
B.3 Problem Set III

(First Part due Wed. Oct. 21)3

Problem B.3.1. Project Proposal Due Wed. Oct. 21 (∼ 1 page). Reminders
about the project: pick a topic of your interest in dynamic programming. You
can work on your own or in pairs. I encourage you to talk to me before so
that we can agree on the proposal. Ideally your project would include some
personal input, an application of DP to your research, etc. Otherwise you can
also report on say 2− 3 paper on a topic related to the class. In this case I do
not want a superficial summary of the papers, but a deep understanding and
a critical evaluation of the papers.

Administrative stuff: we will use a blog to manage feedback regarding
the projects. The address is
http://cooperativecontrol.wordpress.com/
I’ve posted already a bit more administrative information there. Please create
an account on WordPress.com by Wed. October 14. Then send me the email
address that you used to create that account, so that I can add you as a
contributor to the blog.

Problem B.3.2. Watch Stephen Boyd’s lectures on MPC, available at
http://www.stanford.edu/class/ee364b/videos.html.
See also the link reference section on the course web page. The lectures are
the ones of May 22 (Model predictive control) and May 27 (Stochastic model
predictive control).

Problem B.3.3. Do the exercise in chapter 11 (on the performance of one-step
lookahead policies; I gave the proof in class, but it’s useful to do it again).

Problem B.3.4. Consider the following two-stage example, due to [TW66],
which involves the following two-dimensional linear system with scalar control
and disturbance:

xk+1 = xk + buk + dwk, k = 0, 1,

where b = [1, 0]T and d = [1/2,
√

2/2]T . The initial state is x0 = 0. The controls
u0 and u1 are unconstrained. The disturbances w0 and w1 are independent
random variables and each takes the values 1 and −1 with equal probability
1/2. Perfect information prevails. The cost is

Ew0,w1 [‖x2‖],

where ‖ · ‖ denotes the usual Euclidian norm. Show that the CEC with nom-
inal values w̄0 = w̄1 = 0 has worse performance than the optimal open-loop
controller. In particular, show that the optimal open-loop cost and the optimal
closed-loop cost are both

√
3/2, but the cost of corresponding to CEC is 1.

3this version: Oct. 6 2009
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Problem B.3.5 (Continuous Space Shortest Path Problems). Consider the
two-dimensional system

d

dt
x1 = u1,

d

dt
x2 = u2,

with the control constraint ‖u(t)‖ = 1. We want to find a state trajectory that
starts at a given point x(0), ends at another point x(T ), and minimizes

∫ T

0
r(x(t))dt.

The function r(·) is nonnegative and continuous, and the final time T is subject
to optimization. Suppose we discretize the plane with a mesh of size ∆ that
passes through x(0) and x(T ), and we introduce a shortest path problem of
going from x(0) to x(T ) using moves of the following type: from each mesh
point x̄ = (x̄1, x̄2), we can go to each of the mesh points (x̄1 + ∆, x̄2), (x̄1 −
∆, x̄2), (x̄1, x̄2 + ∆) and (x̄1, x̄2 − ∆), at a cost r(x̄)∆. Show by an example
that this is a bad discretization of the original problem in the sense that the
shortest distance need not approach the optimal cost of the original problem
as ∆ → 0.

Problem B.3.6 (Convergence Properties of Rank-One Correction). Consider
the solution of the system J = FJ , where F : Rn → Rn is the mapping

FJ = h + QJ,

h is a given vector in Rn, and Q is an n × n matrix. Consider the generic
rank-one correction iteration J := MJ , where M : Rn → Rn is the mapping

MJ = FJ + γz,

and
z = Qd, γ =

(d− z)T (FJ − J)
‖d− z‖2 .

1. Show that any solution J∗ of the system J = FJ satisfies J∗ = MJ∗.

2. Verify that the value iteration method that uses the error bounds in the
manner of

Ĵk = T kJ +

[
α

n(1− α)

n∑

i=1

((T kJ)(i)− (T k−1J)(i))

]
e

(see Eq. (1.21) in Bertsekas’ book volume II) is a special case of the
iteration J := MJ with d equal to the all-ones vector e = [1, . . . , 1]T .

3. Assume that d is an eigenvector of Q, let λ be the corresponding eigen-
value, and let λ1, . . . , λn−1 be the remaining eigenvalues. Show that MJ
can be written as

MJ = h̃ + RJ
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where h̃ is some vector in Rn and

R = Q− λ

(1− λ)‖d‖2 ddT (I −Q).

Show also that Rd = 0 and that for all k and J ,

Rk = RQk−1, MkJ = M(F k−1J).

Furthermore, the eigenvalues of R are 0, λ1, . . . , λn−1 (this last statement
requires a somewhat complicated proof).

4. Let d be as in part 3, and suppose that e1, . . . , en−1 are eigenvectors
corresponding to λ1, . . . , λn−1. Suppose that a vector J can be written
as

J = J∗ + ξe +
n−1∑

i=1

ξiei,

where J∗ is a solution of the system. Show that, for all k > 1,

MkJ = J∗ +
n−1∑

i=1

ξiλ
k−1
i Rei,

so that if λ is a dominant eigenvalue and λ1, . . . , λn−1 lie within the
unit circle, MkJ converges to J∗ at a rate governed by the subdominant
eigenvalue.

Due Monday November 2: For the next two computational problems,
you are encouraged to work in groups of 2− 3 people. You can submit a single
report per group.

Problem B.3.7. Solve problem B.1.7 using an MPC controller. For the de-
terministic case, experiment with the length of the horizon and compare the
cost obtained with the optimal cost you computed in problem set 1. For the
problem with noise, use a certainty equivalent model predictive controller for
the stochastic problem (this is what is described in the second video mentioned
above). Again experiment with the length of the horizon and report your find-
ings, provide some plots of the trajectories obtained, and discuss your design
by comparing it to the designs you obtained in the previous problem sets. As
before, consider a full-state feedback controller (i.e., of the form µ(x)).

Problem B.3.8. Consider the inventory control problem with backlogs, as
treated in pp. 21-22 of Volume I of the text. [The DP equation (1.4) given
there is a bit more convenient than its counterpart (4.21) on p. 162.] Let

c = 1, r(x) = p max(0,−x) + h max(0, x),

with p = 4, h = 2, N = 10.
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1. Let the demands wk be i.i.d., with a discrete uniform distribution in the
set {0, 1, ..., 10}. Calculate and plot the function J0, and find an optimal
policy.

2. Let now the demands be i.i.d. with a continuous uniform distribution on
the set [0, 10]. Calculate and plot the function J0, and find an optimal
policy. (Note: this cannot be done exactly. You may either approximate
the problem by a discrete one and solve the discrete problem exactly, or
work with the DP equations for the continuous problem and approximate
when needed, e.g., replace integrals by sums. In either case, explain what
you did and defend the number of discrete grid points that you used. (You
may Þnd reading Section 6.6.1 to be useful.)

3. Same setup as in part 2, but we will now use an approximation archi-
tecture for the cost-to-go function. The main idea is to calculate values
for the cost-to-go at a finite set of state-time pairs, then to make a “least
squares” fit of these values with a function of a given type, such as a
polynomial function (see Section 6.4.3, where the same idea is used to
approximate the cost-to-go of the base policy). We first explain this
methodology. In particular, suppose we have calculated the correct value
of the optimal cost-to-go JN−1(xi) at the next to last stage stage for m
states x1, . . . , xm through the DP formula

JN−1(x) = min
u

Ew[g(x, u, w) + JN (f(x, u, w))],

and the given terminal cost function JN (for simplicity, we drop the sub-
scripts of g, x, u, w in the following, but this is not necessary for this
methodology). We can then approximate the entire JN−1(x) by a func-
tion of the form J̃N−1(x; rN−1), where rN−1 is a vector of parameters
which can be obtained by solving the least squares problem

min
r

m∑

i=1

∣∣∣JN−1(xi)− J̃N−1(xi; r)
∣∣∣
2
.

For example, if x ∈ Rn and J̃N−1 is specified to be linear, the vector r
consists of α ∈ Rn and scalar β and J̃N−1(x, r) = αT x + β. The least
squares problem then is

min
α,β

m∑

i=1

∣∣∣JN−1(xi)− αT xi − β
∣∣∣
2
.

Once an approximating function J̃N−1(x; rN−1) is obtained, it can be
used to obtain an approximating function J̃N−2(x; rN−2). In particular,
(approximate) cost-to-go function values ĴN−2(xi) are obtained for m
states x1, . . . , xm through the (approximate) DP formula

ĴN−2(x) = min
u

Ew[g(x, u, w) + J̃N−1(f(x, u, w); rN−1)].
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These values are then used to approximate the cost-to-go function JN−2(x)
by a function of the form J̃N−2(x; rN−2), by solving the problem

min
r

m∑

i=1

∣∣∣ĴN−2(xi)− J̃N−2(xi; r)
∣∣∣
2
.

The process can be continued to obtain J̃k(x; rk) up to k = 0. Given
approximate cost-to-go functions J̃0(x; r0), . . . , J̃N−1(x; rN−1), one may
obtain a suboptimal policy by using at state-time pair (x, k) the control

µ̃k(x) = arg min
u

{
Ew[g(x, u, w) + J̃k+1(f(x, u, w); rk+1)]

}
.

We now return to part 2 of the problem, where value functions are to be
approximated by quadratics, of the form ax2+bx+c. Note that with this
approximation architecture, the expected values that are needed in the
DP algorithm can be evaluated analytically. Compare the results with
those obtained in part 2.
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