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I Project: vfischeri_v1 1

=

luxR_mRna_1_0_ .ch

e

vfischeri_vi.cn

extern real jawa.lang.Math.powireal,real); extern real java.leng.Math.powireal real):

@ Cagents
¢ IjADLmnleculej707mternal7Agent agent viischeri wif) agent luxR mRna 1 0 Agent(real CRP_molecule 1 0 )
Lo top mode — It
M {
@ Oreads 3 RN :
&gwrites | private analog real i_molecule_1_n_external_ ; vrite analog real ludk ufna 10
e | private analog real LuxI protein 1 0 read analog real fo_wolecule 10 :
analog vars private analog real Luxk_protein 1 0 ; it | Lo ufna 10__ = 0.0 3

© [ LuxA_protein_1_0__Agent
@ 3 luR_mRna_1_0__ Agent

private analog real LuxR protein 1 0 ; node top = luxR mRna 1 0 Mode (CRP _molecule 1 0 );

private analog real Co molecule 1 0_

H

& o mode private analog real Ai_molecule_l_0_internal_ ; mode luxR_mRna_1 0 Mode(real CRP_molecule 10_)
& [Jreads private analog real luxE_wPna 1 0 : 4
@ [T vrites o = Thrm write analog real luxP_wFna 1 _0_ ;

private analog real luxICDABEG uFna 1 0_ :
agent A0 = Ai_molecule 1 0_external  Agenti};
agent LuxI protein 1 0 hgent():

agent Luxk_protein 1 0_ Agenti);

agent LuxR_protein 1 Agenti):

agent

Co_molecule 1 0_ Agenti):
agent A5 = Ai_molecule 1 0_internal_ Agenti};
agent A6 = luxR wRna 1 0 Agent(0.0):
agent A7 = LuxICDABEG wPna 1 0_ Agent{0.0);

read analog real Co_molecule_l 0

mode MO_0 = luxR wPna 1 O ModeO_0[ CRP molecule 1 0, 0.0 ):
mode MO_1 = luxR_uRna_l 0 ModeO_1{ CRF_molecule 1 0_, 0.0 };
node M1 0 luxR mRna 1 0 Model O( CRP molecule 1 0, 1.0 );
mode M1_1 = luxP_uRna 1 0 Model 1{ CRP_molecule 1 0_, 0.5 };
trans from default to MO_D

when ( CRP_molecule 1 0 <= 1.0 && Co_molecule 1 0 <= 1.0 )
do {}

trans from default to MO_1

when { CRP_melecule_l 0_ <= 1.0 s Co_molecule 1 0_ > 1.0 )

@ [ analog vars
@ [ parameters
| IuxICDABEG_mRna_1_0___Agent
© [T Lux_protein_1_0___agent
® [ Ca_molecula_1_0___Agent
© [ LuxR_protein_1_0___Agent
@[] viischeri_vi
@ [ Ai_molecule_1_0_external__Agent
© [ modes

Ai_molecule_1_0_internal_.cn

extern real java.lany.Math.pow(real,real):

agent Ai molecule 1 0 internal Agent()

¢
write analog real ii_molecule_l 0 internal_ ;
read analog real LuxI protein 1 0
read analog real LuxR_protein 1 0
read analog real Co_molecule 1 0 7
read analog real Ai_molecule l 0_external_ ;
init { Ai_molecule_l_O_internal_ = 0.0 ; }
mode top = A1 molecule 1 0 internal Modei):

mode Ai_molecule_l_0_internal_ Mode()

write analog real &i_molecule_l 0 internal_ ;
read analog real LuxI protein 1 0 7
read analog real LuxF_protein 1 0_ :
read analog real Co_molecule_l 0
read analog real Al molecule 1 0 external
diff { d{Aai_wolecule_l_0_internal_)

0.1%0. 1*LuxI_protein_1_0_ -1%(Ai_molecule_l_0_internal_*0.01 - (Ai_molecule_l_O_external )*D.01]-
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& Edit Reaction Dialog EI

Reaction type: | Translation j Direction: Im
Status: |Enter data ani Transformation
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Transcriptinn
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Froduct connectar: (A -

Tabular form [] Use same tabular functions
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Status: |Enter data and hit Ok button when done.

0K Cancel
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A zoo of hybrid systems

Hybrid Automata

Hybrid Input-Output Automata
Hybrid Petri Nets
Simulink/Stateflow MATLAB models

Supervisory control systems
Switched systems

Nonsmooth systems

Piece-wise affine systems (PWA)
Mixed Logical Dynamical

Linear Complementarity models




Supervisory Control Systems

Qu pe 1‘1.-"15431%‘?

[ controller 1 — u

é u,{ process }‘ ]

i L controller n —e




Switched Control Systems

parameterized family of vector fields = f,: " — " PER

switching signal = piecewise constant signal ¢ : [0,00) — @ parameter set

S = set of admissible pairs (6. x) with ¢ a switching signal and x a signal in 2"
Eg.8 = {(6.%): Nyt )< 1+ sup,op K6 (1=1). ¥ 1> 1> 0}

for each x only some o

i = f,(2) (0,2) € 'S; may be admissible

~ switching times

A solution to the switched system is a pair (G, x) € S for which x is a solution to

P = foy(@) '
I ot J( ] time-varying ODE

=N
040
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Switched Control Systems with resets

parameterized family of vector fields = 7, " — " Peq
switching signal = piecewise constant signal ¢ : [0,00) — & parameter set
S = set of admussible pairs (G, x) with ¢ a switching signal and x a signal in 1"

r= f,(r) r=plo,c”,27) (c,x) €S

switching times

ri=p(3, 1,27} 2i=p(2,3,27) T pll,2,27)

A solution to the switched system is a pair (¢, x) € S for which
1. onevery open interval on which & 1s constant. x 1s a solution to

r = [ () time-varying ODE
2. atevery switching time 7. x(f) = p((?), 6 (9, (1) )

UNIVERSITY eff PENNSYLFANIA




Switched Control Systems

Time-varying system = for each initial condition x(0) there is only one solution

I = fo’{t] [J?] (all £, locally Lipschitz)

Switched system = for each x(0) there may be several solutions, one for each
admissible

'ﬁ:ja(i"] .I?:,G(D'.,U'_!LL' ) (Ja"[']ES

the notions of stability, convergence, etc.
must address “uniformity™ over all solutions

UNIVERSITY eff PENNSYLFANIA




Switched Control Systems

r=r

S = set of piecewise constant switching signals taking values in Q == {-1, +1}
unstable

S = set of piecewise constant switching signals taking values in @:= {-1, 0}
stable but not asympt.

S = set of piecewise constant switching signals taking values in Q == {-1. 0}

with infinitely many switches
stable but not asympt.

S = set of piecewise constant switching signals taking values in @ := {-1, 0}
with infinitely many switches and interval between consecutive
discontinuities bounded below by 1 asympt. stable

S = set of piecewise constant switching signals taking values in @:= {-1, 0}
with infinitely many switches and interval between consecutive
discontinuities below by 1 and above by 2 uniformly asympt. stable

UNIVERSITY eff PENNSYLFANIA




Switched Linear Systems

L

r = Asx = Ryo-2" (o, x) € 4. R, ER™ ¢q'€Q
vector fields and reset maps linear on x
e
c=2 i
G = G =
g=3
r=Ar r=Asr |r=Ax| r=Ax R
y t t r3
r —R311-' r::R2,3£' & —Rg 1 I
It 1N " :

2(t1) =|Rs 2™ (t1) = Ry ettt x (1)

I(-!I) — ﬁ}lallt_tl}x(fl ] — ﬂf-l_-«[t—h]RHJlEAu:h —1r1]£{£“J
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Switched Linear Systems

r= A,z =R, -2 (,2) €8 Ap R, ER™ gq'e@
vector fields and reset maps linear on x

L

1 o= 1
G= G=
G=3
.".::Al.'}: J::ZAS.'I: J::ZAE.'I: .".::Ali[: -

fo fy I 8

r= Ry jx- == Hogx™ x:= R x~ r

r(t) = ¢, (t, T)x(T)

state-transition matrix for the switched system (G-dependent)

O, (t,7) i= e TR () o, et e BT

. H9f59)~9(ﬁ1)i§‘4ﬂr}(h_r] t>r

fi. 5. f3. ..., £, = switching times of G in the interval [7, 7)
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Switched Linear Systems

r=A,x r=R,.-2" (c,x) €8 4. R, ERY™ gg'€Q

z(t) = @, (1, T)x(7)

state-transition matrix (G-dependent)

b.(t,7):= e‘qv{ﬁ,}(t‘*k}]{a“” J{Tn-l}e‘qﬂ[ik_1}‘xtk-t-‘i‘-l:l N

) Hg(hjlg(ﬂf"q““-‘(h_rj it>rT

fy, fh. f3. ..., 1 = switching times of ¢ in the mterval [, 7)

Analogous to what happens for (unswitched) linear systems:

. @ (tr)=1 ¥t

2. O (ts) D (5.1)=D_(t.T) Vi>s>T1 (semu-group property)

3. if #is not a switching time, @_ (%.1) is differentiable at fand ™  foragiveno,

D _isa
d T

a@g[t, T) = Aﬂ“]@g (t,7) “solution” to

4. 1f t1s a switching time, the sw m}_l.ed
system with

Po(t.7) = Ra),o0- ()5 [t"r] resets

UNIVERSITY eff PENNSYLFANIA




Two major switching types

Time-triggered: Switching depends on time only

Switching and dynamics are decoupled
Switching times are known a priori
Switched systems more appropriate

Event-triggered: Switching also depends on state

S
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Switching and dynamics are coupled
Switching times not known a priori
Hybrid automata more appropriate
Guards/resets etc model coupling




Time-Triggered Implementations
of Dynamic Controllers

Truong Nghiem, George J. Pappas, Antoine Girard* and Rajeev Alur
*Universite Joseph Fourier, Grenoble, France

University of Pennsylvania, Philadelphia, U.S.A.
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Motivation

Context : Model-based design, platform-based implementation
Problem : Relationship between model and implementation properties

Mode/
Based >
Design

Code Implementation error
Generation

Platform
Based >
Implementation

Goal : Formalize and quantify the implementation error
Focus : Feedback control designs over time-triggered platforms

P
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Embedded Control Design

Controller
Design

&

Plant

| Implementation

A S
L_ Controller 4_1
Implementation
Penn

UNIVERSITY eff PENNSYLFANIA

Implementation error
>

Paul Caspi and Oded Maler. From Control Loops to Real-Time Programs, 2005




Embedded Control Design

»

r

Plant | >

A

L— Controller

n
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Embedded Control Design

r

Plant |

A

L— Controller

n
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float updatePI(pi_block*

/* Integrator Block 1 */

void integrator() {
double inl, In2;
double curTime;
double deltaT;

curTime = getTime();

inl Input(l1);
in2 Input(2);

ppi, float v);

/* Two inputs */
/* Current time */

/* Read input 1 */
/* Read input 2 */

deltaT = curTime - prevTime;

prevTime = curTime;

x1 += deltaT*0.5*(inl + previnl);
x2 += deltaT*0.5*(in2 + previn2);

previnl
previn2

}

/* Propotional Block P code */

void blockl1i() {
double inl, outl;

inl = Input(l);

/* Input & output */

/* Read input 1 */

/* Compute the output */
outl = 116.0*inl + 480.0*x1;

Output(l, outl);

/* Write output 1 */




Typical Controller Implementation

Control design is expressed using control blocks

gccutavie colegd o IS
=lavataelales™=18%  platform

( )

N ] R scheauler
e B8 @

Control designer specifies periods for control tasks
Real-time scheduling determines WCET and schedules

P
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Real-time Scheduling

Advantages
0 Offers separation of concerns between control and scheduling
0 Abstracts real-time tasks with periods and deadlines

Challenges

0 Real-time scheduler only guarantees that the control blocks will
get a chance to complete execution once during its period

0 No guarantees regarding when a control block actually reads its
inputs, writes its outputs, and the order in which the various
control blocks execute.

a Difficult to predict ordering impedes implementation (and
therefore) error modeling, quantification, and analysis.

@ cnn
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Time-triggered Platforms

Offers opportunities for a more predictable mapping of

control models to real-time code

Instead of mapping control blocks to periodic-tasks, the
compiler can allocate control blocks to precise time-slots

Serse Actuate
Compute Compute Compute
ko (k+1)o

Advantage : Precise implementation semantics

P
@, UNIVERSITY off PENNSYL¥ANIA




Programming for Real-time Control

Synchronous reactive programming

Esterel, Lustre, Simulink-to-Lustre compilers
Fixed-logical execution time

Giotto

Time determinism
0 Sensor readings, computation, actuation time are exactly known
0 Leads to predictability (at expense of performance)

A mapping of all the control blocks to the time slots
0 Can precisely define the trajectories of the implementation

S
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Digital Control

Continuous-time control : Control tasks execute and communicate
instantaneously at every time point

Continuous-time

Discrete-time control : Control tasks execute instantaneously at fixed
(periodic) discrete points

< T > T

A

Compute all Compute all

S

Two main approaches:
Given T, discretize model, design discrete-time controller

Design continuous controller, then discretize controller using T.

P
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Digital Control Assumptions

Continuous-time control : Control tasks execute and communicate
instantaneously at every time point

Continuous-time

Discrete-time control : Control tasks execute instantaneously at fixed
(periodic) discrete points

<& T » T
< »
S

A

Compute all Compute all

Assumptions:
All computation happens simultaneously
Emphasis on errors due to sampling period T

Computational model does not capture modern platforms
Effects of control task scheduling are not modeled nor analyzed

P
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Rethinking Digital Control

Continuous-time control : Control tasks execute and communicate
instantaneously at every time point

Continuous-time

Discrete-time control : Control tasks execute instantaneously at fixed
(periodic) discrete points

<& T » T
< »
S

A

Compute all Compute all

Periodic computations take time

el c ca el cz C3

Schedule on TTP: Fixed sized slots

I Bl |

S
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Control and Implementation

Continuous-time control : Control tasks execute and communicate
instantaneously at every time point

Continuous-time

Given continuous controller,
TT platform, and schedule,
quantify implementation error

4

/\

Given TT platform, schedule,
design continuous controller.
(Control-scheduling co-design).

I

Schedule on TTP : Fixed sized slots

P
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Separation of Concerns

Control design in continuous-time
O Many benefits: composable, powerful design tools
O Portable to many (or evolving) platforms
d Provides interface to system/software engineer to implement
O Should not worry about platform details

Software implementation
d Should not worry about control methods or details
O Focus on fault tolerant implementation, code, scheduling
O Make sure the implementation follows continuous time design

P
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Feedback Control Model - Syntax

Plant variable X ={x1,22,..., 20}
Plant output variables Y = {y1,...,y,} 4 Plant -
Control variables U = {uq,... Uy}
Internal variables 7 = {z;,....,z,}
Plant model My el e
f R x R™M — R™ | Integrator 321 :
h:R" — RP B B 7
Controller model M .
control blcMc = (B1, By, ... By) - 1 B, 2 U
Func fmt;ls fqr edback |
COﬂff'gl aw ,
- B |
R? x R? x RY x R/ 1 R = m
AC)ku, uxcpc-l)l(ucn)ic v/ - T,

gﬁopfral variables




Model-level (ideal) Semantics

Consider trajectories of all variables, for ¢ > 0,
w(t) = (x1(t), ..., 2n(t)) u(t) = (ui(t),..., um(t))
y(t) — (yl(t)v cee vyp(t)) Z(t) = (31 (t)a' Loy Zq (t))

Given feedback control model M = (M p, M) and initial state 2:(0),
the continuous-time semantics is the unique trajectory satisfying

[ (t) = f(z(t),u(t))
Mp :q y(t) = h(z(1))
| z(0) € R”"
(2(t) = g(2(1),y(t))
ui(t) = Al(y(t) y(t), z(1))
Mc = q ui(t) = ki(y (f) y(t),z(t), ur(2), ..., uj-1(t))
2<7<m
L 2(0) = 0

We denote this trajectory as (x(t).y(t),u(t)) = [M]c(2(0))
The model-level semantics is implementation independent.




Implementation Modeling

c |

Ideal (model) semantics assumes y Plant

Control blocks compute simultaneously

Control blocks compute instantaneously

Time-triggered platform model (p,T,9) Controller
1. Dispatch sequence p (models ordering) Integrator v,
Periodic string over 1 B :
{Bo,Br,Bi,...,Bxn}
Examples: (BrB1B2153)~ r
(BrB1BiB2BrB1B1B3Bo)”

2. Timing function 7 (models timing) |
7:{Br,Bi....,.Bn} — Z* y
7(Bo) =1 -

3. Duration of time slot 0 T

P
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Implementation Semantics - Timing

Consider the dispatch sequence (88,55 )"

\ 4

Sense Actuate H Sense Actuate H Sense Actuate x

Compute B, | Compute B, | Compute B,

Compute B, | Compute B,

t; B4l
Timing b =0
0=
ti = 2_:10 (p(k))d for ¢>1
A7(0) =0
Integration A
1) =
(D=3 280
Ap(0) =0
Differentiation .
Ap(t+1) = {T(Bj)()

S
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Implementation Error

Given model and implementation semantics, the implementation
error is defined as :

(l‘-(ﬁ)? y(t)v 'u"(t)v Z(f)) — [[-’Vlﬂ (13(0))
(z(t),y(t),u(t),z2(t)) = [M]p.r.s(z(0))

—+ o0 5
em(p;7,0,2(0)) = / ly(t) — y(0)]2dt
J 0

Note that error is measured using the infinite horizon L, norm.

Partial order on implementations based on errors
(p1,71,01) 20 (P2, T2-02)
iff
Vz(0) em(p1, 1,01, 2(0)) < en(p2, 72,02, 2(0)) (Globak
g v CE(O) €l €M(p1, T1, 01, :U(O)) < eM(p27 T3, 02; :U(O)) (LOCGA

[ )
“" \ I
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Closed-loop Implementation Error

(x(t),y(t),u(t), z(t)) = [M](x(0))

+

d, (0
Controller ‘M (p’ 7;’ ’ .Cl:‘( ) )
Design

— Plant

| Controller Y
Implementation

& Penn
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Control over sensor networks

M — Impact of
Delays
Impact of
Scheduling
«T XPLT T . __ Impact of

9 Routing




Ay p
COMMUMICATION FOUMBDATIOMN
HART Communication Protocol - your cost effective solution for intalligent instrumentation

System

Gateway

UNIVERSITY of PENNSYLEANIA




Wireless HART - MAC level (TDMA - FDMA)

Source Now Listening
Transmission Starts .n"

\ \' / \
Transaction \\ | STX | T \
\

IL Y T
Destination Listens S—
for Start of Message Destination ACK Starts

Slots

Cycle n-1 Cycle n ('_"A'_ﬁ Cycle n+1

I Superframe 1




A formal model - syntax

* Plants/Controllers D = (P1, ... Pn, C1, ... Cn), are discrete-time LTI systems/controllers
* 6raph G = (V,E) where V is the set of nodes and E is the radio connectivity graph

* Routing R : T U O — 2V"\{d} associates to each pair sensor-controller or controller
actuator a set of allowed routing paths

@%%D
Plant 1

Plant 2 .

‘@H.H@

B4R 40
I S @ l ( I I I I
‘ UNIVERSITY of PENNSYL¥ANIA




Communication and computation schedule

0 Q0
Plant 1@ b (42 Con
- ) @)
4
Plant 1 Caj\-> Controller 1
- _ Cb - |~ _ E 4
Plant 2 co)<- 4 Controller 2
A S
6ba Ta

| la,<a | Eu,5a| 4u,Cu| Eu,Ccl EI::,EI::' Eb,Cdlﬂb,-ﬂbl 4I::,1|::|Ce,?u|?a,6u| I:En:L,Hu:LI

Communication schedule

Jcortg] ] | | |-

Computation schedule

| conti]




Semantics in each time slot

| Controller 1

B Controller 2

Aplant Bplant * Oplant

Afe,m) =I5 - Cpany  Adj((Vg,e))'

\ 0 Bcon(m) - Icon

| la,da | 2&,5&' 4a,Ca| 5a,Cc| 2|::-,5|::-| 5|::-,Cd|C|::-,4|::-| 4|::-,1|::-|Ce,?a|?a,6a| 6&,3&'

Communication schedule

|conti] Icont 2] | | | | -

R ICI1L1

UNIVERSITY of PENNSYLVANIA

Computation schedule

OEOH - Ccon(m)

Acon(m)

S




A formal model - Semantics

Given communication/computation schedules, the closed loop control
system is a switched linear system:

x(t+ 1) = Ac(n(r), ue(2))x(@)

where x = (x, x, x.) and x, x.model the states of the plant and
of the controller, and x, models the measured and control data flow

in the nodes of the network
( APlant BPlant ’ OPlant 0 )

Ale,m) = Igiam * CPlant Adj((V=, E))T Ogm + Ccon(m)

\ 0 Bcon(m) - Icon Acon(m) J

S
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Analysis Approach

Ideal
2(t+1) = Aiz() + Bau(t) Semantics
| w(t) = Ciz(t) —2g!
. Plant
U=y u=y
E(t+1) = Aid(t) + Bid(t) |
i(t) = Cii(t) * ]
Controller Imp/eITIfﬂ fa flOﬂ
Error
I \ Implementation
@ (5) Semantics
Plant 2 :’ /

S
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Approximation Error

Given model and implementation semantics, the implementation
error is defined as :

w(0),y(0), u(t), 2(1)) = [M]((0))
(1), 5(0), (), 5(1) = [Mliprs)(@(0))

+00 5

exmlpr6@) = [ Iy - o)

Note that error is measured using the L, norm.

Partial order on implementations based on errors

S
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Analysis

Periodic deterministic scheduling (Wireless HART single-hop)
e Theory of periodic time varying linear systems is relevant
e Schedule is a fixed string in the alphabet of edges/controllers
e Nghiem,Pappas,Girard,Alur - EMSOFT 2006, ACM TECS 2008

Periodic non-deterministic scheduling (Wireless HART multi-hop)
e Theory of switched/hybrid linear system applies
e Schedule is an automaton over edges/controllers
e Alur, Weiss - HSCC 2008

S
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Cutput 1

Output 1

Example - Implementation Errors

0 005 041 0.15 0.2 0.25 03 035 0.4 045 0.5

Ideal Controller

0 {J.:CJS {JT1 {].‘IIS {].I2 {J.:'ES {JTS {].ISS {JT4 {J.-I45 0.5
Implementation 1
o =(BrB1B)* m(Bj)=1 061 =0001sec
Euler & Backward Difference
er(p1, 71,01, 2(0)) = 10.0058

UNIVERSITY eff PENNSYLFANIA

Output 1

Output 1

30

20F
104
0

=10
=20

_S{J 1 Il L ' L L 'l 1 Il
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 045 0.5

Implementation 2
p2 =(BB1B2)* 7(Bj)=1 5 =0.00075sec
Trapezoid & Backward Difference
err(p2, 2,62, 2(0)) = 1.9263

10
{J]{V\l—

0 0.05 01 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
Implementation 3

P3 :(BIBQBl)w T3(Bj) =1 03 = 0.001sec
Euler & Backward Difference
em(ps, 73,03, 2(0)) = 0.5241




A zoo of hybrid systems

Hybrid Automata

Hybrid Input-Output Automata
Hybrid Petri Nets
Simulink/Stateflow models

Supervisory control systems
Switched systems

Nonsmooth systems

Piece-wise affine systems (PWA)
Mixed Logical Dynamical

Linear Complementarity models




