
ESE601 – Hybrid Systems
H b d d lHybrid System Models

George J. Pappas

Department of Electrical and Systems Engineering

University of Pennsylvania

pappasg@seas.upenn.edu

Hybrid automata
10y10y510T 21 =∧=∧=

NoRodRod1 Rod2
50T 0.1

.
T −=

10y550T 2 ≥∧=10y550T 1 ≥∧=

56T 0.1
.
T −= 60T 0.1

.
T −=

1
.
y1 = 1

.
y2 = 1

.
y1 = 1

.
y2 = 1

.
y1 = 1

.
y2 =

550T ≤510T ≥ 510T ≥

1y1 1y2 1y1 1y2 1y1 1y2

0y510T 1 =→= : 0y510T 2 =→= :

10y10y550T 21 <∧<∧=

Shutdown
50T 0.1

.
T −=

1
.
y1 = 1

.
y2 =y1 y2

true

CHARON

Hierarchical modeling and analysis of embedded systems
R. Alur, T. Dang, J. Esposito, Y. Hur, F. Ivancic, V. Kumar, I. Lee, P. Mishra, G. J. Pappas,
and O. Sokolsky. Proceedings of the IEEE, 91(1):11-28, January 2003.

http://rtg.cis.upenn.edu/mobies/charon/index.html

CHARON

Concentration in nM

seconds

A zoo of hybrid systems

Hybrid Automata
Hybrid Input-Output Automata
Hybrid Petri Nets
Simulink/Stateflow MATLAB modelsSimulink/Stateflow MATLAB models

S i t l tSupervisory control systems
Switched systems
Nonsmooth systems
Piece-wise affine systems (PWA)
Mixed Logical Dynamical
Linear Complementarity modelsLinear Complementarity models

Supervisory Control Systems

Switched Control Systems

Switched Control Systems with resets

Switched Control Systems

Switched Control Systems

Switched Linear Systems

Switched Linear Systems

Switched Linear Systems

Two major switching types

Time-triggered: Switching depends on time only
Switching and dynamics are decoupled
Switching times are known a prioriSwitching times are known a priori
Switched systems more appropriate

E t t i d S it hi l d d t tEvent-triggered: Switching also depends on state
Switching and dynamics are coupled
Switching times not known a priori
Hybrid automata more appropriate
Guards/resets etc model coupling

Time-Triggered Implementationsgg p
of Dynamic Controllers

Truong Nghiem, George J. Pappas, Antoine Girard* and Rajeev Alur

*Universite Joseph Fourier, Grenoble, France

University of Pennsylvania, Philadelphia, U.S.A.

Motivation

Context : Model-based design, platform-based implementation
Problem : Relationship between model and implementation properties

Model
Based
Design

Implementation error
+

Code
Generation

Platform
Based

Implementation

-Generation

Goal : Formalize and quantify the implementation error
F F db k t l d i ti t i d l tf

Implementation

Focus : Feedback control designs over time-triggered platforms

Embedded Control Design

Plant Model

Implementation error
+

Controller

-
Design

Plant Implementation

Controller
Implementation

SA

Implementation

Paul Caspi and Oded Maler. From Control Loops to Real-Time Programs, 2005

Embedded Control Design

Plant

RR
Ku(t) y(t)

Plant

Controller
I l i

SA

Implementation

Embedded Control Design

Plant
float updatePI(pi_block* ppi, float v);

/* Integrator Block I */
void integrator() {

double in1, in2; /* Two inputs */
double curTime; /* Current time */

() K ()
R t

()d
R

double curTime; /* Current time */
double deltaT;

curTime = getTime();

in1 = Input(1); /* Read input 1 */
in2 = Input(2); /* Read input 2 */

u(t)=Ky(t)+
R
0

t
y(s)ds

R
Ku(t) y(t)

p () p

deltaT = curTime - prevTime;
prevTime = curTime;

x1 += deltaT*0.5*(in1 + prevIn1);
x2 += deltaT*0.5*(in2 + prevIn2);

Plant
prevIn1 = in1;
prevIn2 = in2;

}

/* Propotional Block P code */
void block1() {

Controller
I l i

SA
void block1() {

double in1, out1; /* Input & output */

in1 = Input(1); /* Read input 1 */

/* Compute the output */
out1 = 116.0*in1 + 480.0*x1;

Implementation Output(1, out1); /* Write output 1 */
}

Typical Controller Implementation

Control design is expressed using control blocks

Control Blocks Executable Code Execution
environment

Target
platform

scheduler

p

C Code C Code

Control designer specifies periods for control tasks
Real-time scheduling determines WCET and schedules Real time scheduling determines WCET and schedules

Real-time Scheduling

Advantages
Offers separation of concerns between control and schedulingp g
Abstracts real-time tasks with periods and deadlines

ChallengesChallenges
Real-time scheduler only guarantees that the control blocks will
get a chance to complete execution once during its period

No guarantees regarding when a control block actually reads its
inputs, writes its outputs, and the order in which the various

t l bl k tcontrol blocks execute.

Difficult to predict ordering impedes implementation (and
th f) d li tifi ti d l itherefore) error modeling, quantification, and analysis.

Time-triggered Platforms

Offers opportunities for a more predictable mapping of
control models to real-time codecontrol models to real time code

Instead of mapping control blocks to periodic-tasks, thepp g p
compiler can allocate control blocks to precise time-slots

Sense Actuate

Compute ComputeCompute

Advantage : Precise implementation semantics

δk δ)1(+k

Advantage : Precise implementation semantics

Programming for Real-time Control

Synchronous reactive programming
Esterel Lustre Simulink-to-Lustre compilers Esterel, Lustre, Simulink to Lustre compilers

Fixed-logical execution time
Giotto

Time determinism
Sensor readings, computation, actuation time are exactly known
Leads to predictability (at expense of performance)

A mapping of all the control blocks to the time slots
Can precisely define the trajectories of the implementation

Digital Control

Continuous-time control : Control tasks execute and communicate
instantaneously at every time point

Discrete-time control : Control tasks execute instantaneously at fixed
(periodic) discrete points

Continuous-time

(periodic) discrete points

T T

Two main approaches:

Compute all Compute all

Given T, discretize model, design discrete-time controller

Design continuous controller, then discretize controller using T.Design continuous controller, then discretize controller using T.

Digital Control Assumptions

Continuous-time control : Control tasks execute and communicate
instantaneously at every time point

Discrete-time control : Control tasks execute instantaneously at fixed
(periodic) discrete points

Continuous-time

(periodic) discrete points

T T

Assumptions:
All computation happens simultaneously

Compute all Compute all

All computation happens simultaneously
Emphasis on errors due to sampling period T

Computational model does not capture modern platforms
Eff f l k h d l d l d l dEffects of control task scheduling are not modeled nor analyzed

Rethinking Digital Control

Continuous-time control : Control tasks execute and communicate
instantaneously at every time point

Discrete-time control : Control tasks execute instantaneously at fixed
(periodic) discrete points

Continuous-time

(periodic) discrete points

T T

Periodic computations take time

Compute all Compute all

Schedule on TTP: Fixed sized slots
C1 C3C2 C1 C3C2

Control and Implementation

Continuous-time control : Control tasks execute and communicate
instantaneously at every time point

C ti tiContinuous-time

Given continuous controller,
TT platform, and schedule,
quantify implementation error

Given TT platform, schedule,
design continuous controller.
(Control-scheduling co-design).

Schedule on TTP : Fixed sized slots

Separation of Concerns

Control design in continuous-time
Many benefits: composable, powerful design tools
Portable to many (or evolving) platforms
Provides interface to system/software engineer to implementy g p
Should not worry about platform details

Software implementationSoftware implementation
Should not worry about control methods or details
Focus on fault tolerant implementation, code, scheduling
M k h l f ll dMake sure the implementation follows continuous time design

Feedback Control Model - Syntax

Plant variable
Plant output variables
Control variables

Planty u

Plant model

Internal variables
Controller

y

Controller model

Integrator

ΒI Β1

u1

y

y

z

Controller model
Control blocks
Functions for feedback

Β2

u2
z

u

control law

A li d p d f
Βm

umu1
u2

y
z

Acyclic dependence of
control variables

um-1

Model-level (ideal) Semantics

Consider trajectories of all variables, for ,t õ 0

Given feedback control model and initial state ,
th ti ti ti i th i t j t ti f ithe continuous-time semantics is the unique trajectory satisfying

We denote this trajectory as
The model-level semantics is implementation independent.

Implementation Modeling

Ideal (model) semantics assumes
Control blocks compute simultaneously
Control blocks compute instantaneously

Planty u

Control blocks compute instantaneously

Time-triggered platform model
1. Dispatch sequence (models ordering)ú

(ú, ü, î) Controller
Integrator y

z
Periodic string over

Examples:

ΒI Β1

u1

u2

y

z

zE mp

2. Timing function (models timing)

Β2

u2

u

ü

3. Duration of time slot î Βm

umu1
u2

um 1

y
z

um-1

Implementation Semantics - Timing

Consider the dispatch sequence

Sense ActuateActuate SenseSense Actuate

Compute Β1 Compute Β2Compute ΒI Compute Β2 Compute ΒI

ti =
P

k=0

ià1
ü(ú(k))î for iõ 1

Timing
t0 = 0

k 0

Integration

DifferentiationDifferentiation

Implementation Error

Given model and implementation semantics, the implementation
error is defined as :

Note that error is measured using the infinite horizon L2 norm.

Partial order on implementations based on errors Partial order on implementations based on errors

iff
(ú1, ü1, î1) öM (ú2, ü2.î2)

∀x(0) eM(ú1 ü1 î1 x(0)) ô eM(ú2 ü2 î2 x(0)) (Global)∀x(0) eM(ú1, ü1, î1, x(0)) ô eM(ú2, ü2, î2, x(0))

∀ x(0) ∈ I eM(ú1, ü1, î1, x(0)) ô eM(ú2, ü2, î2, x(0))
(Global)
(Local)

Closed-loop Implementation Error

Plant

+
Controller

-
Design

Plant

Controller
ImplementationImplementation

Control over sensor networks

(()
(
)

() Impact of
Delays

(
)

())

(
)

()

Impact of
Scheduling

)
(
)

()
Impact of
Routing

Challenge: Close the loop around wireless sensor networks

Wireless HART – MAC level (TDMA – FDMA)

A formal model - syntax

• Plants/Controllers D = (P1, … Pn, C1, … Cn), are discrete-time LTI systems/controllers

• Graph G = (V,E) where V is the set of nodes and E is the radio connectivity graph

• Routing R : I ∪ O → 2V*\{Ø} associates to each pair sensor-controller or controller • Routing R : I ∪ O → 2V \{Ø} associates to each pair sensor-controller or controller
actuator a set of allowed routing paths

Communication and computation schedule

Semantics in each time slot

A formal model - Semantics

Given communication/computation schedules, the closed loop control
system is a switched linear system:

where x = (xp, xv, xc) and xp, xc model the states of the plant and
of the controller, and xv models the measured and control data flow
in the nodes of the networkin the nodes of the network

Analysis Approach
Ideal

Semantics

+
Implementation

-
Error

Implementation
S tiSemantics

Approximation Error

Given model and implementation semantics, the implementation
 is d fi d s error is defined as :

Note that error is measured using the L2 norm.

Partial order on implementations based on errors

Analysis

P d d h d l (W l H RT l h)Periodic deterministic scheduling (Wireless HART single-hop)
Theory of periodic time varying linear systems is relevant
Schedule is a fixed string in the alphabet of edges/controllers
Nghiem,Pappas,Girard,Alur – EMSOFT 2006, ACM TECS 2008

Periodic non-deterministic scheduling (Wireless HART multi-hop)
Theory of switched/hybrid linear system applies
Schedule is an automaton over edges/controllers
Alur, Weiss – HSCC 2008

Example - Implementation Errors

Ideal Controller Implementation 2

ú2 = î2 = 0.00075secü2(Bj) = 1

eM(ú2, ü2, î2, x(0)) = 1.9263

Trapezoid & Backward Difference

Implementation 1

ú1 = î1 = 0.001secü1(Bj) = 1

Euler & Backward Difference

Implementation 3

ú3 = î3 = 0.001secü3(Bj) = 1

Euler & Backward Difference

eM(ú1, ü1, î1, x(0)) = 10.0058 eM(ú3, ü3, î3, x(0)) = 0.5241

A zoo of hybrid systems

Hybrid Automata
Hybrid Input-Output Automata
Hybrid Petri Nets
Simulink/Stateflow modelsSimulink/Stateflow models

S i t l tSupervisory control systems
Switched systems
Nonsmooth systems
Piece-wise affine systems (PWA)
Mixed Logical Dynamical
Linear Complementarity modelsLinear Complementarity models

