8
and 14 iterations.

The fact that the MAE is relatively similar regardless of the initial Q-matrix
further supports the belief that the ALS Q-matrix obtained from starting with
the expert one is valid and could be regarded as a legitimate improvement.

4.3 Convergence/Divergence from Original Matrices

It is comforting to believe that there is one “true” Q-matrix for a given set of
items and skills, and that, given a close approximation of this matrix, there exists
a means to converge towards this true matrix and avoid divergence away from
it. If the ALS factorization method allowed such outcome, it would truly offer
useful guidance for the design of Q-matrices by reliably indicating the “faulty”
cells regardless of which they are in the matrix.
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Table 1. Discrepancies as a function of the number of perturbations.

Number of
perturbations

Number of discrepancies
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

(1) Discrepancies with original ALS Q-matrix
1 42 50 28 16 9 10 2 2 1 0 0 0 0 0 0 0 0
2 11 27 31 30 26 10 8 6 4 3 2 1 1 0 0 0 0
3 3 9 14 25 24 20 20 11 12 10 6 2 1 1 1 1 0
4 1 2 8 15 12 19 25 20 19 11 10 9 5 3 0 0 1

(2) Discrepancies with Original Q-matrix
1 0 0 0 0 0 47 55 33 17 8 0 0 0 0 0 0 0
2 0 0 0 0 0 18 20 36 45 22 12 5 1 0 1 0 0
3 0 0 0 0 0 5 21 29 35 27 21 15 5 1 1 0 0
4 0 0 0 0 1 3 7 15 34 27 28 17 18 4 4 1 1

To explore this conjecture, we design an experiment where perturbations are
introduced in the Original expert Q-matrix, and perform ALS factorization on
this corrupted matrix. If we had started with a perfect Q-matrix, we would like
the method to detect the perturbations and return the original Q-matrix. If we
had started with a close approximation, we would expect the ALS Q-matrix
derived from the corrupted matrix to still converge towards the same, hopefully
“best” Q-matrix as the one obtained without perturbations.

Table 1 reports the results of this experiment. From 1 to 4 random pertur-
bations are introduced in the Original expert matrix, Q0. With 1 perturbation,
all 160 values of the 20 items × 8 skills Q-matrix are changed. With 2 and more
perturbations, 160 random samples of combinations of values in the Q-matrix
are changed. The table reports the number of discrepancies of the derived ALS
Q-matrix between (1) the original ALS Q-matrix and (2) between the Original
Q-matrix. Each row contains 160 values and the frequency of discrepancies from
0 to the observed maximum of 16 are reported. A line is drawn at the value of
5 discrepancies as a reminder of the original number of discrepancies.

We observe that with 1 perturbation, 42 of the 160 ALS Q-matrix derived are
identical to the one derived with the unperturbed expert Q-matrix, and 50 show
1 discrepancy. This leaves 68 ALS Q-matrices that have 2 or more discrepancies,
i.e. more discrepancies than perturbations introduced.

This trend increases with the number of perturbations: with 4 perturbations
induced, only 28 ALS Q-matrices show 4 or less discrepancies, which leaves 132
with more discrepancies than the number of perturbations introduced.

Comparing the ALS Q-matrices with the Original expert Q-matrix, we see
that for 1 perturbation, 47 of the 160 ALS Q-matrices derived correspond to the
Original Q-matrix. For these matrices, the perturbation was removed. For the
remaining 113, they show 6 to 9 discrepancies. However, given that for 1 per-
turbation, only 5 ALS Q-matrices diverge from the original ALS Q-matrix, this
means that the overwhelming bulk of the discrepancies introduced are in fact
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changes towards the original ALS Q-matrix. The same argument can be made
for 2 and for 3 perturbations, albeit to a lesser extent. Therefore, small perturba-
tions still result in inducing ALS Q-matrices that converge towards the original
ALS Q-matrix induced with the expert Q-matrix as a starting point.

However, starting at 4 perturbations, we see more divergences that are not
aligned with the original ALS Q-matrix. Nevertheless, even at this number of
perturbations, the large majority of the 160 cells remain intact, and so does the
majority of the 56 cells which have a value of 1.

5 Discussion

The ALS factorization method offers a promising means of deriving Q-matrices
from data given an expert defined Q-matrix to start with. One important ad-
vantage of this method is that it lends itself to an unambiguous comparison with
the initial expert Q-matrix, and consequently to a clear interpretation.

The fact that the ALS Q-matrix derived generates slightly better predictive
item outcome performance supports the hypothesis that the discrepancies be-
tween the this matrix and expert matrix are potentially valuable hints towards
improving the expert Q-matrix.

The exploration of the space of Q-matrices through the experiment with
perturbations showed that, up to 2 or 3 changes in an initial Q-matrix of the
ALS factorization, the changes induced converge towards the original ALS fac-
torization. This result suggests that a small number of errors will not affect the
method’s capacity to derive “better” Q-matrices (as defined by their predictive
power) and make useful hints for enhancements.

In spite of these encouraging results, this study is limited to a single expert
Q-matrix. Generalization to different dimensions of Q-matrices and different
domains remain unknown and further studies are called for. Furthermore, a more
in-depth, qualitative, and domain expert analysis of the discrepancies would be
highly useful to better understand the results and assess the value of the method.
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