
B.2 Problem Set II

(due Wed. Oct. 7)2

Remark. As always, please ask for hints if you are stuck.
Remark. In this problem set, you might need the formula for differentiation
under the integral sign, which I recall here:
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Problem B.2.1 (reading). Have a look at MATLAB’s functions for LQR/LQG
design, in the control systems toolbox (look in MATLAB’s help and check the
LQR/LQG section). The controllers and Kalman filters implemented are the
steady-state ones mentioned in class (k → −∞ in the Riccati difference equa-
tion for LQR, k → +∞ for the Kalman filter). Their implementation requires
solving algebraic Riccati equations (ARE), and note that we haven’t discussed
how to do that in practice. One way is to iterate the Riccati difference equa-
tion and wait for convergence, but that’s not really an efficient way to solve
the ARE. Check the help for the matrix equation solver available in MATLAB
to solve this equation (dare). You will see that it mentions certain conditions
for the solver to work, namely stabilizability and detectability of certain pairs
of matrices. For an introduction to the steady-state versions of the LQR and
LQG problems, please read pp.151-159 and pp.234-236 in Bertsekas. We defi-
nitely won’t cover the numerical methods to solve the ARE in this course, so
it’s good to know that these solvers already exist when you need them. Most
likely we won’t have time to look at the theory behind the infinite-horizon LQR
and LQG problems in more details, because that would mean discussing quite
a bit of linear systems theory first for completeness and would take us off-topic.

Problem B.2.2. Do the exercises in the notes of chapter 4 and 5.

Problem B.2.3. Consider the inventory control problem of chapter 3, with
no fixed cost (K = 0), and a terminal cost cN (xN ) = −c xN , where c is also the
unit ordering cost as used in that chapter. This case arises when, at the end of
the last period, we can obtain full reimbursement of the leftover units, and must
incur the unit cost for each unit backlogged, on top of any shortage penalty
incurred in the previous period. Assume that cH > 0 and that the demand
w has a continuous cumulative distribution function Fw(y) := P (w ≤ y) (you
can assume that the probability distribution of w has a density). Let S be the
solution of the following equation (the so-called critical fractile solution)

F (S) =
cB

cB + cH
. (B.1)

Show that the optimal policy is a base stock policy with the same base stock
level Sk = S at every period, where S is defined by (B.1) [hint: you will
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probably have to show that dJ∗k (x)/dx = −c for x < S. Do not worry about
taking derivatives, e.g. under the integral, and other mathematical technical-
ities, when you look for the solution; you can clean up your argument later if
you want].

Problem B.2.4. Consider the LQR problem of chapter 4, and change in that
model only the cost function (4.7) to

E

{
N−1∑

k=0

(xT
k Qkxk + 2xT ST u + uT

k Rkuk) + xT
NQNxN

}
. (B.2)

That is, we add the cross terms 2xT ST u in the cost function. Derive the optimal
control law. [hint: it’s not hard using again the Schur complement, but instead
you could try to find a change of control variable u to reduce this problem to
the problem solved in the notes - for that, think about square completion...].

Problem B.2.5. Consider the LQR problem with no disturbances (wk = 0).
Use the discrete-time minimum principle discussed in chapter 2 to derive the
solution to this problem. First, write explicitly the adjoint system for the
co-state λ. Then, prove using backward induction that λk = Pkxk, where Pk

satisfies the Riccati difference equation. Finally, express the control uk in terms
of Pk+1 and xk but not λk+1.

Problem B.2.6. Consider a scalar linear system

xk+1 = akxk + bkuk + wk, k = 0, 1, . . . , N − 1,

where ak, bk ∈ R and each wk is a Gaussian random variable with zero mean
and variance σ2. We assume no constraints and independent disturbances.
Show that the control law {µ∗0, µ∗1, . . . , µ∗N−1} that minimizes the cost function

E
{

exp
[
x2

N +
N−1∑

k=0

(x2
k + ru2

k)
]}

, r > 0,

is linear in the state variable, assuming the optimal cost is finite for every
x0 (for a bonus, you can discuss when this cost is indeed finite). Does the
certainty equivalence principle hold? Show by an example that the Gaussian
assumption is essential for the result on the linearity of the optimal control law
to hold (for analyses of multidimensional versions of this exercise, see [Jac73,
Whi82, Whi90, Bas00]).

Hint: note the formula
∫ ∞

−∞
e−(ax2+bx+c)dx =

√
π

a
e(b2−4ac)/4a, for a > 0.

Problem B.2.7. Consider again the output tracking problem B.1.7, with the
modified dynamics

xk+1 = Axk + Buk + wk, k = 0, 1, . . . , N − 1,
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where the disturbances wk are i.i.d. Gaussian, zero mean, with covariance
matrix ρI3, for some ρ > 0. Note the following important point on the notation:
we continue to assume full state information, the notation yk just denotes the
output we are interested in for tracking purposes (so you are allowed to design
a controller µk(xk), function of the state). We want to solve this problem
using the LQR solution, which does not allow for the hard control constraint
‖u‖∞ ≤ Umax. Instead add a control cost in the objective to get

J = E

[
N∑

k=1

‖yk − ŷk‖2 + uT
k Ruk

]
.

Ignoring the hard constraint ‖u‖∞ ≤ Umax for the moment, derive the optimal
controller for this objective. You can do this yourself (ask for hints if you
are stuck), or find a function that is already implemented (maybe a function
implementing this is available for MATLAB, I don’t know - most likely not).
Let me repeat that the controller you are looking for is of the form xk '→ µk(xk).
Next, we want to use this controller heuristically to control the system subject
to the constraint ‖u‖∞ ≤ Umax, for ρ = 10−4, and ρ = 10−2. The choice of the
matrix R is left to you. To enforce ‖u‖∞ ≤ Umax = 0.1, saturate the control
inputs obtained from your design to Umax when these inputs are outside of
their allowed range. Note that you can experiment with the matrix R to obtain
smaller inputs. Report the best performance E[

∑N
k=1 ‖yk−ŷk‖2] that you could

obtain (not including the control cost), by approximating the expectation using
averages over sufficiently many simulations so that you don’t see variations
in this average that are too large between two experiments. Discuss your
simulation results precisely, in particular the impact of the choice of R. Plot
some sample paths from your best designs.

Problem B.2.8. Consider a problem with imperfect state information where
the system and observations are linear:

xk+1 = Akxk + Bkuk + wk,

yk = Ckxk + vk.

For simplicity, assume that all the quantities xk, uk, yk, wk, vk are scalars. The
initial state x0 and the disturbances wk and vk are assumed Gaussian and
mutually independent. x0 has mean µx0 and variance σ2

x0
. wk, vk are i.i.d with

mean zero and known variances σ2
w, σ2

v .

1. Show that E[x0|I0], . . .E[xN−1|IN−1] constitute a sufficient statistic for
this problem. [hint: start from the fact that the conditional distribution
Pxk|Ik

is a sufficient statistic - can you say more about this distribution
here ?]

2. Use the previous result to obtain an optimal policy of the single-stage
problem involving the scalar system and observation

x1 = x0 + u0

y0 = x0 + v0,
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and the cost function E[|x1|].

3. (bonus) Generalize part 2 for the case of the scalar system

xk+1 = axk + uk

yk = cxk + vk,

and the cost function E
[∑N

k=1 |xk|
]
. The scalars a and c are known.

Problem B.2.9. Consider a machine that can be in one of two states, good
or bad. Suppose that the machine produces an item at the end of each period.
The item produced is either good or bad depending on whether the machine
is in a good or bad state at the beginning of the corresponding period. We
suppose that once the machine is in a bad state it remains in that state until
it is replaced. If the machine is in a good state at the beginning of a certain
period, then with probability t it will be in the bad state at the end of the
period. Once an item is produced, we may inspect the item at a cost I or not
inspect. If an inspected item is found to be bad, the machine is replaced with a
machine in good state at a cost R. The cost for producing a bad item is C > 0.
Write a DP algorithm for obtaining an optimal inspection policy assuming a
machine initially in good state and a horizon of N periods. Solve the problem
for t = 0.2, I = 1, R = 3, C = 2, and N = 8. (to check your results: the
optimal policy is to inspect at the end of the third period and not inspect in
any other period).
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