3.5 Discretization of Analog Controllers

So far, we have mainly discussed the step-invariant discretization, which, given
a sampler and hold device, produces from a continuous-time plant G and
discrete-time system Gg = SGH. For linear systems, we have discussed the
effect of this transformation in the frequency domain by establishing the rela-
tionship between the transfer functions of the G and G4, including the potential
creation of undesired frequency components by aliasing and the introduction
of a perturbation term due to the hold device. We have also derived exact
state-space recurrence equations for Gy.

The discrete-time G4 captures the behavior of G at the sampling times. One
of the most common ways of designing digital controllers is then to perform
the design in discrete-time directly using G4, provided we somehow verify that
nothing bad happens for the resulting closed-loop system between the sampling
times. For example, we can design a discrete-time controller Ky that optimizes
a discrete-time performance criterion for the discrete-time closed-loop system
composed of G4 and K, see Chapter 6. Note that optimizing a discrete-time
performance criterion does not guarantee that the continuous-time behavior is
satisfying in general however, see Example 6.2.1.

Continuing with our discussion of system discretization however, there are
many situations where we have an analog controller design available, and we
simply would like to obtain a digital implementation of it. This situation can
result for example from the following facts

e for various reasons we prefer designing controller in continuous-time: e.g.
because frequency domain reasoning is easier than for DT systems (PID
controller design is usually discussed only in continuous-time), we do
not have to worry about the choice of the sampling period at this stage
(changing the sampling period changes the transfer function of the DT
system) or about neglecting intersample behavior, and some calculations
can be easier (.e.g. the CT Riccati equations are easier to handle).

e an analog controller was inherited from a previous system implementa-
tion, and we do not wish to redesign it (e.g. due to the cost of retesting
and recertifying).

Assume therefore that a CT controller K is available, and we would like to
derive from it a DT controller K, operating with the sampling period h. One
way of doing this is to use again the step-invariant transformation and let
K4 = SKH. Note however that here the operators S and H do not correspond
to actual physical devices, they are just a mathematical representation of the
discretization process. There is still however the physical barrier to the syn-
chronicity assumption of these operators, coming from the computation time
requirements of the processor. We continue to neglect this issue for now, but
in general the mathematical H device at the input of K, operates at the same
instants as the physical S device it is connected to, and similarly at the output
of K. Starting then from a state-space representation of K, we obtain then an
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Figure 3.6: Step-Invariant Transformation for the Discretization of a
Continuous-Time Controller Design. The blocks S and H that are directly
connected operate at the same sampling times. The blocks S and H external
to K4 correspond to physical devices, where the blocks S and H within Ky are
mathematical operations producing K; = SKH.

implementation of K  in terms of difference equations as discussed in Section
3.4 (assuming K is linear).

For the plant, the discretization is dictated by the choice of sampling and
hold device, and the use of the step-invariant transformation is results essen-
tially as a consequence of these technological choices. On the controller side
however, there is no such restriction and the step-invariant transformation is
only one possible way of obtaining K; from the continuous-time system K.

Bilinear Transformation

Another particularly common way of discretizing an analog controller is the
bilinear transformation (also called Tustin’s method). It is based on the trape-
zoidal approximation of integrals. Namely consider an integrator, i.e. a block

with transfer function 1/s, with input u and output y, over a sampling period

(k+1)h

y((k +1)h) = y(kh) + /k e

We approximate this formula by

y((k+ 1)h) = y(kh) + g[u((k + 1)h) + u(kh)].
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The transfer function of this recurrence is
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This motivates the bilinear transformation
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Using this change of variable, we can map a continuous-time transfer matrix
G(s) to a discrete-time transfer matrix Gpe (M), i.e.
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In terms of state-space models, we can derive that starting with G(s) =
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provided 2/h is not an eigenvalue of A. The mapping from s to A is

11— hs/2
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which maps the right half-plane into the unit disk.

Bilinear Transformation with Prewarping
Non-causal Reconstruction via Shannon’s Theorem

Classical Software Implementation of a Digital Controller
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