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Abstract. Uncovering which skills are determining the success to ques-
tions and exercises is a fundamental task in ITS. This task is notoriously
difficult because most exercise and question items involve multiple skills,
and because skills modeling may involve subtle concepts and abilities.
Means to derive this mapping from test results data are highly desir-
able. They would provide objective and reproductible evidence of item
to skills mapping that can either help validate predefine skills models,
or give guidance to define such models. However, the progress towards
this end has been relatively elusive, in particular for a conjunctive skills
model, where all required skills of an item must be mastered to obtain
a success. We extend a technique based on Non-negative Matrix Fac-
torization, that was previously shown successful for single skill items, to
construct a conjunctive item to skills mapping from test data with mul-
tiple skills per item. Using simulated student test data, the technique
is shown to yield reliable mapping for items involving one or two skills
from a set of six skills.

Keywords: Student model, Skills modeling, Psychometrics, Q-matrix,
matrix factorization, SVD, NMF

1 Introduction

When an ITS personalizes the learning content presented to a student, it has
to rely on some classification of this content with regards to skills, and on the
student’s skills assessment. Therefore, the question items and exercises involved
in the assessment must be aligned with these skills. The mapping of items to
skills plays a pivotal role in most if not all ITS.

A standard means to model this mapping is the Q-matrix [10, 9]. It defines
which skills are necessary to correctly answer an item. Take the Q-matrix in
figure 1 (matrix Q on the left) composed of 3 skills and 4 items. We find that
item i1 requires two skills, s2 and s3, whereas item i2 requires a single skill, s3,
and so on.

Assuming now that a set of three examinees have mastered skills according
to matrix S of figure 1 (middle), and that all skills of an item are necessary to
correctly answer this item, then we would expect a result that corresponds to
matrix R in figure 1 (right). This framework corresponds to a conjunctive Q-
matrix: a line in Figure 1’s Q-matrix indicates a conjunction of necessary skills
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i1 0 1 1
i2 0 0 1
i3 1 0 0
i4 1 0 1

S =

examinee
e1 e2 e3
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s1 1 0 0
s2 0 0 1
s3 0 1 1

R =

examinee
e1 e2 e3
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s

i1 0 0 1
i2 0 1 1
i3 1 0 0
i4 0 0 0

Fig. 1. Q-matrix and skills matrix examples.

to succeed the corresponding item. The goal is to bring this framework to a
linear system, allowing the application of standard linear algebra techniques.

Barnes [1] gives the following equation for inferring the expected examinee
results as the product of the Q-matrix and the skills matrix (adapted from [1]
for the transpose of R):

R = ¬(Q(¬S)) (1)

where the operator ¬ is the boolean negation, which is defined as a function that
maps a value of 0 to 1 and any other value to 0. This equation will yield values
of 0 in R whenever an examinee is missing one or more skills for a given item,
and yield 1 whenever all necessary skills are mastered by an examinee.

Applying the operator ¬ on both side of equation (1) and normalizing matrix
Q to ensure the row sums are 1 yields:

¬R = Q(¬S) (2)

Equation (2) is a standard linear equation where the matrices R and S are
negated. The task of inferring the Q-matrix from ¬R can therefore be seen as a
matrix factorization: the matrix ¬R is the product of the two matrices, Q and
¬S.

2 Comparison with a one skill per item condition

The matrix factorization approach to inferring the Q-matrix from data has been
explored by a few researchers [3, 11], but for Q-matrices that involved only a
single skill per item. They investigated the Non-negative Matrix Factorization
(NMF) [8] technique and showed that it works very well for simulated data, but
the technique’s performance with real data was degraded. For highly separa-
ble skills like mathematics and French, its performance is quite good, assigning
correctly the items belonging to each topic. But the technique is very weak at
classifying items according to skills such as History and Biology, as measured by
Trivia type of questions. These results suggest that expertise necessary to suc-
ceed Biology and History questions is not well separated into these two general
topics. Presumably, we would find a stronger skill seperation if we studied very
specific skills, like the pieces of knowledge behind each question. This is in fact
what tutors such as the Cognitive family of tutors and the ASSISTment sys-
tem do, they rely on fine grain skills mapped to items [7, 5]. For these low-level
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skills, the conjunctive model, which requires that each skill is mastered for every
item that require them, is in general the model used by widely known learning
environments such as the Cognitive Tutors family.

The matrix factorization approach of the studies in [3, 11] was based on the
additive (compensatory) model of skills, where each skill increases the chances
of success to an item. This corresponds to the following equation where the
negation operator ¬ is omitted:

R = QS (3)

For the one skill per item condition, equations (1) and (3) are equivalent, but
they give very different results for two or more skills per item. Following the skill
structure example in figure 1, item i4 would be failed by all examinees according
to equation (1) whereas it would be (partly) succeeded according to equation (1),
with values above 0 for all examinees on this item.

An obvious followup over the studies by [1, 3, 11] is to apply the NMF tech-
nique to equation (2), and to determine if NMF can successfully derive a con-
junctive Q-matrix, where skills do not add up to increase the chances of success
to an item, but instead are necessary conditions. This is the goal of the current
investigation.

3 Non-negative Matrix Factorization

Non-negative matrix factorization (NMF) decomposes a matrix into two smaller
matrices. It is used for dimensionality reduction, akin to Principal Component
Analysis and Factor analysis. NMF decomposes a matrix of n × m positive
numbers, V, as the product of two matrices:

V ≈WH (4)

Clearly, the matrix W corresponds to the Q-matrices of equations (2) and (3).
Whereas most other matrix factorization techniques impose constraints of

orthogonality among factors, NMF imposes the constraint that the two matrices,
W and H, be non-negative. This constraint makes the interpretation much more
intuitive in the context of using this technique for building a Q-matrix. It implies
that the skills (latent factors) are additive “causes” that contribute to the success
of items, and that they can only increase the probability of success and not
decrease it, which makes good sense for skill factors.

It is important to emphasize that there are many solutions to V = WH. Dif-
ferent algorithms may lead to different solutions. Indeed, many NMF algorithms
have been developed in the last decade and they can yield different solutions. We
refer the reader to [2] for a more thorough and recent review of this technique
which has gained strong adoption in many different fields.

The non-negative constraint and the additive property of the skills bring a
specific interpretation of the Q-matrix. For example, if an item requires skills
a and b with the same weight each, then each skill will contribute equally to
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the success of the item. This corresponds to the notion of a compensatory or
additive model of skills as we mentioned earlier. The negation of matrix R in
equation (2) brings a new interpretation of the Q-matrix where the conjunction
of skills are considered necessary conditions to answer the corresponding item.
This requires that the matrix S be also negated, and it corresponds to H in
equation (4). However, in applying the negation operator, ¬, all values greater
than 1 are replaced by 1, and that can be considered as a loss of information.

4 Simulated data

To validate the approach, we rely on simulated data. Although it lacks the
external validity of real data, it remains the most reliable means of obtaining test
results data for which the underlying, latent skills structure is perfectly known.
Any experiment with real data is faced with the issues that the expert-defined Q-
matrix may not contain all determinant skills, may not have a perfect mapping,
and that all skills may not combine conjunctively and with equal weight, making
the interpretation of the results a complex and error prone task. Therefore,
assessing the technique over simulated data is a necessary first step to establish
the validity the approach under controlled conditions. Further studies with real
data will be necessary, assuming the results of the existing study warrants such
work.

The underlying model and methodology of the simulated data are explained
in a previous paper [4] and we briefly review some details this methodology
below.

A first step to obtain data of simulated examinee test results is to define
a Q-matrix composed of j skills and k items. We chose to define a Q-matrix
that spans all possible combinations of 6 skills with a maximum of two skills
per item, and at least one skill per item. A total of 21 items spans this space of
combinations. This matrix is shown in Figure 2(a). Items 1 to 15 are two-skills
and items 16 to 21 are single-skill.

We do not assume that skills all have the same difficulty level, and therefore
we assign various difficulty level to each skill. The difficulty is reflected by the
probability of mastery. That difficulty will transfer to items that have this skill.
The difficulty of the two-skills items will further increase by the fact that they
require the conjunction of their skills. An item difficulty is therefore inherited
by the difficulty of its underlying skills.

In addition to skills difficulty, examinees need to be assigned ability levels.
The ability is reflected by the probability of mastering some skill. Therefore,
the probability of mastery of a given skill by a given examinee is a function of
examinee ability and skill difficulty levels.

Finally, two more parameters are used in the simulated data, namely the slip
and guess factors. These factors are set as constant values across items. They
are essentially noise factors and the greater they are, the more difficult is the
task of inducing the Q-matrix from data.
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(a) Q-matrix of 6 skills and for which 21
items are spanning the full set of 1 and 2
skill combinations. Items 16 to 21 require a
single skill and all others require 2-skills.
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(b) Simulated data example of 100 exami-
nees with parameters: slip: 0.1, guess: 0.2,
skills difficulties: (0.17, 0.30, 0.43, 0.57,
0.70, 0.83).

Fig. 2. Q-matrix and an example of simulated data with this matrix. Light pixels
represent 1’s and dark (red) ones represent 0’s.

Given the above framework, the process of generating simulated examinee
data follows the following steps:

1. Assign a difficulty level to each skill.
2. Generate a random set of hypothetical examinee skills vectors based on the

difficulty of each skill and the examinee’s ability level. Skill difficulty and
examinee ability are each expressed as a random normal variable. The prob-
ability density function of their sum provides the probability of mastery of
the skill for the corresponding examinee. The skill vector is a sampling in
{0, 1} based on each skill probability of mastery.

3. Generate simulated data based on equation (2) without taking into account
the slip and guess parameters. This is referred to as the ideal response pat-
tern.

4. Randomly change the values of the generated data based on the slip and
guess parameters. For example, with values of 0.1 and 0.2 respectively, this
will result in 10% of the succeeded items in the ideal response pattern to
become failed, and 20% of the failed items to become succeeded.

The first two steps of this process are based on additive gaussian factors and
follow a similar methodology to [3]. For brevity we do not report the full details
but refer the reader to the R code available at www.professeurs.polymtl.ca/
michel.desmarais/Papers/ITS2012/its2012.R.

A sample of the results matrix is given in figure 2(b). Examinee ability shows
up as vertical patterns, whereas skills difficulty creates horizontal patterns. As
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expected, the mean success rate of the 2-skills items 1 to 15 is lower (0.51) than
the single skill items 16 to 21 (0.64).

5 Simulation methodology

The assessment of the NMF performance to infer a Q-matrix from simulated test
data such as figure 2(b)’s is conducted by comparing the predefined Q-matrix, Q,
as shown in figure 2(a), with the W matrix obtained in the NMF of equation (4).

As mentioned above, the negation operator is applied over the simulated test
data and the NMF algorithm is carried over this data. We used the R NMF
package [6] and the Brunet NMF algorithm.

We defined a specific method for the quantitative comparison of the matrix
W with Q. First, the W matrix contains numerical values on a continuous scale.
To simplify the comparison with matrix Q, which is composed of {0, 1} values, we
discretize the numerical values of W by applying a clustering algorithm to each
item in W, forcing two clusters, one for 0’s and one for 1’s. For example, item 1
in the NMF inferred matrix of figure 4(a) (which we explain later) corresponds
to a vector of six numerical values, say {1.6, 1.7, 0.0015, 0.0022, 0.0022, 0.0018}.
This vector clearly cluster into the {1, 1, 0, 0, 0, 0} vector of item 1 in figure 4(b).
The K-means algorithm is used for the clustering process of each item and we
use the kmeans routine provided in R (version 2.13.1).

Then, to determine which skill vector (column) of the W matrix corresponds
to the skill vector of the Q matrix, a correlation matrix is computed and the
highest correlation of each column vector W is in turn matched with the corre-
sponding unmatched column in Q.

We will use visual representations of the raw and the “discretized” (clustered)
W matrix to provide an intuitive view of the results, as well as a quantitative
measures of the fit corresponding to the average of the correlations between the
matched skills vectors W and Q.

6 Results

In order for the mean and variance of the simulated data to reflect realistic val-
ues of test data, the skill difficulty and examinee ability parameters are adjusted
such that the average success rate is close to 60%. Examinee ability is combined
with the skill difficulty vectors to create a probability matrix of the same di-
mensions as S, from which S is obtained. Figure 3(a) displays a histogram of
the 21 items success rate of the ideal response patterns for a sample of 2000
examinees, which is generated according to equation (1). Figure 3(b) shows the
item success rates after the data is transformed by the application of slip and
guess transformations. This transformation will generally decrease the spread of
the distribution.

Figure 4(a) shows a heat map of the matrix W inferred from an ideal response
pattern of 200 simulated examinees. Skill difficulties were set at (0.17, 0.30, 0.43,
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(a) Histogram of the item success rates for
the ideal response pattern.
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(b) Histogram of the item success rates af-
ter the slip and guess factors.

Fig. 3. Histogram of item success rates

0.57, 0.70, 0.83) and examinee mean ability and standard deviation respectively
at 0 and 0.5. The discetized version of figure 4(a)’s matrix is shown in figure 4(b)
and it is identical to the underlying matrix Q in figure 2(a).

Figure 4(c) and 4(d) shows the effect of adding slip and guess parameters
of 0.2 for each. The mapping to the underlying matrix Q degrades as expected,
but remains relatively accurate.

Table 1 reports the results of the quantitative comparison between the Q
matrix and the W matrix inferred as a function of different slip and guess pa-
rameters. These results are based on 10-fold simulations. The mean of the Pear-
son correlation coeffficient (r) between Q and W is reported for the discretized
version of W obtained with the clustering algorithm described in section 5. In
addition, the error rate as computed by this formula is also provided:

Err =

∑
ij |wij − qij |

2 ·
∑

ij |qij |
(5)

Where wij and qij are respectively the (i, j) cells of the matrices W and Q. The
error rate will be 0 for a perfectly matched Q and 1 when no cells match. A
value of 0.5 indicates that half of the non-zero cells are correctly matched. For
the matrix Q, the error rate of a random assignment of the 36 skills is 69%.

The 0 slip and 0 guess condition (first line) correspond to figures 4(a) and 4(b),
whereas the corresponding 0.2–0.2 condition (line 3) correspond to figures 4(c)
and 4(d).

Up to the 0.2–0.2 slip-guess condition, the skill mapping stays relatively close
to perfect. On average, approximately only 2 or 3 skills requirements are wrongly
assigned out of the 36 skills requirements (7%) at the 0.2–0.2 condition. However,
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(a) Matrix W without slip and guess fac-
tors (r = 1).
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(b) Discretized W without slip and guess
factors (r = 1).
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(c) Matrix W with slip and guess factors
of 0.2 (r = 0.91).
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(d) Discretized W for slip and guess of 0.2
(r = 0.93). Four out of 36 skill requirements
are incorrectly mapped in this example.

Fig. 4. Visual representations of the original Q matrix and NMF inferred matrices W.
The correlation reported (r) is computed by a comparison with the theoretical (real)
matrix as explained in the text.
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Table 1. Quantitative comparison between original Q matrix and NMF inferred ma-
trices W. Results are based on means and standard deviation over 10 simulation runs.

Slip Guess r sd(r) Err sd(Err)

0.00 0.00 1.00 0.00 0.00 0.00
0.20 0.10 0.97 0.03 0.02 0.02
0.20 0.20 0.90 0.06 0.07 0.04
0.20 0.30 0.63 0.08 0.26 0.06
0.20 0.40 0.49 0.07 0.36 0.06

the error rate increases substantially at the 0.3–0.2 slip-guess condition, and at
the 0.2–0.4 condition, the quality of the match degrades considerably, with an
average of 13/36 wrong assignements (36%).

7 Conclusion

The proposed approach to infer a conjunctive Q-matrix from simulated data
with NMF is successful but, as we can expect, it degrades with the amount of
slips and guesses. If the conjunctive Q-matrix contains one or two items per
skill and the noise in the data remains below slip and guess factors of 0.2, the
approach successfully derives the Q-matrix with very few mismatches of items
to skills. However, once the data has slip and guess factors of 0.2 and 0.3, then
the performance starts to degrade rapidly.

Of course, with a slip factor of 0.2 and a guess factor 0.3, about 25% of
the values in the results become inconsistent with the Q-matrix. A substantial
degradation is therefore not surprising. But in this experiment with simulated
data, we have a number of advantages that are lost with real data: the number
of skills is known in advance, no item has more than two conjunctive skills,
skills are independent, and surely other factors will arise to make real data more
complex. Therefore, we can expect that even if real data does not have a 50% rate
of inconsistent results with the examinees’ skills mastery profile, other factors
might make the induction of the Q-matrix subject to errors of this scale.

Further studies with real and simulated data are clearly needed. For exam-
ple, we would like to know what is the mapping accuracy degradation when an
incorrect number of skills are modelled. And, naturally, a study with real data
is necessary to establish if the approach is reliable in practice.
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4. Michel C. Desmarais and Ildikó Pelczer. On the faithfulness of simulated student
performance data. In Ryan Shaun Joazeiro de Baker, Agathe Merceron, and Philip
Jr I. Pavlik, editors, 3rd International Conference on Educational Data Mining
EDM2010, pages 21–30, Pittsburgh, PA, USA, June 11–13 2010.

5. Mingyu Feng, Neil T. Heffernan, Cristina Heffernan, and Murali Mani. Using
mixed-effects modeling to analyze different grain-sized skill models in an intelligent
tutoring system. IEEE Transactions on Learning Technologies, 2:79–92, 2009.

6. Renaud Gaujoux and Cathal Seoighe. A flexible R package for nonnegative ma-
trix factorization. BMC Bioinformatics, 11(367):http://www.biomedcentral.com/
1471--2105/11/367, 2010.

7. K. R. Koedinger, J. R. Anderson, W. H. Hadley, and M. A. Mark. Intelligent
tutoring goes to school in the big city. International Journal of Artificial Intelligence
in Education, 8:30–43, 1997.

8. Daniel D. Lee and H. Sebastian Seung. Learning the parts of objects by non-
negative matrix factorization. Nature, 401(6755):788–791, October 1999.

9. K. K. Tatsuoka. Rule space: An approach for dealing with misconceptions based
on item response theory. Journal of Educational Measurement, 20:345–354, 1983.

10. K.K. Tatsuoka. Cognitive Assessment: An Introduction to the Rule Space Method.
Routledge Academic, 2009.

11. Titus Winters, Christian R. Shelton, and Tom Payne. Investigating generative
factors of score matrices. In Rosemary Luckin, Kenneth R. Koedinger, and
Jim E. Greer, editors, Artificial Intelligence in Education, Building Technology
Rich Learning Contexts That Work, Proceedings of the 13th International Con-
ference on Artificial Intelligence in Education, AIED 2007, July 9-13, 2007, Los
Angeles, California, USA, volume 158 of Frontiers in Artificial Intelligence and
Applications, pages 479–486. IOS Press, 2007.


