
Chapter 6

Infinite Horizon Discounted Cost
Problems

References: [Ber07, Vol. I, ch. 7, Vol II ch. 1]

6.1 Introduction
1In this chapter, we start our investigation of infinite horizon problems. There
are several reasons for considering optimal control problems with an infinite
horizon.

• The number of decision stages is really infinite, or at least a large number
which is not precisely known and distant into the future, in which case
the infinite-horizon approximation is a good model.

• In contrast to our assumption in the previous chapters, the horizon length
can be random, or itself subject to control (optimal stopping) with no a
priori specified upper bound.

• We often approximate a large number of periods, even if the horizon is
known and finite, by assuming an infinite number of periods, and hope
that this assumption will simplify the solution. Indeed, even if the gen-
eral theory becomes more involved, the solution obtained often is simpler
and has important computational and conceptual advantages: in partic-
ular, the optimal policy is often stationary (the same function at every
stage). For example, recall our discussion at the end of chapter 4 on
linear quadratic Gaussian problems, where we mentioned that the opti-
mal infinite horizon controller gain is constant and requires solving only
one algebraic Riccati equation, whereas for the optimum finite horizon
problem one must compute and/or store a different gain matrix for each
time step. If the number of stages is large, we saw by an example that
the difference in performance is typically negligible.

1This version: October 11 2009.
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The main issue arising when one considers infinite horizon problems is that
the backward DP recursion needs to be replaced by something else: indeed,
it would require initialization at k = ∞ and backward recursion for an infi-
nite number of steps to compute the value function J∗0 ! The theoretical tool
that replaces the DP algorithm is a steady-state version of the DP recursion,
called the Bellman equation (for continuous-time system, the corresponding
equation is called the Hamilton-Jacobi-Bellman equation, a terminology which
is sometimes also used for discrete time systems, and even in some cases for the
DP recursion in finite horizon problems). There are unfortunately a variety of
mathematical technicalities that force us to verify, depending on our problem
assumptions, that Bellman’s equation indeed holds.

For computations, the direct generalization of the DP algorithm to the
infinite horizon problem is called value iteration. There are other ways of
solving the Bellman’s equation as well, and we introduce another well-known
method in chapter 7, called policy iteration. In this chapter, we first give a
brief overview of some of the main classes of infinite horizon stochastic optimal
control problems, which usually require different sets of conditions and different
proof techniques to insure the validity of Bellman’s equation. Then we consider
a class of problems with perfect information, a discounted and bounded stage
cost and a discrete state space. This formulation has the simplest theory, still
has a wide range of applications, and is often the first approach tried, perhaps
by approximation, when dealing with a new problem.

6.2 Overview of Infinite Horizon Problems

When considering infinite-horizon problems, we will assume that the system is
time-homogeneous (also called stationary, but this does not mean that {xk}k≥0

is a stationary stochastic process), i.e., the system equation, cost per stage,
random disturbance statistics, state and control spaces do not change in time:

xk+1 = f(xk, uk, wk),

where xk ∈ X, uk ∈ U(xk), wk ∈ W, and the distribution Pwk(·|xk, uk) of the
disturbances is now independent of k. Infinite-horizon problems are divided
into several classes, for which the analysis techniques are often different. First
consider problems where we simply try to minimize the total cost over an
infinite number of stages. The cost associated to a given admissible policy
π = {µ0, µ1, . . .} (i.e., µk(x) ∈ Uk(x) for all k) and initial state x0 is now

Jπ
α (x0) := Jα(x0;π) = lim

N→∞
Eπ

[
N−1∑

k=0

αkc(xk, µk(xk), wk)
∣∣∣ x0

]
, (6.1)

where 0 ≤ α ≤ 1 is a discount factor (we replace lim by lim sup or lim inf if it
is not known that the limit exists). Note that the cost-function is also assumed
to be the same at each stage. The optimal cost J∗ is defined by

J∗α(x) = min
π∈Π

Jπ
α (x), (6.2)
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where Π is the set of admissible policies. Issues immediately arise concerning
the meaning of this problem, because it might well be that no matter what
policy is used, the total cost (6.1) is infinite (i.e., the limit is equal to +∞ or
−∞. For example, a one-state MDP with a single action and a nonzero reward),
or even non-convergent (the limit does not exist). So different assumptions are
made on the problem structure and discount factor, which aim at guaranteeing
a well-defined finite cost, at least for some of the policies. Here are some of the
main classes of problems studied.

1. Discounted cost problems with bounded cost per stage. Here 0 ≤ α < 1.
These problems are often found in economics applications, where α =
1/(1 + γ) with γ > 0 a rate of interest or inflation rate, in operations
research, robotics and artificial intelligence, where (1 − α) might be in-
terpreted as the probability at each stage that the system under study
breaks down permanently (see e.g. [Put94, p.126] for mathematical jus-
tification of this interpretation), or purely for mathematical convenience
(of course, this is usually not stated that way). The role of the discount
rate is to emphasize short-term rewards vs. rewards that might be ob-
tained in a more distant future. In the limiting case α = 0, we are only
concerned about the expected cost of the first stage Ew0 [c(x0, µ(x0), w0)],
which is a (stochastic) optimization problem. A discount factor α < 1
is not sufficient to guarantee convergence in general. However, the limit
(6.1) exists and is finite when the cost at every stage is uniformly bounded

sup
x∈X

sup
u∈U(x)

sup
w

|c(x, u, w)| ≤M <∞. (6.3)

Here the supw is the supremum over the values of w which can arise with
positive probability given x, u. In this case |Jπ

α (x0)| < M/(1 − α) for
all x0 ∈ X and all policies π, and the cost occurring after the kth step
is bounded by αkM/(1 − α). Moreover by the dominated convergence
theorem we can interchange the limit and expectation in (6.1)

Jπ
α (x0) := Jα(π, x0) = Eπ

x0

[ ∞∑

k=0

αkc(xk, µk(xk), wk)

]
.

We will look at this problem in more details in this chapter. Note that
(6.3) is automatically satisfied if the state, control and disturbance spaces
are finite (why?).

2. Discounted and undiscounted cost problems with unbounded cost per stage.
Assumption (6.3) is quite problematic because it does not even allow us
to consider the LQR problem with discount α < 1. But if we relax this
assumption the cost can become infinite under certain policies, which we
need to rule out during analysis. Common additional assumptions made
to analyze these problems are: assuming that all stage costs are nonneg-
ative (called negative models and negative dynamic programming!) or
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assuming that in all states there is an action with negative cost, or the
stronger assumption that all costs are nonpositive (called positive models
and positive dynamic programming!). The explanation for the inverted
terminology is that it comes from optimistic people who are maximizing
rewards instead of minimizing costs. In negative and positive dynamic
programming one usually assumes α = 1. The existence of the limit (6.1)
is then guaranteed by the monotone convergence theorem.

3. Stochastic Shortest Path Problems: here α = 1, but there is a special
absorbing cost-free termination state. Note that this is somewhat related
to the random termination interpretation above of the discounted cost
problem.

4. Average Cost Problems. Here (6.1) is replaced by

lim
N→∞

1
N

Eπ

[
N−1∑

k=0

c(xk, µk(xk), wk)
∣∣∣ x0

]
. (6.4)

With this criterion, the controller aims at optimizing the steady-state
behavior of the system. The theory for this problem is strongly related to
the asymptotic theory of Markov chains. In particular, notions of stability
come into play. It is the criterion optimized in the standard infinite-
horizon LQG problem, and it is often used in the literature on queueing
networks. Often the form of the optimal policy can be simpler than for
other criteria, such as discounted cost problems. The main drawback of
this criterion is that it does not take into account any transient regime,
which can be important or even the most important aspect of a control
problem. For example, modifying an optimal policy at a finite number
of steps still yields an optimal policy in general. So this criterion has
limitations in distinguishing policies, even if these have very different
appeal to a decision maker.

5. Other optimality criteria. Other classifications and refinements are pos-
sible. The point is to be able to isolate a problem structure for which
the infinite-horizon cost makes sense and which at the same time is broad
enough to capture interesting applications. Puterman discusses for exam-
ple additional ways of refining the average-cost optimality criterion, such
as the overtaking optimality criterion and sensitive discount optimality
criterion [Put94, chapter 5].

6.3 The Dynamic Programming Operator

The time-homogeneity assumption allows us to solve recursively the sequence
of finite horizon problems corresponding to (6.1) as the horizon length N in-
creases. Given a fixed N and an arbitrary bounded terminal cost, denoted J(x)
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(instead of cN (x) previously), consider the finite horizon problem

J∗0 (x0;N) = min
{µ0,...,µN−1}

E

[
αNJ(xN ) +

N−1∑

k=0

αkc(xk, µk(xk), wk)
∣∣∣ x0

]
.

The notation J0(x;N) is used to remember the fact that the problem is now
parameterized by N . We wish to compute J0(x0;N) for N increasing toward
+∞ in order to compute (6.1). For the N -stage finite horizon problem, the DP
algorithm is

J∗N (x;N) = αNJ(x)

J∗N−k(x;N) = min
u∈U(x)

E
[
αN−kc(x, u, w) + JN−k+1(f(x, u, w))

∣∣∣xN−k = x

]
,

where we chose to write the DP recursion for the problem with k remaining
stages. Another expression for J∗N−k is

J∗N−k(x;N) = αN−kE

[
αkJ(xN )

+
k−1∑

i=0

αic(xN−k+i, µ
∗
N−k+i(xN−k+i), wN−k+i)

∣∣∣xN−k = x

]
.

Let Vk(x) = J∗N−k(x;N)/αN−k, which represents the optimal cost for a k-stage
problem, as is apparent from the previous equation. In particular, Vk(x) does
not depend on N . Note that V0(x) = J(x), VN (x) = J∗0 (x;N) (the quantity of
interest), and from the DP algorithm we see that Vk satisfies the recursion

Vk+1(x) = min
u∈U(x)

E
[
c(x, u, w) + αVk(f(x, u, w))

∣∣∣ x
]
. (6.5)

Hence VN (x) is the optimal cost for a finite horizon problem with horizon N .
Once the recursion is initialized with V0 = J , we can compute the optimal
cost for any horizon using a single recursion. Hence if we have computed
J∗0 (·;N) = VN for a horizon of length N , we obtain J∗0 (·;N + 1) = VN+1 for a
horizon of length N +1 using (6.5), without having to restart the DP algorithm
from the initial stage. It is natural to conjecture that as k →∞, Vk converges
to the optimum cost (6.1).

The following notation will be used extensively in the following. The recur-
sion step (6.5) maps a function Vk to a new function Vk+1. Let us redefine it
as an abstract operator, denoted T , on the space of functions from X to R

(TJ)(x) = min
u∈U(x)

E
[
c(x, u, w) + αJ(f(x, u, w))

∣∣∣x
]
. (6.6)

So T maps a real-valued function J defined on X to a new function TJ on X.
If the system is specified in the form of a controlled Markov chain instead of
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the state-space form, with a countable state space and transition probabilities
pxy(u), then (6.6) is written

(TJ)(x) = min
u∈U(x)

{ ∑

y∈X

pxy(u)
[
c(x, u, y) + αJ(y)

]}
.

On a general state space, we would write

(TJ)(x) = min
u∈U(x)

{∫

y∈X

[
c(x, u, y) + αJ(y)

]
dP (y|x, u)

}
.

Remark that TJ is the optimal cost function for a one-stage α-discounted prob-
lem with stage cost c and terminal cost αJ . Similarly, for a control function
µ : X→ U, we define the operator Tµ by

(TµJ)(x) = E
[
c(x, µ(x), w) + αJ(f(x, µ(x), w))

∣∣∣x
]
.

Hence TµJ can be viewed as the cost associated with the control µ in a one-
stage α-discounted problem with stage cost c and terminal cost αJ . We denote
T 0J ≡ J , and define recursively the iterates T kJ ≡ T (T k−1J), k ≥ 1. We have
a similar notation for Tµ. By immediate backward induction, we have that
Vk ≡ T kJ , so T kJ(x) is the optimal cost for the k-stage, α-discounted problem
with initial state x, cost per stage c and terminal cost αkJ . Finally, T k

µ J and
Tµ0Tµ1 . . . Tµk−1J are the costs of the policy {µ, µ, . . .} and {µ0, µ1, . . . µk−1}
respectively for the same problem. We can rewrite the DP algorithm in a
compact form using these operator. Equation (6.5) is

Vk+1 = TVk.

Moreover, if we consider a problem with finite horizon N and optimal policy
π = {µ∗0, . . . , µ∗N=1}, then µ∗i satisfies

Tµ∗N−k−1
Vk = TVk,

which simply means that µ∗N−k−1 achieves the minimum in the DP recursion
(6.5). We now prove some useful properties of the operator T . For two functions
f, g : X→ R, we use the notation f ≤ g iff f(x) ≤ g(x) for all x ∈ X.

Lemma 6.3.1 (monotonicity lemma). For J, J ′ : X→ R, if J ≤ J ′ then TJ ≤
TJ ′ and TµJ ≤ TµJ ′. Hence for all k ≥ 0, T kJ ≤ T kJ ′ and T k

µ J ≤ T k
µ J ′.

Proof. Immediate by definition of TJ and TJ ′ as cost functions for the same
one-stage cost problem except for the final costs J ≤ J ′.

Next consider the constant unit function e : X → R, with e(x) = 1 for all
x ∈ X. The following properties follows by straightforward induction.

Lemma 6.3.2 (offset property lemma). For any r ∈ R, k ≥ 0, we have

T k(J + re) = T kJ + αkre

T k
µ (J + re) = T k

µ J + αkre.
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These two properties hold for any value of α. Next, we turn to the cru-
cial property which is at the origin of the simpler analysis of the convergence
properties in the discounted cost case. Let B(X, R) be the set of bounded real-
valued functions on R. It turns out that T is an α-contraction on B(X, R) (note
that T is not a linear or affine mapping however, although Tµ is affine).

Exercise 13. Show that if J ∈ B(X, R) and the bounded cost per stage as-
sumption (6.3) is satisfied, then TJ ∈ B(X, R).

Lemma 6.3.3 (max-norm contraction lemma). Under the bounded cost per
stage assumption (6.3), T and Tµ are α-contractions on B(X, R) for the sup-
norm ‖ ·‖∞. For all J, J ′ : X→ R bounded, and for all k ≥ 0, we have

‖T kJ − T kJ ′‖∞ ≤ αk‖J − J ′‖∞,

‖T k
µ J − T k

µ J ′‖∞ ≤ αk‖J − J ′‖∞.

Proof. Let r = ‖J − J ′‖∞. Then

J ′ − re ≤ J ≤ J ′ + re.

Then use the monotonicity lemma and the offset property to get

T kJ ′ − αkre ≤ T kJ ≤ TJ ′ + αkre.

In other words, ‖T kJ − T kJ ′‖∞ ≤ αkr.

Finally, we show that starting with a bounded function J , the iterates
V0 ≡ J, V1 = TV0 = TJ, . . . , Vk = TVk−1 = T kJ, . . . , converge to the true cost,
as expected. Note that the initial function J does not impact the result, as
long as it is bounded. This is expected since its effect is essentially forgotten
through the discounting (recall that the terminal cost in the definition of Vk

as the cost of a k-stage problem is αkJ). Also, performing these iterations
gives us an algorithm to compute the optimal cost function, called the value
iteration algorithm.

Lemma 6.3.4 (convergence of the DP algorithm). For any J : X → R, and
under the bounded cost per stage assumption (6.3), the iterates T kJ converge
uniformly to J∗:

lim
k→∞

‖T kJ − J∗‖∞ → 0.

Proof. For every K, x0 and policy π = {µ0, µ1, . . .}, we have

Jπ
α (x0) = E

[
K−1∑

k=0

αkc(xk, µk(xk), wk)

]
+ lim

N→∞
E

[
N∑

k=K

αkc(xk, µk(xk), wk)

]
.

Under the bounded cost per stage assumption (6.3), we have
∣∣∣∣∣ lim

N→∞
E

[
N∑

k=K

αkc(xk, µk(xk), wk)

] ∣∣∣∣∣ ≤
αKM

1− α
.
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Hence

Jπ
α (x0)−

αKM

1− α
− αK‖J‖∞ ≤ E

[
K−1∑

k=0

αkc(xk, µk(xk), wk) + αKJ(xK)

]

≤ Jπ
α (x0) +

αKM

1− α
+ αK‖J‖∞.

Taking now the infimum over policies, we get for all x0 and K (rigorously,
consider the infimum for one inequality at a time, from left to right, to get
this):

J∗(x0)−
αKM

1− α
− αK‖J‖∞ ≤ (TKJ)(x0) ≤ J∗(x0) +

αKM

1− α
+ αK‖J‖∞.

The result follows by letting K →∞.

6.4 Contraction Mappings

The next set of results, concerning Bellman’s equation, will follow directly from
the properties of the DP operator, in particular from the contraction property.
We recall some of the necessary background on contraction mappings in this
section. Let (X, d) be a complete metric space. A map F : X → X is said to
be a contraction if there is a constant λ < 1 such that d(F (x), F (y)) ≤ λd(x, y)
for all x, y ∈ X. Sometimes, λ is called the modulus of contraction.

Exercise 14. Show that any contraction is uniformly continuous (in fact, it
satisfies the definition of Lipschitz continuity).

Theorem 6.4.1 (Banach fixed point theorem or contraction principle). Let X
be a nonempty complete metric space. Every contraction F : X → X has a
unique fixed point x∗, i.e., a point in X such that F (x∗) = x∗. Furthermore if
x ∈ X then d(F kx, x∗) ≤ λkd(x, x∗).

Proof. To show uniqueness, suppose x, x′ are both fixed points. Then d(x, x′) =
d(F (x), F (x′)) ≤ λd(x, x′), which only makes sense if x = x′. The second
part of the theorem tells us how to prove the existence of a fixed point and a
constructive method for computing it. Let x0 ∈ X and consider the sequence
of iterates xn+1 = F (xn), n ≥ 0. We have d(xi, xi+1) = d(F (xi−1), F (xi)) ≤
d(xi−1, xi) and so by immediate induction

d(xi, xi+1) ≤ λid(x0, x1).
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Then if j ≥ i ≥ k,

d(xi, xj) ≤ d(xi, xi+1) + d(xi+1, xi+2) + . . . + d(xj−1, xj)

≤ (λi + . . . + λj−1)d(x0, x1)

≤ λi

( ∞∑

n=0

λn

)
d(x0, x1)

≤ λk

1− λ
d(x0, x1).

Hence {xn}n≥0 is a Cauchy sequence, and therefore converges to a limit x̂ ∈ X
since X is complete. Since F is continuous,

F (x̂) = F ( lim
n→∞

xn) = lim
n→∞

F (xn) = lim
n→∞

xn+1 = x̂.

So x̂ is the desired fixed point. For the last part, just note that

d(F kx, x∗) = d(F kx, F kx∗) ≤ λkd(x, x∗).

Remark. The Banach fixed point theorem is an elementary result that forms
the basis of a number of important applications, so you should remember it.
You probably used it before to show the existence of the solutions of ODEs, or
to prove the inverse function theorem in calculus.

Since we know from lemma (6.3.3) that T is a contraction on (B(X, R), ‖ ·
‖∞), we can apply the contraction principle if we know that B(X, R) is complete
for the sup-norm ‖ ·‖ ∞. This is in fact a classical result in analysis. For our
purposes later on, we will consider the slightly more general weighted sup-norm.
Let v : X→ R be a function such that v(x) > 0 for all x ∈ X. Then we define

‖f‖v,∞ = sup
x∈X

∣∣∣∣
f(x)
v(x)

∣∣∣∣ ,

for all functions f : X → R. It is easy to show that this defines a norm. Then
denote (the vector space)

Bv(X, R) =
{

f : X→ R
∣∣∣‖f‖v,∞ <∞

}
.

Lemma 6.4.2. The vector space Bv(X, R) is complete for the norm ‖ ·‖ v,∞.

Exercise 15 (optional). Prove lemma 6.4.2. You can assume v(x) = 1 for
all x (hint: start by showing pointwise convergence using the fact that R is
complete).
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6.5 Bellman’s Equation for Discounted Cost Problems
with Bounded Cost Per Stage

From lemma 6.3.3, 6.3.4, and the results in section 6.4, the next theorem is
just a paraphrase of the contraction principle.

Theorem 6.5.1. Assume that 0 ≤ α < 1 and that the bounded cost-per-stage
assumption (6.3) holds. The optimal cost function J∗ is the unique fixed point
in B(X, R) of the DP operator T , i.e., it satisfies Bellman’s equation

J∗ = TJ∗ (6.7)

Moreover for any bounded function J : X → R, the sequence T kJ converges
uniformly (and linearly with rate α) to the optimal cost J∗

‖J∗ − T kJ‖∞ ≤ αk‖J∗ − J‖∞.

Similarly the cost Jµ of the stationary policy {µ, µ, . . .} is the uniques fixed
point of Tµ in B(X, R), and so it satisfies the equation

Jµ = TµJµ,

and we have, for any J : X→ R

‖Jµ − T k
µ J‖∞ ≤ αk‖Jµ − J‖∞.

Finally, a stationary policy µ is optimal (Jµ = J∗) if and only if µ(x) attains
the minimum in Bellman’s equation (6.7) for each x ∈ X, i.e.,

TJ∗ = TµJ∗. (6.8)

Proof. We have proved in lemma 6.3.4 that the iterates T kJ converge to the
optimal cost J∗. They also converge to the unique fixed point of T by the
Banach fixed point theorem, so J∗ is the unique solution of the fixed point
equation 6.7. It only remains to prove the characterization of the optimal
policy. If µ is optimal, then Jµ = J∗ and so

TµJ∗ = TµJµ = Jµ = J∗ = TJ∗.

Conversely if (6.8) is satisfied, then by Bellman’s equation

TµJ∗ = TJ∗ = J∗,

so J∗ is a fixed point of Tµ, and by unicity we must have J∗ = Jµ. So µ is
optimal.

We have seen earlier the value iteration algorithm, which starts with any
bounded function J , for example J ≡ 0, and compute the iterates T kJ . This
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produces a sequence of functions that converges uniformly to the value function
J∗. Moreover, if we know J∗, then we can obtain the optimal policy µ∗ from
(6.8): in state x, µ∗(x) attains the minimum in Bellman’s equation. More
explicitely, Bellman’s equation for a discounted cost problem is

J∗(x) = min
u∈U(x)

E [c(x, u, w) + αJ∗(f(x, u, w))] .

If X is finite, this is a system of nonlinear equations, with unknowns the values
{J(x)}x∈X. This system can also be written, for a controlled Markov chain
model,

J∗(x) = min
u∈U(x)




∑

y∈X

pxy(u)
[
c(x, u, y) + αJ∗(y)

]


 .

If for all x this minimum is attained at µ∗(x), then µ∗ is a stationary optimal
policy. Finally for Jµ we would write

Jµ(x) =




∑

y∈X

pxy(µ(x))
[
c(x, µ(x), y) + αJµ(y)

]


 .

Using the iterations T k
µ J to compute the cost Jµ of a stationary policy µ is

called policy evaluation.
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