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ABSTRACT
This study investigates the issue of the goodness of fit of
different skills assessment models using both synthetic and
real data. Synthetic data is generated from the different
skills assessment models. The results show wide differences
of performances between the skills assessment models over
synthetic data sets. The set of relative performances for the
different models create a kind of “signature” for each specific
data. We conjecture that if this signature is unique, it is a
good indicator that the corresponding model is a good fit to
the data.

1. INTRODUCTION
There exists a large array of models to represent and as-
sess student skills. Item Response Theory (IRT) is prob-
ably the most established method. It dates back to the
1960’s and is still one of the prevailing approaches (see [1]).
But many other methods have been introduced in recent
years. Among them is the family of models that rely on slip
and guess factors [12, 11], such as the DINA (Deterministic
Input Noisy And-Gate), DINO (Deterministic Input Noisy
Or-Gate), and other variants (see [7]). Other approaches
are based on the Knowledge Space theory of Doignon and
Falmagne [10, 8], which does not directly attempt to model
underlying skills but instead rely on observable items only.
Finally, recent methods based on matrix factorization have
also emerged in the last decade [16, 15, 5, 2]. They factorize
the student per item results matrix into the linear product
of the so called Q-matrix (skills required per item) and the
skills mastery matrix.

We undertook the effort of comparing prevailing and widely
different methods to assess skills. The comparison is based
on each method’s ability to predict item/task outcome. How-
ever, in addition to providing a comprehensive comparison
of skills assessment approaches, this research also aims to de-
velop a method that uses synthetic data to characterize item
outcome data and yield insights about this data’s ground
truth structure. Beyond the obvious expectation that the

model behind the generation of synthetic data will outper-
form all others on this data set, we conjecture that the rel-
ative performance of all other methods will be unique and
can represent a kind of “performance signature” that char-
acterizes this type of data. Therefore, if a data set from
a real setting reflects that signature, it would constitute a
good indicator that the corresponding model is a good fit.

This work is an extension of [3], and is similar in its general
principles to the approach of Rosenberg-Kima and Pardos
[13], who take the likelihood of a model’s parameter space as
a signature instead of the performance of different techniques
as we do here. Their idea is that the likelihood function of
two parameters of Bayesian Knowledge tracing is a unique
characterization of a data set. If the likelihood function of
synthetic data generated with estimates of these parameters
from real data has the same “signature” as the likelihood
function of that real data, then the model is a good fit.

2. SKILLS ASSESSMENT METHODS
We compare a total of seven different skills assessment meth-
ods. We briefly describe them here and refer the reader to [7]
and [6] for details. They can be grouped into four categories:

(1) The single skill Item Response Theory (IRT) approach.
IRT is a well known framework based on logistic regres-
sion and represents student proficiency by a single skill
(although we also find multiple skills version of IRT,
MIRT).

(2) The POKS (Partial Order Knowledge Structrures) rep-
resents the order in which items are learned and uses
a Naive Bayes framework to make inferences based on
this order. It does not represent latent skills, but a Q-
matrix can be used aposteriori on the estimated item
outcome to assess skills.

(3) The matrix factorization approach decomposes the ma-
trix of m students by n items into the product of m
students by k skills representing the latent skills as-
sessment, and an k by n Q-matrix.

(4) The multi-skills family of DINA/DINO approaches are
equivalent to a binary matrix factorization framework,
where the skill outcome is a boolean product of binary
vectors, but they also contain guess and slip param-
eters. In the DINA version, the boolean product is
based on the AND operator, whereas DINO is based
on the OR operator.



Finally, as a baseline for comparison we also consider the
Expected value as the simplest model. It takes into account
the mean item difficulty and student ability to compute the
expected score of the corresponding item. The mean diffi-
culty is the average success rate of an item obtained from the
training data, while the student ability is the mean success
rate obtained from the observed data. The Expected value
is the geometric mean of the product of these two means.

3. METHODOLOGY
The performance of each method is assessed on the basis of
10-folds cross-validation, and on observing all items from a
student except the one that is to be predicted. For each fold,
each item in the set is taken as a target prediction once.

For the IRT and POKS models, the parameters of each mod-
els are trained and the testing is based on feeding the models
with all but one question. A probability of mastery is ob-
tained and rounded, resulting in a 0/1 error loss function.
We report the mean accuracy as the performance measure.
The R package ltm is used for parameter and skills estima-
tion.

For the other models, they rely on a Q-matrix to estimate
the remaining item outcome. For the linear conjunctive and
compensatory models, the Q-matrix needs to be normalized
such that if all skills for an item are mastered, the inner
product of the skills mastered vector and the skills required
will be 1. Here too, results are rounded for obtaining a 0/1
loss function. Normalization of the Q-matrix is not neces-
sary for the DINA and DINO models.

4. DATA SETS AND SYNTHETIC DATA
GENERATION

The performance of the methods is assessed over a total of
14 data sets, 7 of which are synthetic, and 7 are real data.
They are listed in table 1), along with the number of skills
of their Q-matrix, their number of items, the number of the
student respondents, and the average score. Table 1 also
reports the Q-matrix used. To make these data sets more
comparable to their real counter part we used Q-matrices
and other parameters from real data sets to generate syn-
thetic datasets.

Of the 7 real data sets, only three are independent. The
other 4 are variations of a well known data set in fraction
Algebra from Tatsuoka’s work [14]. The real data sets were
obtained from different sources and are freely available from
the CDM and NPCD R packages. The Q-matrices of the
real data sets were made by experts.

The synthetic data sets are generated from their underlying
respective skills assessment model.

For POKS, the structure was obtained from the Fraction
data set and the conditional probabilities were generated
stochastically, but in accordance with the semantic con-
straints of these structures and to obtain an average success
rate of 0.5.

For IRT, the student ability distributions was obtained from
the Fraction data set, and the item difficulty was set to

Data set
Number of Mean

Score

Q
-m

a
tr

ix

Skills Items Students

Synthetic

1. Random 7 30 700 0.75 Q01

2. POKS 7 20 500 0.50 Q02

3. IRT-Rasch 5 20 600 0.44 Q04

4. DINA 7 28 500 0.31 Q5

5. DINO 7 28 500 0.69 Q6

6. Linear Conj. 8 20 500 0.24 Q1

7. Linear Comp. 8 20 500 0.57 Q1

Real

8. Fraction 8 20 536 0.53 Q1

9. Vomlel 6 20 149 0.61 Q4

10. ECPE 3 28 2922 0.71 Q3

Fraction subsets and variants of Q1

11. 1 5 15 536 0.53 Q10

12. 2/1 3 11 536 0.51 Q11

13. 2/2 5 11 536 0.51 Q12

14. 2/3 3 11 536 0.51 Q13

Table 1: Datasets

reasonable values: averaging to 1 and following a Poisson
distribution that kept most values between 0.5 and 21.

The matrix factorization synthetic data sets of DINO and
DINA were generated by taking a Q-matrix of 7 skills that
contains all possible combinations of 1 and 2 skills, which
gives a total of 28 combinations and therefore the same num-
ber of items. Random binary skills matrix were generated
and the same process was used for both the DINO and DINA
data sets. Item outcome is then generated with a slip and
guess factor of 0.1.

A similar process was followed to generate the Q-matrices
and the skills matrices S of the linear matrix factorization
data sets

Note that the first 3 models do not rely on any Q-matrix for
the data generation process, but the DINO/DINA and ma-
trix factorization assessment methods still require one. To
define these Q-matrices (denoted Q0x in table 1, a wrapper
method was used to first determine the number of skills ac-
cording to [4], then a Q-matrix was derived with the ALS
method (see [9]).

All data sets are considered static in the sense that they
represent a snapshot of student test performance data. This
corresponds to the assumption that the student has not mas-
tered new skills during the process of assessment, as we
would expect from data from learning environments. This
assumption is common to all models considered for this
study.

1Done by generating random numbers from a Poisson dis-
tribution with lambda parameter set to 10 and dividing by
10.
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Figure 1: Item outcome prediction accuracy results. Each plot reports the prediction accuracy of the different techniques,
whereas each bar shows the percentage difference in accuracy from the Expected value baseline (square root of item × student
average success rates).

5. RESULTS AND DISCUSSION
Figure 1 shows the difference between the performance of
each technique and the Expected value accuracy as com-
puted by the geometric mean: square root of item × student
average success rates. An error bar of 1 standard deviation
is reported and computed over the 10 random sampling sim-
ulation runs and provides an idea of the variability of the
results. Also reported is the performance of random data
with a 0.75 average success rate.

As expected, when the generative model behind the syn-
thetic data set is the same as the skills assessment technique,
the corresponding technique’s performance is generally the
best. Exceptions are found for the linear conjunctive case,
where the corresponding technique performance comes sec-
ond. For real data, the performance of many techniques is
often lower than the Expected value baseline. This is likely
due to the fact that all but one item is observed, the target,
and therefore the Expected value is a reliable predictor.

The most consistent performance across the synthetic data
sets are those of POKS and IRT, with POKS showing a
greater accuracy on average. This consistency also transfers
to the real data sets, although the differences are smaller and
the Expected value method performance is sometimes better
than the IRT one. But as mentioned the good performance
of the Expected value may well depend on the relatively high
number of observations for each data sets (1 less than the
total number of questions per data set).

Also worth noticing is that the random data set has a flat
performance across techniques which corresponds to the dom-
inant class prediction. This is not necessarily surprising, but
it is reassuring in a sense to know that they all perform the

same in the face of random data and this performance is
indeed the best that could be obtained.

For the independent real data sets, the differences between
techniques are less divergent and closer to the Expected
value technique, although the best performers are still sig-
nificantly better than the Expected value for the Fraction
(POKS and DINA) and Vomlel (POKS) data sets. However,
for the ECPE data set, the pattern corresponds closely to
that of random data: The Expected value performance is
close to the dominant class performance, and all techniques
are aligned towards this performance. One possibility is that
all student perform more or less the same and therefore no
technique is good at discriminating high/low performers.

The results from the subsets of the Fraction data shows that
the pattern of the Fraction performance data set repeats
over Fraction-1, Fraction-2/1 and Fraction-2/2, in spite of
the different number of skills and different subsets of ques-
tions. However, it differs substantially from Fraction-2/3
for the NMF conjunctive performance which reaches that of
the NMF compensatory one. This is readily explained by
the fact that the Q-matrix of this data set has the property
of assigning a single skill to each item, in which case the two
matrix factorization techniques become equivalent.

As mentioned, the performance of the Expected value tech-
nique is high for real data, and systematically close to the
best performers, POKS and DINA, which only have 2–4%
better performance than the Expected value. Note that this
is still substantial because we have to look at this difference
relative to the remaining error (about 20%), but it is far
less than for the synthetic data sets, especially on a relative
difference basis.



6. CONCLUSION
This study relies on the assumption that better skills mod-
els result in better item outcome prediction. The results do
show wide differences in the performance of the techniques
for different synthetic data sets. For real data sets, the dif-
ferences are smaller, though still significant, especially in
terms of relative residual errors. Based on the results, we
could conclude that POKS and DINA would provide more
accurate estimates of skills.

Let us return to the comparison of real vs. synthetic data and
to the conjecture that this comparison can help determine
whether a specific skill model corresponds to the ground
truth of some data set. This is a complex question but some
clear hints are given in the results. There is a clear evidence
in the DINA vs. DINO performance of figure 1 data that, if
a Q-matrix is conjunctive vs. disjunctive, the results show
a much better the fit to the corresponding model. Evidence
is also some evidence to the claim that unidimensional data
sets, i.e. a domain for which a single skill best characterizes
the performance data, are best modelled by the IRT single
skill IRT or the skill-less POKS models, and the multi-skills
NMF conjunctive and DINA approaches do rather poorly.
Conversely, multiple skills data sets of the DINO/DINA and
linear family of models are better characterized by multi-
skills approaches, and the IRT single skill performance is
much lower in relative terms.

Another interesting finding is that random data does have
a signature of its own: all methods converge towards the
score of the majority class. Now, this result could stem
from a set of highly similar response patterns from students,
but it is clearly different from, for example, the Fraction-
2/3 data set, for which all methods have relatively similar
performance but they are all well above the majority class
condition (AVG Success rate).

Therefore, we do conclude that there is evidence to support
the claim that the relative performance of the different skills
modelling approaches do create signatures over data sets and
can yield some evidence about the ground truth. And if we
accept this perspective, then we can also conclude that the
real data sets we studied do not correspond to any of the
prototypical synthetic data sets. The ground truth may in-
volve correlations between skills, which we did not take into
account. Or, the Q-matrices we have studied are not faithful
to the reality and, for example, may involve combinations
of conjunctive and disjunctive skills. In fact, many expla-
nations can be evoked, but the hope is that by looking at
the relative performances of each method we can gain some
insights of the best explanations.
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