
5.3 Finite State Space Problems: POMDPs
2The filtering problem for hidden Markov models (HMMs), which is essentially
the problem of evaluating the cost of a fixed control policy under imperfect
information, is solvable analytically in two main cases. The first case is the
linear Gaussian model, presented in section 5.2, where the optimal filtering
problem is solved by the Kalman filter. The second case concerns models with
a finite state space X. In both cases, we have an efficient way of computing the
conditional distribution Pxk|Ik

of section 5.1 recursively following the Bayes
filter. In the linear Gaussian case, This turned out to be the most difficult
problem to solve, since the optimal control law was then simply the same as in
the perfect information case, replacing the true state by the conditional mean
estimate. In the general finite-state space case things are not quite so simple
however. First, we will assume that the observation and control spaces are also
finite. Then to compute the optimum controller we must still work with the full
conditional distribution (a function mapping the observations into then n − 1
dimensional simplex if X has n states) and there is no separation principle,
which leads to a significant increase in computational complexity. In fact,
the optimal control problems in this framework are in general intractable in a
precise sense (typically PSPACE-complete)3. Seminal work in this area can be
found in the control and operations research literature of the 1960’s and 1970’s
[Ast65, SS73] where the term POMDP (Partially Observed Markov Decision
Process) was coined. There is nothing in this terminology that indicates a
finite state space, but this is typically was is meant when it is used. In this
section we outline a few basic facts of the theory of POMDPs, in particular
the concave piecewise linear form of the finite-horizon value function. Most
recent work focuses on approximate methods, and there are also still some basic
theoretical questions open concerning the infinite-horizon theory [Yu06]. Some
introductory references can be found in [Ast65, SS73, TBF05] (the last one
contains some simple examples which can help visualization, but the discussion
as typos), and the NIPS and AI conferences have regularly papers devoted to
POMDPs.

Our goal is to describe the DP algorithm for POMDPs. Essentially, we
have already done the work in section 5.1, but it is useful to see the details
of the algorithm (5.7),(5.10), in the specialized setting. Suppose then that we
have finite number n of possible states (at each stage), and assume without
loss of generality that Xk = X = {1, . . . , n} for all k. The distribution of
the state xk given the observations Ik is given by a vector of n real numbers
pk = [p1

k, . . . , pn
k]T , with pk belonging to the n− 1 dimensional simplex

pk ∈ ∆n−1 =
{

[p1, . . . , pn]T s.t. pi ≥ 0 for all i and
n∑

i=1

pi = 1
}

.

2This version: September 29 2009
3In practice, it seems that the performance of the available algorithms has improved

significantly in the last decade, so please refer to the literature to know the typical size of
the problems that can currently be solved.

65

Here pi
k represents the probability that xk is state i given the available infor-

mation vector Ik. The vector pk evolves according to the recursion (5.2):

pk+1 = Φk(pk, uk, yk+1), (5.22)

and we mentioned before that it is often called the “belief state”. We assume
p0 to be given. Equation (5.7) can now be written

J̄∗N (pN) = pT
NcN (5.23)

where cN is the vector cN = [c1
N , . . . , cn

N]T of costs for each possible state at
stage N . Similarly, define for stage k for each control uk the n-dimensional
vector ck(uk) = [c1

k(uk), . . . , cN
k (uk)]T by

ci
k(uk) = Ewk [ck(xk, uk, wk)|xk = i],

as in the definition of ĉk(xk, uk) in (5.9). Then the expected immediate cost at
time k in state pk when choosing control uk is pT

k ck(uk). The DP recursion is

J̄∗k (pk) = min
uk∈Uk

{
pT

k ck(uk) + Eyk+1

[
J̄∗k+1(Φk(pk, uk, yk+1))

∣∣∣ pk

]}
.

Since we assume the state, control and observation spaces to be finite, all
the necessary operations to compute the DP recursion can be performed using
matrix calculus. Let us first define some notation. For a given control u at
stage k, the state transition matrix Pu

k has elements defined by

Pu
k (i, j) = P (xk+1 = j|xk = i, uk = u).

The elements Pu
k (i, j) can be obtained from the knowledge of the distribution

of wk given xk, uk (see e.g. (5.5)), or specified directly in a controlled Markov
chain formulation. In the latter case we could then have started with a model
specifying stage costs of the form ck(xk, uk, xk+1), in which case the vector
ck(uk) above would have been

ci
k(uk) =

n∑

j=1

Puk
k (i, j)ck(i, uk, j).

Next define the matrix Qu
k relating observations to states by

Q0(i, o) = P (y0 = o|x0 = i),
Qu

k(i, o) = P (yk = o|xk = i, uk−1 = u).

The entries of these matrices can be obtained from the knowledge of the distri-
bution of vk given xk, uk−1, or specified directly in the model. First we rewrite
explicitly the Bayes filter of section 5.1, i.e., the dynamics (5.22), in terms of
these quantities. Recall that starting with the conditional distribution pk, we

66

first incorporate the effect of the control uk in the propagation or time-update
step (5.3):

pi
k+1 := P (xk+1 = i|pk, uk) =

n∑

j=1

P (xk+1 = i|uk, xk = j)pj
k

=
n∑

j=1

Puk
k (j, i)pj

k

and so
pT

k+1 = pT
k Puk

k .

Then, in the measurement update step (5.4), we take into account the effect of
the new measurement yk+1, to get

pi
k+1 = [Φk(pkuk, yk+1)](i) =

P (yk+1|xk+1 = i, uk)pi
k+1∑

j P (yk+1|xk+1 = j, uk)pj
k+1

=
Quk

k+1(i, yk+1)pi
k+1

[pT
k+1Q

uk
k+1](yk+1)

.

Here [pT
k+1Q

uk
k+1](yk+1) is the index yk+1 of the row vector pT

k+1Q
uk
k+1. Finally,

to compute the expectation in the DP recursion, we need to record the distri-
bution P (yk+1|pk, uk) that we just used in Bayes’ rule. We have

P (yk+1|pk, uk) =
n∑

i=1

P (yk+1|xk+1 = i, uk)p̄i
k

= [pT
k Puk

k Quk
k+1](yk+1).

So finally, the DP recursion can be written:

J̄∗k (pk) = min
uk∈Uk

{
pT

k ck(uk) +
∑

o

P (yk+1 = o|pk, uk) J̄∗k+1(Φk(pk, uk, o))

}

= min
uk∈Uk

{
pT

k ck(uk) +
∑

o

[pT
k Puk

k Quk
k+1](o) J̄∗k+1(Φk(pk, uk, o))

}
.

(5.24)

We shall now show a basic property of the value function for POMDPs,
namely, it is piecewise linear and concave, i.e., for all k = 0, . . . , N , there exist
a positive integer mk and n-dimensional vectors αk(1), . . . ,αk(mk) such that

J̄∗k (pk) = min
j∈{1,...,mk}

{αk(j)T pk}.

As you might have guessed, we prove the property by backward induction. Now
at the last stage J̄∗N is given by (5.23), so it is linear in the state pN , hence the
property holds trivially with mN = 1, αN (1) = cN . For the induction step, we

67

substitute the induction hypothesis for J̄∗k+1

J̄∗k+1(Φk(pk, uk, o)) = min
j

{αk+1(j)T Φk(pk, uk, o)}

=
1

[pT
k Puk

k Quk
k+1](o)

min
j

{
n∑

i=1

αi
k+1(j)Q

uk
k+1(i, o)p

i
k+1

}
.

Now note that the factor [pT
k Puk

k Quk
k](o) cancels in (5.24) to give

J̄∗k (pk) = min
uk∈Uk

{
pT

k ck(uk) +
∑

o

min
j

{
n∑

i=1

αi
k+1(j)Q

uk
k+1(i, o)[p

T
k Puk

k](i)

}}
.

(5.25)
The expression (5.25) defines a concave piecewise linear function. To see this,
the only potential difficulty involves noting that the sum of two concave piece-
wise linear functions is again of the same form since

min
i

{aT
i x + bi} + min

i
{cT

i x + di} = min
i,j

{aT
i x + bi + cT

j x + dj}

(i.e., + is distributive with respect to min).
Even though we have a finite dimensional representation of the value func-

tion, the number of vectors αk(j) can increase very quickly with the length of
the horizon. Indeed, note that if we have mk+1 vectors αk+1(j) to define J̄∗k+1

distributing the minj inside the
∑

o in (5.25) produces (mk+1)|Yk| terms and
the additional minuk multiplies the number of terms in the final minimization
by |Uk|, so that we can get up to mk = |Uk|(mk+1)|Yk| vectors at the next
step of the DP algorithm. The intractability of the procedure comes from this
fact. In practice however, a lot of these vectors αk(j) are obsolete because
they define linear functions that are uniformly bounded by other ones over the
simplex. So it is important to prune these vectors at each step in order to
solve any problem of reasonable size. If you have to solve a POMDP, the DP
algorithm above will not be practical. You should look for a software pack-
age implementing a more efficient exact method or an approximate method, or
better you can invent a new improved algorithm.

68

