
Chapter 11

Introduction to Approximate DP
and Model Predictive Control

1In this chapter, we start our investigation of approximation methods or “sub-
optimal control”. When DP is used as a computational technique (i.e., not
to study theoretical properties of the optimal policy as in inventory control
or linear quadratic control), we encounter in most application what Bellman
called the “curse of dimensionality”. DP is an efficient way to solve an optimal
control problem, but the curse says that the modeling step leads to state-space
explosion, i.e., a number of states that grows exponentially with the param-
eters of the problem. For example, suppose the state space is X = Rd. To
apply the dynamic programming over a finite horizon, or value iteration for an
infinite-horizon problem, some form of discretization is necessary. Suppose we
quantize real values to represent them by only n values. Then the number of
states in the problem is nd, which grows exponentially with the dimension of
X. For another example, consider a small queueing network (e.g. a commu-
nication network, or a production line) with 10 queues. The service rates at
the queues, and the routing between the queues can be controller, and such
problems can be formulated as optimal control problems. But assume say that
all queues have a finite buffer which can contain at most 20 jobs. The number
of states for this problem is then 2010 ≈ 1013, and the model is useless for a
direct optimal control approach.

One important point that I would like to emphasize is that modeling large-
scale systems for control must usually be done differently than modeling for
simulation or analysis. For example, if a control policy is fixed, one can usu-
ally simulate large queueing systems more or less directly using discrete-event
simulators (see e.g. ns-2 - here I’m brushing aside the difficulty of simulat-
ing certain stochastic systems, but let’s say that it’s still much easier than
controlling them). Consider also the exploding research on simulation and in-
ference for large-scale networks in physics, biology, the social sciences, or for
the electric grid. For control, much simpler models than those encountered in

1This version: October 11 2009.

95

these fields are generally needed to allow computations. And developing the
right models that capture the essential behavior of the system without adding
extra complexity is a challenge in itself. The reward is that using the control
laws developed for such good simplified models can usually provide enormous
benefits for the real-world system as well. Currently we have some ideas on
how to develop these simplified models for certain categories of problems. For
example, we can use model-order reduction for linear state-space systems, ag-
gregation for large Markov chains, and fluid (and Brownian) models (mostly
used for queueing networks). This chapter does not consider model simplifica-
tion techniques, as does most of Bertsekas’ book (aggregation is mentioned on
p.319). Instead, we focus on approximation methods for the control of a com-
plex model. But it is good to keep the remarks above in mind for your research,
because there is not one approach that is clearly preferable to an other in terms
of performance, and good approximate models usually offer more insight into
the control problem.

In this chapter we consider certainty equivalent control, rollout policies, and
model predictive control (MPC). Some references are [Ber07, chapter 6] and
Stephen Boyd’s EE364II 2008 lectures 15 and 16 [Boyb] on fast MPC.

11.1 Certainty Equivalent and Open-Loop Feedback
Control

CEC: fixing process disturbances

The certainty equivalent controller (CEC) is a heuristic controller that applies
the certainty equivalence and separation principles of linear quadratic control
theory, even if these do not formally hold for the problem. For a finite horizon
problem with horizon N , and possibly partial informations, the heuristic can
follow the following recipe at stage k:

1. Given the information vector Ik, compute an estimate x̂k(Ik), for exam-
ple the conditional mean estimate x̂k(Ik) = E[xk|Ik].

2. Fix the process disturbances {wj}j≥k at some typical deterministic value,
for example their mean w̄j(xj , uj) = E[wk|xj , uj]. Hence if we know that
wj are i.i.d. and zero mean, we could just fix them to 0 below.

3. Solve the deterministic (perfect information) optimal control problem

min cN (xN) +
N−1∑

j=k

cj(xj , uj , w̄j(xj , uj)),

with the initial condition xk = x̂k(Ik) and the constraints uj ∈ Uj ,
xj+1 = fj(xj , uj , w̄j(xj , uj)). Note that because this is a deterministic
control problem, optimization (over open-loop policies) can be used, see
chapter 2.

96

4. Use only the first element ūk = µ̄k(Ik) in the control sequence found. We
land in a new state xk+1 make a new observation yk+1 and now repeat
from step 1.

Due to the equivalence between open-loop and closed-loop policies for de-
terministic problems in step 3, we have two ways of computing the CEC, one
offline and one online method. In the offline method, we solve once the full
horizon deterministic optimal control, using a method such as DP that provides
a feedback policy, denoted πd = {µd

0, . . . , µ
d
N−1}

min cN (xN) +
N−1∑

j=0

cj(xj , µj(xj), w̄j(xj , uj)) (11.1)

subject to µj(xj) ∈ Uj , xj+1 = fj(xj , µj(xj), w̄j(xj , uj)), j ≥ 0. (11.2)

Then we store the functions µd
0, . . . µ

d
N−1. In step 3, there is no need to solve

any optimization problem any more, so we can skip this step, and we just apply
µ̄k(Ik) = µd

k(x̂k(Ik)) in step 4. In the online approach, we do not compute the
feedback policy, and we use optimization in step 3. Note that this requires
solving a new optimization problem at every stage, for a new initial condition
xk = x̂k(Ik) (in fact, among other obvious variants, you could use more that
one control input before reoptimizing). If the problem has some interesting
structure, e.g. if it is convex (convex stage cost functions, linear dynamics),
there are powerful methods for doing this. Note that linear constraints of the
form xk+1 − Akxk − Bkuk = w̄k(xk, uk) correspond to a sparse and banded
constraint matrix in the optimization problem, and this can be exploited in
numerical methods. Moreover, we also want to take advantage of the fact that
the optimization problems at successive stages are quite similar (see the warm
start methods in optimization).

Note that the CEC is optimal for linear quadratic problems, as shown in
chapters 4 and 5. Often, it performs well. However, it is possible to construct
examples where the CEC performs strictly worse than the optimal open-loop
controller (i.e., which does not observe the trajectory and never recompute the
controls - see problem B.3.4) !

Open-loop feedback control

In the CEC, since we fix the process disturbances and consider a perfect infor-
mation problem in step 3, we can equivalently solve over open-loop or closed
loop policies. A variant, called Open-Loop Feedback Control (OLFC), does
not fix the process disturbances, but still solves at each stage an open-loop
control problem, which is now more complicated than step 3 for CEC because
it involves the computation of some expected values. Let us assume that the
observation noise vk only depends on xk, uk, and wk, so that Pxk|Ik

is a suffi-
cient statistic for the partial information problem (see section 5.1). The OLFC
proceeds as follows at stage k:

97

1. Given Ik, compute Pxk|Ik
(skip this step for a perfect information prob-

lem). In general, this step can be difficult, and some form of approxima-
tion might be necessary.

2. Compute an optimal open-loop control sequence {ūk, . . . , ūN−1} for the
problem

min E
[
cN (xN) +

N−1∑

j=k

cj(xj , uj , wj)
∣∣∣Ik

]

s.t. xj+1 = fj(xj , uj , wj), uj ∈ Uj , j ≥ k.

Note here that in contrast to the CEC, because of the stochastic dis-
turbances {wj}j≥k there are in general closed-loop policies that would
perform better than the sequence ūk:N−1. Also the optimization prob-
lem here is a stochastic optimization problem, which is in general harder
to deal with than the CEC optimization problem with fixed disturbances.
Computing the conditional expectations appearing in this optimization
problem makes use of Pxk|Ik

. The simplification in the OLFC comes
from the fact that we ignore the future observations in the computation
of ūk:N−1.

3. As in the CEC, apply only the first input µ̄k(Ik) = ūk. Then go back
to step 1, with the new control ūk and observation yk+1 included in the
information vector Ik+1.

Although the OLFC is harder to compute than the CEC, it does always
perform at least as well than the pure open-loop controller. So the OLFC
controller uses the measurements advantageously.

Proposition 11.1.1. The cost Jπ̄ of an OLFC and Jol of an optimal open-loop
policy satisfy Jπ̄ ≤ Jol.

This proposition is proved in [Ber07, proposition 6.2.1]. It’s good to know
that the open-loop cost provides a bound on the OLFC cost, but since the
open-loop control law is often very bad for control problems with disturbances
(see problem B.1.7), I don’t think that the result is terribly exciting in general.
You can read about more variants of CEC and OLFC in [Ber07, sections 6.1
and 6.2].

11.2 Limited Lookahead and Rollout Policies

Limited lookahead and rollout policies, as well as many of the approximation
techniques we will encounter later on, rely on an approximation J̃k(·) of the
cost-to-go in the DP algorithm. Different algorithms differ essentially by the
way the approximation is obtained. For a perfect information problem, the

98

one-step lookahead policy takes at stage k and in state xk the control µ̄k(xk)
which attains the minimum in

min
uk∈Uk(xk)

E
[
ck(xk, uk, wk) + J̃k+1(fk(xk, uk, wk))

]
. (11.3)

That is, we just replace the optimal cost-to-go J∗k+1 by its approximation J̃k+1

in the DP recursion step, with in addition J̃N = cN . Similarly, we can consider
a two-step lookahead policy, where J̃k+1 in (11.3) itself is obtained using a
one-step lookahead

J̃k+1(xk+1) = min
uk+1∈Uk+1(xk+1)

E
[
ck+1(xk+1, uk+1, wk+1)

+J̆k+2(fk+1(xk+1, uk+1, wk+1))
]
,

and J̆k+2 is some approximation of the optimal cost-to-go J∗k+2. You can
define similarly k-step lookahead policies. Note that you can apply this method
to infinite horizon as well, where J̃(xk+1) in the one-step lookahead policy just
represents an approximation of the optimal infinite-horizon cost starting at
state xk+1. If the minimization problem over Uk(xk) is too hard, say for the
one-step lookahead policy, we can also consider only a promising set of controls
Uk(xk) ⊂ Uk(xk)

µ̄k(xk) ∈ arg min
uk∈Uk(xk)

E
[
ck(xk, uk, wk) + J̃k+1(fk(xk, uk, wk))

]
. (11.4)

Even more generally, the minimization over Uk(xk) could be done approxi-
mately. Consider the following proposition.

Proposition 11.2.1. Let π = {µ̄0, µ̄1, . . . , µ̄N−1} be a policy such that for all
k and xk we have

E
[
ck(xk, µ̄k(xk), wk) + J̃k+1(fk(xk, µ̄k(xk), wk))

]
≤ J̃k(xk) + δk, (11.5)

for some scalars δ0, . . . , δN−1. Then for all xk and k, we have

Jπ,k(xk) ≤ J̃k(xk) +
N−1∑

j=k

δj . (11.6)

Note that in this proposition Ĵk, just like J̃k, need not represent the cost
of an actual policy of the problem (we have left the question of how to obtain
J̃k completely open at this point). The inequalities (11.6) provide a bound on
the performance of the policy π. This proposition can be specialized to the
following result regarding the performance of one-step lookahead policies, with
additionally a refined performance bound.

99

Corollary 11.2.2. Consider the one-step lookahead policy π defined by (11.4),
and a cost approximation J̃k which satisfies (11.5) for all k and xk, with δ0 =
. . . = δN−1 = 0

Ĵk(xk) := min
uk∈Uk(xk)

E
[
ck(xk, uk, wk)+ J̃k+1(fk(xk, uk, wk))

]
≤ J̃k(xk). (11.7)

Then we have the following bound on the performance of the policy π

Jπ,k ≤ Ĵk ≤ J̃k.

Note that the result of the proposition could replace the result of the corol-
lary to characterize the performance of a one-step lookahead policy which per-
forms the minimization (11.4) only approximately. One way to find a cost
approximation that satisfies condition (11.7) will be described in the next sec-
tion.

Proof of the proposition. By backward induction. We have Jπ,N = J̃N = cN .
Next assume that for all xk+1, we have

Jπ,k+1(xk+1) ≤ J̃k+1(xk+1) +
N−1∑

j=k+1

δj .

Then

Jπ,k(xk)
(DP)
= E

[
ck(xk, µ̄k(xk), wk) + Jπ,k+1(fk(xk, µ̄k(xk), wk))

]

(induction)
≤ E

[
ck(xk, µ̄k(xk), wk) + J̃k+1(fk(xk, µ̄k(xk), wk))

]
+

N−1∑

j=k+1

δj

(11.5)
≤ J̃k(xk) + δk +

N−1∑

j=k+1

δj .

This concludes the induction step.

Exercise 16. Prove corollary 11.2.2. You need to redo the proof above in
order to get the improved bound Jπ,k ≤ Ĵk.

Rollout Policies

The rollout algorithm is a special name given to the one-step lookahead algo-
rithm when J̃k is the cost of an actual (suboptimal) policy π for the problem.
This initial policy π is called the base policy. This heuristic policy could be for
example a myopic policy (minimizing at each state only the stage cost). Since
J̃k is the cost of a policy, we can use the DP algorithm to see that in this case
J̃k satisfies

J̃k(xk) = E
[
ck(xk, µ̃k(xk), wk) + J̃k+1(fk(xk, µ̃k(xk), wk))

]
,

100

and so

J̃k(xk) ≥ min
uk∈Uk(xk)

E
[
ck(xk, uk, wk) + J̃k+1(fk(xk, uk, wk))

]
,

at least if the base policy satisfies µ̃k(xk) ∈ Uk(xk), which we assume. In other
word, inequality (11.7) is verified. The rollout policy based on π is the one-step
lookahead policy which uses the cost J̃k of the base policy π as approximation
of the optimal cost-to-go. From the preceding discussion and corollary 11.2.2,
we see that the performance of the rollout policy is always at least as good
as the performance of the base policy. Often in practice, one can obtain sig-
nificant improvements over the base policy. If we have several base heuristics
π1, . . . , πm, we can also obtain a one-step lookahead policy that performs at
least as well as any of them by considering the cost approximation ([Ber07,
p.307])

J̃k(xk) = min{Jπ1,k(xk), . . . , Jπm,k(xk)}.

Note that the rollout policy is based on the same idea as policy improvement
in the policy iteration algorithm. We can also define rollout policies based on
l-step lookahead.

Cost-to-Go Approximations

There is no general way of selecting a good cost-to-go approximation for limited
lookahead policies, and the choices are usually highly problem specifics. This
will be discussed in more details in the following chapters, but here are a few
initial remarks.

1. First, we do not necessarily need J̃k to be a good approximation of the
true optimal cost J∗k , but only that the relative values are approximated
well, i.e., for an l-step lookahead policy

J̃k+l(x)− J̃k+l(x′) ≈ J∗k+l(x)− J∗k+l(x
′),

for all states x, x′ that can be reached in l steps from the current step. For
example, if J̃k+l and J∗k+l differed by a constant, then the l-step policy
would be optimal.

2. If the rollout approach is used, the cost of the base policy need not be
computed analytically, but can be obtained by simulation (Monte-Carlo
simulations if the problem is not deterministic). In order to compute a
rollout policy with such a method, say for perfect information problems,
we only need a simulator (or a way to perform experiments) that, given
a state and control, can generate a value for the next state and for the
corresponding stage cost. In an online control approach, we can in state
xk at stage k use the simulator to evaluate approximately the expected

101

value

Qπ,k(xk, uk) = E
[
ck(xk, uk, wk) + Jπ,k+1(fk, uk, wk)] (11.8)

= E



ck(xk, uk, wk) +
N−1∑

j=k+1

cj(xj , µ̃j(xj), wj)



 ,

for each possible control uk, where π = {µ̃0, . . . , µ̃N−1} is the base pol-
icy. The expected value on the second line is calculated approximately
for example by taking the empirical average of the cost obtained for sev-
eral trajectories (one trajectory suffices if the problem is deterministic).
To speed-up calculations, we might also want to approximate Jπ,k+1 by
simpler function Ĵk+1, truncate the horizon, etc.

3. Related to the remarks in the introduction, we can choose as J̃k the
optimal cost-to-go for a simplified but related problem ([Ber07, section
6.3.3. and 6.3.4.]). We will discuss fluid approximations, where J̃k is
obtained as the cost of a related deterministic problem, later in the course.
It is hard to obtain rigorous performance bounds with these methods, but
they usually perform well if the simplified problem is chosen adequately.

4. We can try to obtain J̃k within a parametrized family of functions and
develop a scheme to tune the parameters. Such a parametric family
of functions is often called an approximation architecture, and we write
J̃k(x, r) where r is a finite-dimensional parameter (its coordinates are
called “weights” in machine learning parlance). We will cover ways of
tuning these weights later on for infinite-horizon time-homogeneous prob-
lems, in order to obtain a good approximation of the optimal cost-to-go.
Clearly however to have any hope of obtaining a good approximation, we
also need a rich enough family of functions. Sometimes it is intuitively
possible to characterize the state x of the problem by a set of real-valued
features φ1(x), . . . , φm(x), which are typically handcrafted based on hu-
man experience and intuition. For example, the state of a chess game
is very high dimensional, but the features of a board configuration could
score material balance, mobility, etc. Then a popular method is to use a
linearly parametrized family of functions

J̃k(x) = Ĵ(φ(x), r) =
m∑

i=1

φi(x)ri. (11.9)

The features should encode the nonlinearity present in J . These features
partition the state space X into subsets of states that have the same
features

Sv = {x | φ(x) = v},

and will have the same values for the cost-to-go approximation under the
parameterization. Hence the features should capture a form of similarity

102

between states. This is a type of state aggregation. If the state space
X is finite with cardinality |X| = n, then a function X → R is just a
real n-dimensional vector and so J∗ ∈ Rn, an finite but high-dimensional
space in practice. A linear approximation architecture as in (11.9) can be
viewed as projecting functions X→ R such as J∗ on a space of dimension
m, where m is generally chosen so that m << n. Representing without
loss of generality X by the set {1, . . . , n}, we can use the notation J to also
represent the vector J = [J(1), . . . , J(n)]T , and similarly for the features
φi = [φi(1), . . . , φi(n)]T . Then, droping the time index k, we can rewrite
(11.9) as

J̃ = Φr,

where Φ is the matrix n×m matrix

Φ =
[
φ1

∣∣∣ . . .
∣∣∣φm

]
.

Hence J∗ is approximated by a function in the subspace

S = im Φ = {Φr|r ∈ Rm},

an m-dimensional subspace of Rn (unless the features are poorly chosen
and some are linearly dependent).

5. Replacing Jπ,k+1 by J∗k+1 in (11.8), we define

Q∗
k(xk, uk) = E

[
ck(xk, uk, wk) + J∗k+1(fk, uk, wk)],

known as the Q-factor of the state-control pair (xk, uk) at time k (no
particular reason for that name, it’s just that the first person to introduce
it used the letter Q). The quantity Qk(xk, uk) is the cost-to-go of the
policy that takes action uk at times k in state sk and then follows the
optimal policy. Qπ,k(xk, uk) has the same interpretation with the optimal
policy replaced by policy π. We have said above that rollout can be
performed using approximations Q̃π,k(·, ·) of the Q-factors obtained by
Monte-Carlo simulations. The approximate rollout control is

µ̄k(xk) ∈ arg min
uk∈Uk(xk)

Q̃π,k(xk, uk). (11.10)

To compare two controls uk, u′k using a simulation based methods, it
is usually more accurate to work with the differences Qπ,k(xk, uk) −
Qπ,k(xk, u′k) and estimate it by sampling the quantity

Ck(xk, uk,wk:N−1)− Ck(xk, u′k,wk:N−1), (11.11)

where

Ck(xk, uk,wk) = cN (xN) + ck(xk, uk, wk) +
N−1∑

j=k+1

cj(xj , µ̃j(xj), wj),

103

if the policy π after stage k+1 is µ̃k+1, µ̃k+2, Note that in (11.11), the
same noise realization is used in Ck(xk, uk,wk:N−1) and Ck(xk, u′k,wk:N−1).
See the discussion in [Ber07, p.361]. Also, we can develop methods that
approximate the Q-factors directly, e.g. using approximation architec-
tures Q̃k(x, u; r) ≈ Q∗

k(x, u), instead of approximating the cost-to-go.
For example, we can consider a parametric architecture of the form

Q̃(x, u; r) =
m∑

k=1

rkφk(x, u).

Methods based on Q-factors are interesting in reinforcement learning,
because the minimization (11.10) does not require the knowledge of the
transition probabilities of the controlled Markov chain. More on this
later.

Example 11.2.1 (polynomial approximation). Suppose that the state space
decomposes as the product X = X1×. . .×Xq, a common situation that arises for
example in the control of queueing networks. Assume Xi ⊂ R, for example Xi =
{0, 1, . . . ni} (e.g., a finite capacity queue). Then a choice of architecture could
consist in approximating J∗ using polynomials in the variables x1, . . . , xq of
degree at most d. The parameter r consists of the coefficients of the polynomial.
For example for d = 2 (quadratic polynomials), this space has dimension 1 +
q + q(q + 1)/2, and the features can be taken to be

φ0(x) = 1, φi(x) = xk, φij(x) = xixj , 1 ≤ i < j ≤ q.

Then

J̃(x; r) = r0 +
q∑

i=1

rixi +
∑

1≤i<j≤q

rijxixj .

11.3 Receding Horizon and Model Predictive Control

Receding Horizon Control

Receding (or rolling) horizon control is essentially l-step lookahead control with
the cost-to-go approximation J̃k+l equal to a fixed function V . For example,
we can take V ≡ 0, in which case the choice of control uk is made by ignoring
the cost incurred after l− 1 stages (with l = 1 this is usually called the greedy
policy). Another variant takes V ≡ cN , if the terminal cost is important. We
can use the receding horizon approach for infinite-horizon problems, keeping the
length of the horizon of the problems solved at each stage always the same (this
produces a stationary policy for time-homogeneous problems). The receding
horizon approach can also be used in rollout to obtain an approximation of
the cost of the base policy, and it is actually possible that this results in a
better performance of the rollout policy than when using the full horizon to
evaluate Jk,π [Ber07, p.368]. It can be combined with CEC and OLFC, where

104

the optimization steps only compute control sequences for a fixed horizon N
(which is kept the same at all steps in an infinite horizon problem).
Remark. See [Ber07, p.367] for an example that shows that increasing the
length of the horizon can decrease the performance of the controller!

Stability Issues in Model Predictive Control

Model predictive control (MPC) is a combination of some of the techniques
mentioned earlier, such as CEC and the receding horizon approach. Initially, it
was motivated by the desire to introduce nonlinearities and control and/or state
constraints in the linear-quadratic framework, and obtain a suboptimal but sta-
ble closed-loop system (although we haven’t covered this, it turns out that one
big advantage of the LQR/LQG controllers for infinite horizon problems is
that they insure stability of the closed-loop system - under reasonable control-
lability conditions, of course). Let us consider MPC for the time-homogeneous
deterministic system

xk+1 = f(xk, uk), ∀k ≥ 0

controlled over an infinite horizon, with quadratic stage cost

xT
k Qxk + uT

k Ruk, ∀k ≥ 0,

with Q + 0 and R + 0. There are now state and control constraints

xk ∈ X ⊂ Rn, uk ∈ Uk(xk), ∀k ≥ 0,

with 0 ∈ X. Moreover the origin is an equilibrium point of the system with zero
input, i.e., 0 ∈ U(0) and f(0, 0) = 0. We want to find a stationary controller
(i.e., the such that control law µk is independent of k) that applies the control
µ̄(x) ∈ U(x) in state x so that the trajectory of the closed-loop system

xk+1 = f(xk, µ̄(xk)),

satisfies the state constraints, and the total cost over an infinite number of
stages is finite

∞∑

k=0

xT
KQxk + µ̄(xk)T R µ̄(xk) <∞. (11.12)

Because Q and R are positive definite, this last condition implies xk → 0 and
µ̄(xk) → 0 as k → ∞, for all initial states x0 ∈ X. A sufficient condition
for such a controller to exist is that for any initial condition x0 there exist an
integer m and a sequence of controls u0:m−1 that brings x0 to xm = 0 in m
stages while satisfying the constraints x1, . . . , xm−1 ∈ X (then letting uk = 0
for k ≥ m leaves the system at the origin since f(0, 0) = 0). This is a sort of
constrained controllability assumption.

Assuming that this condition is satisfied, MPC can proceed as follows, if
the system is in state xk at stage k

105

1. Solve the m-stage problem

Ĵ(xk) = min
k+m−1∑

j=k

xT
j Qxj + uT

j Ruj (11.13)

subject to xj+1 = f(xj , uj), j ≥ k

xj ∈ X, uj ∈ Uj(xj), j ≥ k

xk+m = 0.

Note the presence of the additional terminal constraint xk+m = 0. The
problem has a feasible solution by the constrained controllability assump-
tion. Since the problem is deterministic, we can solve it using optimiza-
tion methods, and find an optimal control sequence {ūk, . . . , ūk+m−1}.

2. Apply the first control input µ̄k(xk) = ūk, and discard the rest of the
control sequence. Then observe the new state xk+1 and repeat. Note that
xk+1 can be predicted with certainty for such a deterministic problem,
but in practice the MPC control law is applied on a real-world system,
which is subject to disturbances.

Let us now see that the MPC controller satisfies the stability condition
(11.12). We show this by establishing a sort of dissipativity or Lyapunov con-
dition for Ĵ defined in (11.13). Note that

Ĵ(xk) = xT
k Qxk + ūT

k Rūk + J̃(xk+1), (11.14)

where

J̃(x) = min
m−2∑

j=0

xT
j Qxj + uT

j Ruj

subject to xj+1 = f(xj , uj), j ≥ 0
xj ∈ X, uj ∈ Uj(xj), j ≥ 0
xm−1 = 0,

with the usual convention J̃(x) = +∞ if this optimization problem is infeasible.
Hence J̃ is defined exactly like Ĵ , except that the horizon is changed from m
to m − 1. Clearly Ĵ(x) ≤ J̃(x) for all x ∈ X, because we allow one more step
in the definition of Ĵ . Hence from (11.14) we get

Ĵ(xk) ≥ xT
k Qxk + ūT

k Rūk + Ĵ(xk+1).

By immediate recursion,

Ĵ(x0) ≥
K∑

k=0

(xT
k Qxk + uT

k Ruk) + Ĵ(xK+1),

106

where the control inputs and states uk, xk in this expression are generated by
the MPC algorithm. Then noting that J(x) ≥ 0, and letting K →∞, we get

∞∑

k=0

(xT
k Qxk + uT

k Ruk) ≤ Ĵ(x0) <∞. (11.15)

Note that (11.15) provides an upper bound on the performance of the MPC
algorithm.

In the scheme above, one must balance two effects for the choice of an ad-
equate value of the horizon m. The requirement of constrained controllability
is more easily established for larger values of m. Moreover, the performance
upper bound Ĵ(x) (see 11.15) decreases with larger m, which provides an ad-
ditional incentive for larger values of m. However, as m increases it becomes
harder to solve the optimization problems (11.13) at each stage, which is an
important consideration in real-time applications.
Remark. Note that you can also interpret the MPC scheme above as a rollout
policy using the base policy defining J̃ (driving the state to 0 in m− 1 stages
and keeping it there afterwards using 0 inputs). Indeed we have

Ĵ(xk) = min
u∈U(xk)

{xT
k Qxk + uT Ru + J̃(f(xk, u))},

see (11.14) above.
There are many variations on the basic MPC scheme, which generally use

several of the ideas described in this chapter. For example, instead to adding
a terminal constraint xk+m = 0 in the problem (11.13), one can add a large
penalty term in the cost function for nonzero values of the state xk+m. The
main theme of the literature on MPC is to maintain stability of the closed-loop
system, at least before including the effect of disturbances.

107

