## B. 4 Problem Set IV

(Due Wed. Nov. 4) ${ }^{4}$
Problem B.4.1. Compute numerically the vector $J_{\mu}$ satisfying

$$
J_{\mu}=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]+\alpha\left[\begin{array}{ccc}
3 / 4 & 1 / 4 & 0 \\
1 / 4 & 3 / 4-\epsilon & \epsilon \\
0 & \epsilon & 1-\epsilon
\end{array}\right] J_{\mu}
$$

for $\alpha=0.9$ and $\alpha=0.999$ and $\epsilon=0.5$ and $\epsilon=0.001$. For this, try value iteration with and without error bounds, as well as Gauss-Seidel value iteration. Discuss your results.

Problem B.4.2. Policy iteration is related to Newton's method to solve nonlinear equations. Consider an equation of the form $F(J)=0$, where $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$. Given a vector $J_{k} \in \mathbb{R}^{n}$, Newton's method determines $J_{k+1}$ by solving the linear system of equations (coming from the first-order Taylor expansion of $F$ )

$$
F\left(J_{k}\right)+\frac{\partial F\left(J_{k}\right)}{\partial J}\left(J_{k+1}-J_{k}\right)=0
$$

where $\frac{\partial F\left(J_{k}\right)}{\partial J}$ is the Jacobian matrix of $F$ evaluated at $J_{k}$.

1. Consider the discounted finite-state problem and define $F(J)=T J-J$. Show that if there is a unique $\mu$ such that $T_{\mu} J=T J$, then the Jacobian matrix of $F$ at $J$ is

$$
\frac{\partial F(J)}{\partial J}=\alpha P_{\mu}-I
$$

where $I$ is the $n \times n$ identity matrix.
2. Show that the policy iteration algorithm can be identified with Newton's method for solving $F(J)=0$, assuming it gives a unique policy at each step.

Problem B.4.3. [Bertsekas] $1.14-a)$.

[^0]
[^0]:    ${ }^{4}$ this version: Oct. 202009

