
Appendix B

Problem Sets

B.1 Problem Set I

(due Wed. Sept. 23)1

Problem B.1.1. Background reading: To start preparing for the block of
lectures on partial information problems, please start read Rabiner’s tutorial
paper on Hidden Markov Models [Rab89], sections I-III (and the rest if you
are interested). This paper considers only estimation problems, but we’ll build
on it to solve control problems. Moreover, it’s also good to remind you about
modeling using Markov chains.

Question: Look at displays (18),(19),(20) in that paper. Explain how these
equations can be interpreted as a DP algorithm [hint: you might have to replace
the operations max and + in the DP algorithm seen in class by some other
operations].

Problem B.1.2. Do the exercises in the class notes.

Problem B.1.3. Consider a sequence of matrices M1, M2, . . . ,MN , where Mk

has nk rows and nk+1 columns. The problem is to choose the order for multiply-
ing the matrices that minimizes the number of scalar multiplications needed to
compute the product M1M2 . . . MN . Assume that the matrices are multiplied
the usual way, so that the multiplication M1M2 for example involves n1n2n3

multiplications. So for example, if n1 = 1, n2 = 10, n3 = 1, n4 = 10, comput-
ing M1M2M3 in the order ((M1M2)M3) requires 20 scalar multiplications, but
(M1(M2M3)) requires 200 scalar multiplications.

1. Formulate the problem in a form suitable for the application of the DP
algorithm (define a state, control, stage cost and terminal cost, etc.).
Then use the DP algorithm to find the optimal order in which to multiply
the matrices when N = 4 and (n1, n2, n3, n4, n5) = (10, 30, 70, 2, 100).

1this version: Sept. 11 2009
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2. Using the same numerical values as in the previous question, solve the
problem where the objective is instead to maximize the number of mul-
tiplications. What is the ratio of the maximum to minimum number of
multiplications?

Problem B.1.4 (Markov chains basics).

1. (gambler’s ruin) A basic analysis tool for Markov chains is a technique
called first-step analysis, which works recursively rather like dynamics
programming. Consider the 1D-symmetric random walk. That is, we
have a sequence {Xi}i≥0 of i.i.d. random variables with P (Xi = 1) =
P (Xi = −1) = 1

2 , and we define the partial sum Sn = S0 +X1 + . . .+Xn,
where S0 is some arbitrary integer representing the initial position (or
the initial wealth). Given two integers A, B ≥ 0, consider the first time
τ at which the partial sum Sn reaches level A or −B:

τ = min{n ≥ 0 : Sn = A or Sn = B}.

We wish to determine the probability that a gambler starting with 0
dollars wins A dollars before losing B dollars. Since Sτ = A or Sτ = −B,
we want to find p = P (Sτ = A|S0 = 0).

a) Define f(k) = P (Sτ = A|S0 = k) for −B ≤ k ≤ A. Now find a
recurrence relation between f(k − 1), f(k), and f(k + 1) for −B <
k < A.

b) Determine the values f(A) and f(−B). Finally, compute p.

2. Consider a homogeneous Markov chain over a finite state space S. Let
P be its transition matrix, i.e. Pij = P (Xt+1 = j|Xt = i). Show that
P has at least one eigenvalue equal to 1. Deduce from this that P has a
stationary distribution.

3. Compute the stationary distribution of the Markov transition matrix
(

1− α α
β 1− β

)
,

with (α,β) ∈ (0, 1).

4. Give i) an example of a Markov chain with multiple stationary distribu-
tions; ii) an example of a Markov chain with no stationary distribution.

5. (random walk on a graph) Consider a finite undirected graph G = (V,E).
Let di be the degree of node i, i.e., the number of edges incident to node
i or equivalently, the number of neighbor nodes of i. Assume that there
is no isolated node, i.e., di > 0 for all i. Transform this graph into a
directed graph by splitting each edge into two oriented edges of opposite
directions. Now consider this directed graph as the transition graph of a
Markov chain: node i represents state i, and the probability of transition
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from state i to state j is equal to 1/di, for all i, j. Show that a stationary
distribution for the Markov chain defined by this transition graph is given
by the vector π with coordinates

πi =
di∑

j∈V dj
.

Problem B.1.5 (the parking problem). A driver is looking for parking on a
one-way road toward his destination. Each parking place is free with proba-
bility p independently of whether other parking places are free or not. The
driver cannot observe whether a parking space is vacant until he reaches it. If
he reaches a vacant space, he can either park or continue driving to the next
space. He cannot return to vacant spaces that he has passed. If he parks k
places from his destination, he incurs a cost k. If he reaches the destination
without having parked the cost is C.

1. Formulate this problem as an MDP and write the DP algorithm. Let F (k)
be the minimal expected cost if he is k parking places from his destination
(but has not yet observed if the space is vacant or not), where F (0) = C.
Show that

F (k) = p min{k, F (k − 1)} + qF (k − 1), k = 1, 2, . . . ,

where q = 1− p.

2. Show that an optimal policy is of the form: never park if k ≥ k∗, but
take the first free place if k < k∗, where k is the number of parking
places from the destination and k∗ is the smallest integer i satisfying
qi−1 < 1/(pC + q).

Problem B.1.6. Consider the inventory problem for the case where the cost
has the general form

E

{
N∑

k=0

rk(xk)

}
,

where the functions rk are convex and rk(x)→∞ as |x|→∞ , for k = 0, . . . , N .

1. Assume that the fixed cost is zero. Write the DP algorithm for this
problem and show that the optimal ordering policy has the same form as
the one derived in class.

2. Suppose there is a one-period time lag between the order and the delivery
of inventory. That is, the system equation is of the form

xk+1 = xk + uk−1 − wk, k = 0, . . . , N − 1,

where u−1 is given. Reformulate the problem so that it has the form of the
problem of question 1 [hint: make a change of variable yk = xk + uk−1].
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Problem B.1.7 (Output Tracking with Constrained Control). Consider the
linear dynamics system

xk+1 = Axk + Buk, k = 0, 1, . . . , N − 1,

yk = Cxk, k = 0, 1, . . . , N,

with state xk ∈ Rn, input uk ∈ Rm, and output yk ∈ Rp. Let x0 = 0. We want
to choose the input sequence u0, . . . , uN−1 to minimize the output tracking cost

J =
N∑

k=1

‖yk − ŷk‖2,

subject to the constraint ‖uk‖∞ ≤ Umax, k = 0, . . . , N − 1. Here ŷ1, . . . ŷN is
a given desired trajectory to track. Take the following data

A =




1 1 0
0 1 1
0 0 1



 , B =




0

0.5
1



 , C =
[
−1 0 1

]
,

N = 100, and Umax = 0.1. The desired output trajectory is

ŷk =






0 for 0 ≤ k < 30,

10 for 30 ≤ k < 70,

0 for 70 ≤ k ≤ 100.

1. Since this is a deterministic optimal control problem, we can use optimiza-
tion techniques to find an open-loop policy, and the best open-loop and
closed-loop policies have the same performance. Formulate the problem
of finding the inputs u0, . . . , uN−1 (open-loop) in the particular problem
above as a convex optimization problem, discussing briefly why it is con-
vex. Then find numerically the optimal inputs u∗ = {u∗0, . . . , u∗N−1} and
the optimal cost J∗(0) [use an optimization package, e.g. CVX]. Plot the
trajectories {ŷk}0≤k≤N , and {yk}0≤k≤N .

2. Change the dynamics equation to

xk+1 = Axk + Buk + wk,

keeping the same numerical data as above, and with wk i.i.d. zero-mean
Gaussian with covariance matrix 10−6I3, where I3 is the 3 × 3 identity
matrix. Using the same inputs u∗ as computed in the previous question
(which ignored any process noise), run 50 simulations of the system and
plot the trajectories {yk}0≤k≤N . Discuss qualitatively the performance
of the open-loop policy for the system with disturbances.

3. Discuss briefly how you would try to solve the problem of question 2 using
dynamic programming (note: recall that we have a control constraint
here, this is not a standard LQR problem).
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