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ABSTRACT
Identifying the skills that determine the success or failure
to exercises and question items is a difficult task. Multiple
skills may be involved at various degree of importance. Skills
may overlap and correlate. Slip and guess factors affect item
outcome and depend on the profile of the student’s skill mas-
tery and on item characteristics. In an effort towards the
goal of finding the skills behind a set of items, we inves-
tigate two techniques to determine the number of salient
latent skills. The Singular Value Decomposition (SVD) is a
known technique to find latent factors. The singular values
represent direct evidence of the strength of latent factors.
Application of SVD to finding the number of latent skills
is explored. A second technique is based on a wrapper ap-
proach. Linear models with different number of skills are
built, and the one that yields the best prediction accuracy
through cross validation is considered the most appropri-
ate. The results show that both techniques are effective
in identifying the latent factors of simulated data. Finally,
an investigation with real data is reported. Both the SVD
and wrapper methods yield results that have no simple in-
terpretation, but one interpretation is consistent across the
two methods, albeit not well aligned with the assessment of
experts.

1. INTRODUCTION
A critical component of student models is the skills mastery
profile. Tailorization of the learning content relies heavily
on this component in many, if not most intelligent tutoring
systems. The more precise the skills mastery profile is, the
more appropriate this tailorization process will be.

However, finding the latent skills behind exercises or ques-
tions items is non trivial because of a number of reasons.

One reason is that multiple skills may be involved at various
degree of importance with regards to a single item. This is
in fact typical of most items. For example solving a simple
fraction algebra problem may require knowledge of a few
algebra rules, each rule representing a specific skill. More
general skills such as vocabulary and grammar rules may be
involved in language related task. Etc.

Another difficulty is that skills may overlap and and they
will therefore correlate. Highly correlated skills result in
similar response patterns to a set of items, except for a few
items that can specifically discriminate two correlated skills.

Finally, the nature of the items and the difficulty of mas-

tering some skills will result in slip and guesses. Those will
be reflected as noise that will make the identification of the
latent skills more difficult in general.

Most of the time, the latent skills behind question items are
defined by experts and models such as Knowledge Tracing
[2], Constraint-based Modeling [6], or Performance Factor
Analysis [7], are well known examples. Some studies have
looked at means to help this process. Suraweera et al. have
used an ontology-based approach to facilitate the item to
skill mapping and the more general task of building the do-
main model [8].

Others have studied the mapping of items to skills with data
driven algorithms with some success [1; 3; 10]. Their results
show that mappings can be successfully derived in certain
conditions of low noise (slip and guess) relative to the latent
factors. However, these studies assume that the number of
skills are known in advance, which is rarely the case. Al-
though some of the the latent skills may be relatively obvi-
ous, that only sets a minimum number. It does not preclude
that other skills may come into play and have a strong effect
also.

Of course, we do not need to identify all the skills behind
an item in order to use the item outcome for assessment
purpose. As long as we can establish a minimally strong tie
from an item to a skill, this is a sufficient condition to use
the item in the assessment of that skill. But knowledge that
there is a fixed number of determinant factors to predict
item outcome is a useful information.

This study aims at identifying this number. It aims at find-
ing means to estimate how many latent factors are influ-
encial enough to determine the item success. We explore
two techniques towards this end: Singular Value Decompo-
sition (SVD) and a wrapper selection feature based on Non-
negative Matrix Factorization (NMF). We describe these
techniques in more details and report the results of our
experiments to validate their effectiveness to estimate the
number of latent skills. The description of SVD and wrap-
per methods below, and the description of the method to
generate the simulated data, leave out some details for the
sake of brevity and clarity, but the reader is referred to the
following URL to consult the scripts used to run the exper-
iments of this study: http://www.professeurs.polymtl.

ca/michel.desmarais/Papers/EDM2012/scripts.html.



2. SVD-BASED METHOD
Singular Value Decomposition (SVD) is a well known matrix
factorization technique that decomposes any matrix, A, into
three sub-matrices:

A = UDVT (1)

where U and V are orthonormal matrices and their column
vectors respectively represent the eigenvectors of AAT and
ATA. D is a diagonal matrix that contains the singular
values. They are the square root of the eigenvalues of the
eigenvectors and are sorted in a descending order.

Because the singular values represent scaling factors of the
unit eigenvectors in equation (1), they are particularly use-
ful in finding latent factors that are dominant in the data.
This is demonstrated with simulated data below. First we
describe the simulated data and the results of applying SVD
on the students item outcome results matrix R.

2.1 Simulated data
This data is generated by defining a Q-matrix of 21 items
that combine 6 skills. The 21 items are represented as
columns in figure 1. They span the space of all pairwise
combinations of skills (first 15 columns) plus 6 single skill
items (last 6 columns).

Items

S
k
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1 111110000000000100000
2 100001111000000010000
3 010001000111000001000
4 001000100100110000100
5 000100010010101000010
6 000010001001011000001

Figure 1: Q-matrix of 21 items that span all combinations
of 6 skills for pairs of skills and single skills

Figure 1’s Q-matrix is used to generate simulated data and
we assume a conjunctive model (all skills are necessary to
succeed the item). The data contains the 21 question items
and 200 simulated student responses over these items. The
six skills are assigned an increasing degree of difficulty from
0.17 to 0.83 on a standard normal (Gaussian) scale, and each
student is assigned a skill vector based on a {0,1} sampling
with a probability corresponding to this difficulty (or eas-
iness in fact, since higher values bring greater chances of
skill mastery). The choice of these difficulty values stems
from the need to have a mean student success score around
50%–60%: because 15 of the 21 items require the conjunc-
tion of two skills, mean skill mastery must be substantially
higher than 50% to obtain average results around around
50%–60%.

Once a skills mastery profile is assigned to students, repre-
sented by a matrix S, an ideal response matrix is generated
according to the product ¬R = Q¬S, where Q is a con-
junctive Q-matrix (more details about this model are given
later, see equation (3) below). Then, slip and guess fac-
tors are used to generate noise in the ideal response pattern
by randomly changing a proportion of the item success and
failures outcomes according respectively to slip and guess
values. The slip and guess values of respectively 0.1 and 0.2
will result in 15% of the item outcomes being inconsistent
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Figure 2: Singular values of simulated data for a 21 items
test. Unit standard error for a 10-fold simulations is drawn
for the guess=0.2, slip=0.1 condition. A vertical dotted line
is drawn at singular value 6 which corresponds to the un-
derlying latent skill factors.

with the ideal response matrix, in other words, 15% of noise,
with more noise in the expected success to items than the
expected failures according to the skills profiles.

2.2 Results
The results of the SVD method are shown in figure 2. Recall
that the singular values of the SVD decomposition indicate
the strength of latent factors. When no latent factors exists
or are left, the decrease of the ordered singular values reflects
the fitting of the factorization to noise.

Three conditions are reported in figure 2. The values at 1 on
the x scale are truncated on the graph to allow a better view
of the interesting region of the graph, but the highest value
is from the guess and slip set to 0 (red line) and the lowest
is for the random condition. The random curve condition
can be obtained by simulating random {0, 1} values and en-
suring that the overall average score of the results matrix
reflects the original’s data average. In this random condi-
tion, the slope from singular value 2 to 21 remains relatively
constant, suggesting no specific number of skills. In condi-
tion of guess and slip factors set to 0, a sharp drop occurs
between singular values of 6 and 7. Then the slope remains
relatively constant from values 8 to 21. The largest drop
is clearly at value 6 which corresponds to the underlying
number of skills. In the third condition, where noise from
slip and guess factors are simulated (guess=0.2, slip=0.1),
the largest drop still remains visible between 6 and 7, but
not as sharp as for the noiseless condition as expected. This
condition is closer to what we could expect with real data
and the standard deviation is shown, but it is hardly visible
because the variance of the curve is very low even across
different simulated data sets.



An important observation is that the random curve condi-
tion in figure 2 meets the other two curves at the 6 skills line.
This is probably no coincidence, but unfortunately we have
no theoretical explanation at this point for this phenomena,
but we do take note that it seems to provide further evidence
of the number of skills.

We can conclude from the relatively visible change of slope
in the singular values before and after 6 that this constitute
a reliable means of identifying the number of skills. This
is also supported by the fact that the standard deviation of
the curves is very small.

3. WRAPPER-BASED METHOD
A second method to determine the number of salient skills
behind items is based on a wrapper approach. In statistical
learning, the wrapper approach refers to a general method
to select the most effective set of variables by measuring
the predictive performance of a model with each variables
set (see [5]). In our context, we assess the predictive per-
formance of linear models embedding different number of
latent skills. The model that yields the best predictive per-
formance is deemed to reflect the optimal number of skills.

3.1 A Linear Model of Skills Assessment
The wrapper method requires a model that will predict item
outcome. A linear model of skills is defined for that purpose
on the basis of the following product of matrices:

R = QS (2)

where the R matrix contains observable student results with
item rows and student columns, and the S matrix is the
skills (rows) per students (columns) mastery profile (see for
eg. [3]). Matrix Q is the Q-matrix that maps items (rows)
to skills (columns). Normalizing row sums of Q to 1 would
yield values of 1 in the results matrix, R, if all skills nec-
essary to succeed an item is mastered by the corresponding
individual. Equation (1) represents a compensatory inter-
pretation of skills modeling.

A conjunctive model can be defined according to the follow-
ing equation [1; 3] :

¬R = Q¬S (3)

where the operator ¬ is the Boolean negation, which is de-
fined as a function that maps a value of 0 to 1 and any other
value to 0. This equation will yield values of 0 in R when-
ever an examinee is missing one or more skills for a given
item, and yield 1 whenever all necessary skills are mastered
by an examinee. Alternatively, we could rely on equation (2)
and state that any values other than 1 in R is considered
a 0 given normalization for R as stated above.

3.2 Overview of the method
To estimate the optimal number of skills, the wrapper model
can either correspond to equation (2) or (3). We will focus
our explanations around equation (2), but they obviously
apply to (3) if R and S are negated.

This model states that, given estimates of Q and S, we can
predict R. We refer to these estimates as Q̂ and Ŝ, and to
the predictions as R̂ = Q̂Ŝ. The goal is therefore to derive
estimates of Q̂ and Ŝ with different number of skills and
measure the residual difference between R̂ and R.

First, Q̂ is learned from an independent set of training data.
Then, Ŝ is learned from the test data, and the residuals are
computed1.

An estimate of Q̂ is obtained through Non-negative Matrix
Factorization (NMF). Details on applying this technique to
the problem of deriving a Q-matrix from data is found in
[3] and we limit our description to the basic principles and
issues here.

NMF decomposes a matrix into two matrices composed solely
of positive values. Its structure is equivalent to equation (2).
The technique requires to choose a rank for the decompo-
sition, which corresponds in our situation to the number of
skills (i.e. number of columns of Q and number of rows of
S). Because NMF constrains Q and S to positive values,
the interpretation as a Q-matrix and a student skills assess-
ment is much more natural than other matrix factorization
techniques such as Principal Component Analysis, for ex-
ample. However, many solutions exists to this factorization
and there are many algorithms that can further constrain
solutions, namely to force sparse matrices. Our experiment
relies on the R package named NMF and the Brunet algo-
rithm [4].

Once Q̂ is obtained, then the values of Ŝ can be computed
through linear regression. Starting with the overdetermined
system of linear equations:

R = Q̂Ŝ (4)

which has the same form as the more familiar y = Xβ (ex-
cept that y and β are generally vectors instead of matrices),
it follows that the linear least squares estimate is given by:

Ŝ = (Q̂T Q̂)−1Q̂TR (5)

Equation (5) represents a linear regression solution which

minimizes the residual errors (||R− Q̂Ŝ||2).

3.3 Prediction Accuracy and the Number of
Skills

We would expect the model with the correct number of skills
to perform the best, and models with fewer skills to under-
perform because they lack the correct number of latent skills
to reflect the response patterns. Models with greater num-
ber of skills than required should match the performance of
the correct number model, since they have more represen-
tative power than needed, but they run higher risk of over
fitting the data and could therefore potentially show lower
accuracy in a cross-validation. However, the skills matrix Ŝ
obtained through equation (5) on the test data could also
result in over fitting that will increase accuracy this time.
We return to this issue in the discussion.

1Note that computing Ŝ from the test data raises the issue
of over fitting, which would keep the accuracy growing with
the number of skills regardless of the “real” number of skills.
However, this issue is mitigated by using independent learn-
ing data for Q̂, without which, we empirically observed, the
results would deceive us: in our experiments using both Ŝ
and Q̂ from NMF, increasing the rank of the factorization
(number of skills) increases prediction accuracy even after
we reach beyond the “real” number of skills. This can rea-
sonably be attributed to over fitting. Although we did not
investigate further this hypothesis, the empirical observa-
tion convinced us that relying on the estimates of both Q̂
and Ŝ from NMF is not the most reliable method.
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Figure 3: Precision of student results predictions from esti-
mated skill matrix (equation (5)). Error bars are the stan-
dard deviation of the accuracy curves. Experiment is done
with simulated data with 6 skills and slip and guess values
of 0.1 and 0.2 respectively.

We use the same simulated data as described for the SVD
method in section 2.1, where six skills are used to gener-
ate data according to the Q-matrix of figure 1. For this
experiment, we only report the condition of guess=0.2 and
slip=0.1.

Figure 3 shows the percentage of correct predictions of the
models as a function of the number of skills. Given that
predictions are {0, 1}, the percentage can be computed as

||R− Q̂Ŝ||/mn, where m and n are the number of rows and
columns of R.

The results confirm the conjectures above: the predictive
accuracy increases until the underlying number of skills is
reached, and it almost stabilizes thereafter. Over fitting of Ŝ
with the test data apparently is not substantial, but a small
increase in performance is visible after the critical number
of skills is reached and it suggests that there is some over
fitting effect.

It is interesting to note that the accuracy increments of fig-
ure 3 are relatively constant between each skill up to 6. This
is also what we would expect since every skill in the under-
lying Q-matrix has an equivalent weight to all others. We
expect that differences in increments indicate differences in
the weights of the skills. This could either stem from the
structure of the Q-matrix (for eg., more items can depend
on one skill than on another), or on the criticality of the
skill over its item outcome.

4. APPLICATION OF THE METHODS ON
REAL DATA FROM FRACTION ALGE-
BRA

Simulated data reveals that both the SVD and wrapper
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1 CL 1 1 1
2 CMI 1 1 1 1 1
3 CIM 1 1
4 CD 1 1 1 1 1
5 MT 1 1 1
6 AD 1 1 1
7 SB 1 1

Figure 4: Q-matrix of Fraction Algebra data composed of
7 skills and 17 items. Item numbers refer to the original
data items.

methods provide effective means to identify the number of
latent skills. Are these means as effective in identifying skills
with real data? This can depend on a number of factors.
One factor is the degree to which a skill is determinant to
the success of an item. General high level skills can only add
to the chances of success, they are not decisive. More spe-
cific skills can be decisive, but there may be alternative skills
that also account for an item success (eg. a different method
of solving a problem). Finally, noise from slips and guesses
will undermine the ability of any method that attempts to
identify the number of latent skills.

Therefore, an answer to the above question, i.e. whether we
can identify the number of latent skills, is only valid within
a given context, where the factors mentioned above take on
a particular combination. So any conclusion will have to
take into account this limitation in its generalization.

We investigate the question with data from Vomlel [9] on
fraction algebra problems. This data set is composed of
20 question items and answers from 148 students. A Bayesian
Network linking items to skills was defined by experts for
the 20 items. It can readily be translated into the Q-matrix
shown in figure 4.

This Q-matrix is a subset of the whole Q-matrix from the
Bayesian Network in Vomlel’s study. It was chosen based
on four fundamental skills of fraction algebra :

1 CL: cancelling out
2 CIM: conversion to mixed numbers
3 CMI: conversion to proper fractions
4 CD: finding common denominator

A total of 15 items are involved those skills. Because some
items involved other skills, 3 more skills are added through
conjunction, for a total of 7 skills:

5 AD: addition
6 SB: subtraction
7 MT: multiplication

And 2 more items involving these added skills are also added,
for a total of 17 items. Six out of the 17 items involve a
conjunction of 2 skills, whereas all other items are single
skill.

The SVD and wrapper methods are applied to the data in
an attempt to derive the number of underlying skills. For
the SVD method, the factorization is conducted on the full
data set since this method does not rely on a cross validation
process. For the wrapper method, the data is split in half for
training, half for testing. Both approachs follow the same
methodology described in sections 2 and 3.
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Figure 5: SVD results over fraction algebra data. The ran-
dom and real curve at skill 1 are not shown but they are
respectively 30 and 35.

4.1 SVD method
Results of applying the SVD method to the fraction algebra
data is reported in figure 4. Apart from the usual steep slope
from singular value 1 to 2, there is no clear indication of the
number of skills in this figure when we look at a change of
slope as we had with the simulated data experiment. How-
ever, the random and real curves meet at singular value 2,
which, according to the results from simulated data, would
suggest that the number of latent skills is 2. However, this
not consistent with the expert Q-matrix. It is also counter
intuitive since we would expect that more than two skills in
fraction algebra problems would cover the skills described
above.

We could also conclude that there is a continuum of skills,
and/or that the data is too noisy to show any effect of skills.

Let us turn to the wrapper method before speculating any
further on these unexpected results.

4.2 Wrapper method
For the wrapper method, the data set is divided into two
random samples of half the size of the original 148 students.
One half is used for deriving the Q-matrix and the other in
deriving the skills matrix, Ŝ, and measuring the accuracy
of the predictions. This procedure is the same as for the
simulated data. As we explain below, a large number of
folds (50) have to be performed in order to obtain stable
results.

Figure 6 reports the results of the wrapper method. These
results are actually coherent with the SVD method results.
We observe a sharp drop after skill 2, which suggests that a
peak was reached at that point2. In that respect, it confirms
the 2-skill findings of the SVD method.

2The implementation of the method does not allow a com-
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Figure 6: Wrapper method applied to the fraction algebra
data set. The error bars represent the standard deviation of
50 folds results.

However, we also observe a steady increase of accuracy start-
ing from skill 3. Should that lead us to believe there are more
skills? And how many? An answer to this would be highly
speculative as the method can lead to increases or decreases
of accuracy over the “real” number of latent skills due to
over fitting. Indeed, over fitting in the NMF Q-matrix in-
duction (Q̂) will lead to a decrease of accuracy with the test
data, whereas over fitting of the estimate of the skills from
the test data (Ŝ in equation (5)) will lead to an increase of
accuracy. In simulated data, the sample size was apparently
large enough to shield the results from the over fitting issue,
but the smaller sample size of the real data may raise this
issue.

5. DISCUSSION
Both the SVD and the wrapper methods provide strong cues
of the number of underlying skills with simulated student
test data. The wrapper approach with the NMF technique
has the advantage of also providing the Q-matrix mapping
of items to skills. Moreover, the percent correct predictions
provides a measure of the model’s effectiveness, and by the
same token, a measure of the reliability of the Q-matrix.

However, for a real data set, both methods yield results that
are somewhat consistent among themselves, but counter in-
tuitive. Instead of the 7 skills that were identified by experts
over the 17 items set, the SVD method suggests only 2 skills
if we rely on the intersection with the random data curve,
and no clear number if we look for a change of slope after
skill 2. The wrapper method shows data that is also con-
sistent with 2 skills to the extent that a drop of accuracy is

putation of the accuracy for a single skill, but we can reason-
ably assume that a single skill model would perform worst
than a 2-skills model.



observed at 3 skills, but a rise of accuracy from skill 3 on
makes any interpretation difficult.

The results from the simulated data are a reminder the
virtue of using such data to validate the theoretical foun-
dations of methods and models, but the results of the real
data are a painful reminder of the difficulty of using the
theory in practice!

With the real data and the results obtained, it is difficult to
say if the experts have tagged skills to items that in prac-
tice are not the real determinants of success, or if the two
methods are confronted with limits that stem from noise or
over fitting.

It could be that the skills are correct. After all, this is
how fraction algebra is taught. But it could also be that
children learn some skills together, thereby rendering them
indiscernible, or they also learn other skills that are not
aligned with how fraction algebra is taught, or both. But
on the other hand, the interpretation of the SVD singular
values is known to be speculative, and the wrapper approach
is prone to over fitting issues that can lead to unpredictable
patterns of results.

Nevertheless, this study suggests that when skills are salient,
they would be identified by the two methods. And failure to
identify a specific number of skills either indicate that the
data is noisy, with high slip and guess factors, or that there
is a continuum of skills that contribute to the items success
with no obvious decisive skill that determine success.

And, obviously, the study calls for more investigations. As
mentioned above, the findings from one set of data from the
real world may be highly different from another, and more
studies should be conducted to assess the generality of the
findings. Other investigations are called for to find ways to
improve these methods and to better understand their limits
when faced with real data. In particular, we need to know
at which level of noise from guess and slip factors do the
methods break down, and what is the ratio of latent skills
to data set size that is critical to avoid over fitting of the
wrapper method.

One improvement that can be brought is to use a cross val-
idation to derive the skills matrix. This would require the
use of two sets of items, one for testing and one for assess-
ing the student’s skills. This comes at the cost of a greater
number of items, but it avoids the problem of over fitting
that leads to accuracy increases.
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