
5.2 Linear Quadratic Problems

In this section we study a particular important case where the difficulties men-
tioned at the end of the previous section do not apply, namely where the
problem of designing an optimal controller for the partial information problem
can be broken into two successive parts. First, design an optimal estimator
for the state of the system, and then use this estimator directly in a controller
that is optimal for the system under perfect information. This phenomenon is
called the separation principle (or the principle of separation of estimation and
control) and significantly simplifies the controller design, since the controller
has no influence on the quality of the estimator. The problem considered here
is a generalization of the LQR problem studied in chapter 4, where we now
assume noisy measurements that are linear in the state of the system. Our
discussion follows [Ber07, section 5.2], which shows the nice result that the
separation principle follows from using a linear model and a quadratic cost
function, without making any Gaussian assumption on the noise models. I
mention this because very often, the discussion of linear quadratic methods
under imperfect information, and even sometimes of LQR, make this Gaussian
assumption from the start, but this has the drawback of blurring our under-
standing of when the separation principle holds (this phenomenon applies more
generally than to the linear quadratic case). Hence we introduce the Gaussian
assumption on the disturbance and observation noises only at the end to give
an example where the estimation problem is tractable, using the Kalman filter.

The dynamics of the system are as in chapter 4

xk+1 = Akxk + Bkuk + wk, k = 0, 1, . . . , N − 1,

assuming that the initial state x0 is random, with known finite mean x̄0 and
covariance matrix Σ−0 . In addition, the measurements are linear in the state,
of the form

yk = Ckxk + vk, k = 0, . . . , N − 1.

Here xk ∈ Rn, uk ∈ Rm, yk ∈ Rp and the matrices Ak, Bk, Ck are of appropriate
dimensions. As in chapter 4, the variables wk are assumed to be independent,
and independent of x0, and to have zero mean and finite covariance matrices
Wk. Now we make the same assumptions for the observation noise variables
vk, denote the covariance matrices Vk, and in addition we assume that these
variables are independent of the process disturbances wk and of x0. The cost
is still the quadratic cost

E

{
N−1∑

k=0

(xT
k Qkxk + uT

k Rkuk) + xT
NQNxN

}
, (5.11)

with Qk # 0, Rk $ 0.
The first step of the DP algorithm, which we write here using the full

information vector, is:

J∗N (IN ) = E(xT
NQNxN |IN ).
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Faced with this problem for the first time, we would actually have to compute
a few more steps of the DP algorithm to see what’s going on and make our
induction hypothesis, and after some tedious work, we would settle on trying
to prove that for all k, we have

J∗k (Ik) = E(xT
k Pkxk|Ik) +

N−1∑

j=k

E[eT
j P̃jej |Ik] +

N−1∑

j=k

Tr(Pj+1Wj), (5.12)

for some matrices Pj # 0, P̃j # 0, and with the definition

ek := xk − E[xk|Ik].

It is good at this point to look again at the formula for the cost in the perfect
information case, say (4.4), to see that the only differences here are the second
term, which captures some additional cost due to estimation errors, as well as
the presence of the conditional expectation in the first term. We will show that
indeed the matrices Pk follow the same recursion (Riccati difference equation)
as in the perfect information case! In any case, (5.12) clearly holds for k = N
with PN = QN .

Let us denote the constant term qk :=
∑N−1

j=k Tr(Pj+1Wj), and assume that
the induction hypothesis is true for k + 1. We want to show that it is true for
k. Then, using the induction hypothesis in the DP equation, we have

J∗k (Ik) = min
uk∈Uk

E
[
xT

k Qkxk + uT
k Rkuk + E(xT

k+1Pk+1xk+1|Ik+1)

+
N−1∑

j=k+1

E[eT
j P̃jej |Ik+1] + qk+1

∣∣∣Ik

]
.

First we isolate the terms that clearly are not affected by the minimization
over uk, and also use the tower property of conditional expectations, to get

J∗k (Ik) =E[xT
k Qkxk|Ik] + qk+1 (5.13)

+ min
uk∈Uk

{
uT

k Rkuk + E[xT
k+1Pk+1xk+1|Ik] +

N−1∑

j=k+1

E[eT
j P̃jej |Ik]

}
.

Now it will be easy to take care of the second term in the minimization term by
using the dynamics equation as for LQR, but the last term looks problematic. It
is not clear how the choice of uk influences the future error terms ek+1, . . . eN−1.
Fortunately, it turns out that uk doesn’t influence these terms at all! This is due
to the linearity of the system and observation equations (and of the fact that
the noises are independent of the control inputs), and hence a very particular
situation. In contrast to our comments at the end of section 5.1, this is a
case where the control inputs cannot influence the quality of the future state
estimate errors as expressed by ek.
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Lemma 5.2.1. For all k, there is a function Mk such that

ek = Mk(x0, w0:k−1, v0:k),

independently of the policy being used.

Proof. (from [Ber07, Vol. I, p.231]) We consider two systems, one driven by some
control inputs, the other with zero control inputs. The two systems are driven by the
same noise realizations {wk} and {vk}, which is valid under our assumptions that the
noise does not depend on the control input values. Then we show that for these two
systems the terms ek are the same. Hence let the two systems be

xk+1 = Akxk + Bkuk + wk, yk = Ckxk + vk,

and
x̃k+1 = Akx̃k + wk, ỹk = Ckx̃k + vk.

Assume x0 = x̃0, and denote the information vectors for the two systems as

Ik = {y0:k, u0:k−1}, Ĩk = {ỹ0:k}.

Now we refer to the classical computations of the response of a discrete-time linear
dynamical system. Define the state transition matrix

Φ(k, l) =

(
Ak−1Ak−2 . . . Al, k > l ≥ 0

I, k = l
.

Then we have

xk = Φ(k, 0)x0 +
k−1X

l=0

Φ(k, l + 1)Blul +
k−1X

l=0

Φ(k, l + 1)wl

x̃k = Φ(k, 0)x0 +
k−1X

l=0

Φ(k, l + 1)wl

and so we immediately get

xk − E[xk|Ik] = Φ(k, 0)(x0 − E[x0|Ik]) +
k−1X

l=0

Φ(k, l + 1)(wl − E[wl|Ik])

= x̃k − E[x̃k|Ik].

Now it is sufficient to prove E[x̃k|Ik] = E[x̃k|Ĩk]. Note however that

ỹk = yk −
k−1X

l=0

Φ(k, l + 1)CBlul,

so that the information about x̃k contained in Ik is summarized in Ĩk. In conclusion

ek = x̄k − E[x̄k|Īk] =: Mk(x0, v0:k, w0:k−1),

which is independent of the control policy used.
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Proof. (alternative proof, using the innovation sequence). Define the innovation se-
quence

ỹ0 = y0 − E[y0], ỹk = yk − E[yk|y0:k−1], k = 1, . . . , N − 1.

Thus ỹk records the deviation in observation k with respect to the value which could
have been estimated from the past measurements. Since y0 = ỹ0+E[y0] = ỹ0+CE[x0]
with E[x0] a known constant, we have σ(y0) = σ(ỹ0), where σ{X1, . . . , Xn} denotes
the σ-algebra generated by the variables {X1, . . . , Xn}, or in other non-mathematical
terms, the “information” contained in these variables. Assume by induction that
σ(y0:k) = σ(ỹ0:k), which is true for k = 0. Then

yk+1 = ỹk+1 + E[yk+1|y0:k]

= ỹk+1 + E[yk+1|ỹ0:k], (using the induction hypothesis)

so yk+1 ∈ σ(ỹ0:k+1), and clearly ỹk+1 ∈ σ(y0:k+1) so σ(y0:k+1) = σ(ỹ0:k+1) and the
induction step is complete.

Now note that ỹ0 and e0 = x0 − E[x0|y0] do not depend on the control inputs.
Again by induction, assume that ỹ0:k and ek do not depend on the control policy. We
have, noting that uk must be a function of y0:k to be admissible, hence E[CBuk|y0:k] =
CBuk,

ỹk+1 = CAxk + CBuk + Cwk − E[CAxk + CBuk + Cwk|y0:k]

= CAek + Cwk − CE[wk|y0:k]

= CAek + Cwk − CE[wk|ỹ0:k],

so ỹk+1 is independent of the control policy. Moreover

ek+1 = xk+1 − E[xk+1|y0:k+1]

= xk+1 − E[xk+1|ỹ0:k+1]

= Φ(k, 0)(x0 − E[x0|ỹ0:k+1]) +
k−1X

l=0

Φ(k, l + 1)(wl − E[wl|ỹ0:k+1]),

which is independent of the control input, so we are done.

Let us go back to the computation (5.13). From lemma 5.2.1, we now have

J∗k (Ik) =E[xT
k Qkxk|Ik] + qk+1 +

N−1∑

j=k+1

E[eT
j P̃jej |Ik]

+ min
uk∈Uk

{
uT

k Rkuk + E[xT
k+1Pk+1xk+1|Ik]

}
.

We can now consider the minimization problem, which is very similar to the
perfect information case. The term to minimize over uk is

uT
k Rkuk + E[(Akxk + Bkuk + wk)T Pk+1(Akxk + Bkuk + wk)|Ik]

=uT
k (Rk + BT

k Pk+1Bk)uk + 2uT
k BT

k Pk+1AkE[xk|Ik]

+ E[xT
k AT

k Pk+1Akxk|Ik] + Tr(Pk+1Wk).
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The last term of this equation correspond to the term quadratic in wk, and
uses the fact that wk is independent of Ik. Also because E[wk|Ik] = 0, the
terms linear in wk vanish. Now we have a quadratic minimization problem,
which we can solve by setting the derivative of uk to zero, or by using directly
the Schur complement result from section 4.2. We get

µ∗k(Ik) = KkE[xk|Ik], with Kk = −(Rk + BT
k Pk+1Bk)−1BT

k Pk+1Ak,

exactly like in the perfect information case (provided we show that the matrices
Pk are also the same). The optimum value is

J∗k (Ik) =E[xT
k (Qk + AT

k Pk+1Ak)xk|Ik] + qk+1 + Tr(Pk+1Wk)

− E[xk|Ik]T P̃kE[xk|Ik] +
N−1∑

j=k+1

E[eT
j P̃jej |Ik],

where
P̃k = AT

k Pk+1Bk(Rk + BT
k Pk+1Bk)−1BT

k Pk+1Ak.

Finally, note the identity

E[xT
k Mxk|Ik] = E[xk|Ik]T ME[xk|Ik] + E[eT

k Mek|Ik], (5.14)

which holds for any M # 0. Using it with M = P̃k in the fourth term of the
cost value above, and replacing the value of qk+1 we get exactly (5.12), with

Pk = AT
k Pk+1Ak + Qk − P̃k,

which as we announced before is the same Riccati equation (4.3) as in the
perfect information case (hence, incidentally, positive semidefiniteness of Pk

follows directly from the proof in that).

Exercise 12. Prove equation (5.14).

So finally we have

J∗0 (y0) = E(xT
0 P0x0|y0) +

N−1∑

j=0

E[eT
j P̃jej |y0] +

N−1∑

j=0

Tr(Pk+1Wk), (5.15)

and the optimal cost J∗ = E[J∗(y0)]:

J∗ = Tr(P0X0) +
N−1∑

j=0

Tr(P̃jE[Σj ]) +
N−1∑

j=0

Tr(Pk+1Wk), (5.16)

with X0 = E[x0xT
0 ], and Σj = E[ejeT

j |Ij ] the conditional error covariance
matrix (note that E[eT

j P̃jej |y0] = Tr(P̃jE[Σj |y0]) by the tower property of
conditional expectations).
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Remark. Here we see that we have a further sufficient statistic for the linear
quadratic control problem, in terms of x̂k = E[xk|Ik] and Σk = E[ekeT

k |Ik].
Remark. The derivation above is often found with the assumption from the
beginning that the noises are Gaussian, in which case it turns out that the
conditional error covariance matrices Σk = E[ekeT

k |Ik] are in fact constant
(i.e., independent of the observations Ik) and the derivation becomes some-
what simpler. We haven’t made that assumption yet, but we will when we
introduce the Kalman filter. The point is to show that pretty much everything
works in the proof without the Gaussian assumption, using only linearity of the
dynamics and the quadratic cost. If you can design for your particular noise
model a nice recursive filter to obtain E[xk|Ik], you can just use it directly in
the optimal control law.

The Separation Principle

As announced in the introduction, the separation principle holds for the linear
quadratic problem with imperfect information. The optimal control problem
indeed decomposes into two successive parts

1. An estimator, the conditional mean E[xk|Ik]. Note that this estimator is
the Minimum Mean Square Estimator (MMSE), i.e., the estimate x̂k of
xk given Ik which minimizes E[‖xk − x̂k‖2|Ik] is precisely x̂k = E[xk|Ik]
(it’s good to check this fact if you have forgotten).

2. A control law which is the optimal policy for the full information case
with xk simply replaced by its conditional mean estimate E[xk|Ik].

Recursive Estimation Using the Kalman Filter

The optimal controller requires the computation of the same gain matrices
Kk as in the perfect information case, which in turn requires the backward
computation of the Pk matrices using the Riccati difference equation. However,
in the partial information case, it also requires the computation of the MMSE:

x̂k = E[xk|Ik],

which is not easy in general. We discuss this estimation problem in this section,
following the earlier discussion of the Bayes filter. Let us repeat for convenience
the hypothesis on our system:

xk+1 = Akxk + Bkuk + wk, (5.17)
yk = Ckxk + vk, (5.18)

and the noise processes {wk} and {vk} are white, zero-mean, uncorrelated,
with known covariance matrices Wk and Vk:

E[wk] = E[vk] = 0,

E[wkwT
l ] = Wkδj−l, E[vkvT

l ] = Vkδj−l, E[wkvT
l ] = 0,
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where δj is the Kronecker delta (δj = 1 if j = 0, δj = 0 otherwise). Recall that
we denoted the error term ek = xk − x̂k. Since we will follow the Bayes filter
and its propagation and measurement update steps, we also need the following
quantities

I−k = {Ik−1, uk−1} = {y0:k−1, u0:k−1}, I−0 = ∅
x̂−k = E[xk|I−k ], x̂−0 = x̄0,

e−k = xk − x̂−k , Σ−k = E[e−k (e−k )T |I−k ],

Σ−0 = E[(x0 − x̄0)(x0 − x̄0)T ] = X0 − x̄0x̄
T
0 ,

ek = xk − x̂k, Σk = E[ekeT
k |Ik].

Here x̂−k is the conditional expectation of xk before incorporating the last mea-
surement yk. We let Σ−0 = E[(x0−x̄0)(x0−x̄0)T ] since it is the error covariance
before incorporating the first measurement y0. Note that the notation Σk for
the conditional error covariance was already introduced earlier to express the
optimal cost function.

Now we want to compute x̂k for all k, and in addition let us consider the
computation of the error covariance matrices Σk, which we would need anyway
if we wanted to evaluate the costs (5.15) or (5.16). Suppose that we knew x̂k

and Σk. Following the Bayes filter, the next step would be to compute x̂−k+1

and Σ−k+1 (propagation or time-update step) resulting from the input uk and
disturbance wk. At this point, we do not yet take into account the measurement
yk+1. Computing x̂−k+1 is simply a matter of taking expectations in the system
equation (5.17) and using linearity

x̂−k+1 = Akx̂k + Bkuk.

For the covariance update, it is not too hard to see that we have

Σ−k+1 = AkΣkAT
k + Wk.

The next step, corresponding to the measurement update step in the Bayes
filter, asks us to compute x̂k+1 and Σk+1, based on the knowledge of x̂−k+1,Σ

−
k+1

and the new measurement yk+1. This step is more complicated. Consider first
the following situation. We have a pair of vectors X ∈ Rn, Y ∈ Rp which are
jointly Gaussian, with mean and covariance

E

[
X
Y

]
=

[
x̄
ȳ

]
, Cov

([
X
Y

])
=

[
Cxx Cxy

CT
xy Cyy

]
.

Then the distribution of X given Y is again Gaussian, and we have

E[X|Y ] = x̄ + CxyC−1
yy (Y − ȳ) (5.19)

Cov(X|Y ) := E[(X − E(X|Y ))(X − E(X|Y ))T |Y ]

= Cxx − CxyC−1
yy CT

xy. (5.20)
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Remark. Note the following facts:

• The conditional mean (5.19) is an affine function of Y .

• The formula for the conditional covariance (5.20) does not actually de-
pend on Y ! This is a very special property of the Gaussian distribution.

• Note the Schur complement in (5.20). A pseudo-inverse can replace C−1
yy

if this matrix is not invertible.

Now let us assume that the disturbances {wk}, {vk} and the initial condi-
tion x0 have a Gaussian distribution, in addition to the previous assumptions
on their mean and covariance. Then it turns out that the random vectors
Xk+1, Yk+1 are jointly Gaussian. Their mean and covariance, conditioned on
I−k+1, are

[
x̂−k+1

Ck+1x̂
−
k+1

]
,

[
Σ−k+1 Σ−k+1C

T
k+1

Ck+1Σ−k+1 Ck+1Σ−k+1C
T
k+1 + Vk+1

]
.

Now we can use the formulas (5.19), (5.20) to see that Xk+1 conditioned on
Ik+1 = {I−k+1, Yk+1} is again a Gaussian random variable with mean and
covariance

x̂k+1 = E[Xk+1|Ik+1]

= x̂−k+1 + Σ−k+1C
T
k+1(Ck+1Σ−k+1C

T
k+1 + Vk+1)−1(Yk+1 − Ck+1x̂

−
k+1)

Σk+1 = Σ−k+1 − Σ−k+1C
T
k+1(Ck+1Σ−k+1C

T
k+1 + Vk+1)−1Ck+1Σ−k+1.

Here we assume for simplicity that the covariance matrices {Vk} are positive
definite, in order to guarantee the existence of the inverses. In summary, we
have obtained a recursive algorithm to compute x̂k as new measurements ar-
rive, under the additional assumption that the disturbances have a Gaussian
distribution. The algorithm can be summarized as follows:

x̂−0 = x̄0, Σ−0 = E[(X0 − x̄0)(X0 − x̄0)T ]

x̂k = x̂−k + Σ−k CT
k (CkΣ−k CT

k + Vk)−1(yk − Ckx̂−k ), k = 0, . . . , N

x̂−k+1 = Akx̂k + Bkuk, k = 0, . . . , N − 1

Σk = Σ−k − Σ−k CT
k (CkΣ−k CT

k + Vk)−1CkΣ−k , k = 0, . . . , N

Σ−k+1 = AkΣkAT
k + Wk, k = 0, . . . , N − 1. (5.21)

So starting with x̄0, Σ−0 , we can perform the time-update (or propagation) step
to get x̂0,Σ0, then the measurement-update step to obtain x̂−1 ,Σ−1 , and so on.
This recursive algorithm to compute x̂k,Σk is called the Kalman filter. Under
the assumptions of Gaussian disturbances, the distribution of Xk given Ik is
also Gaussian for all k and so this distribution is completely determined by
its mean x̂k and variance Σk which are computed by the Kalman filter. The
Kalman filter algorithm produces x̂k+1 at time k + 1 based on x̂k, using only
the most recent observation yk+1 and control uk. Here are a few additional
facts that you can note at this point regarding the Kalman filter.
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1. The Kalman filter update for x̂k is linear in the new observation yk.

2. The conditional error covariance matrices Σk = E[ekeT
k |Ik] turn out not

to depend on the actual values of the observations y0:k (and controls u0:k,
we saw that in a lemma earlier). Only the conditional mean estimates
x̂k do. This is a special feature of the Kalman filter, which depends on
the linearity and Gaussian assumption, and does not happen in general
if the model is nonlinear. Hence we have also Σk = E[ekeT

k ], a constant
independent of Ik. No one set of measurements or controls helps any
more than any other to eliminate some uncertainty about xk. Note also
that

x̂k+1 = Akx̂k + Bkuk + Lk(yk+1 − Ck(Akx̂k + Bkuk))

where Lk = Σ−k CT
k (CkΣ−k CT

k + Vk)−1 are the gain matrices of the filter.
These gains are also independent of the values of the measurements. An
immediate consequence is that they can be computed offline before the
filter is actually run. This is a critical property if the filter is used in
real-time applications.

3. Even though the error covariance and gain matrices can be precomputed,
we still need to store them in memory, which could be problematic for
problems with a long horizon. Just as for the control gain matrices Kk

however, we have a steady state version of the Kalman filter, which is
obtained by letting k → +∞ in the equations (5.21) (whereas for the
controller, the recurrence was going backwards and we let k → −∞ in
section 4.3). Note that the matrices Σ−k also satisfy a Riccati difference
equation

Σ−k+1 = AkΣ−k AT
k + Wk −AkΣ−k CT

k (CkΣ−k CT
k + Vk)−1CkΣ−k AT

k ,

compare with (4.3). For a time-homogeneous problem, as k → ∞ and
under appropriate assumptions (e.g. (A, C) observable and (A, W 1/2

k )
controllable), we have that Σ−k converges to a constant matrix Σ solution
of the algebraic Riccati equation (ARE)

Σ̄ = AΣ̄AT + W −AΣ̄CT (CΣ̄CT + V )−1CΣ̄AT ,

and the gain matrices Lk of the filter also converge to the constant

L = Σ̄CT (CΣ̄CT + V )−1.

The error covariance matrices converge to the steady state matrix Σ with

Σ = Σ̄− Σ̄CT (CΣ̄CT + V )−1CΣ̄.

The steady-state filter is often used, even for finite (but sufficiently long)
horizon problems, because it has obviously much lower memory require-
ments than the time-varying optimal filter.

63



With the Gaussian assumption on the disturbances, the problem considered
in this section is often called the Linear-Quadratic-Gaussian problem (LQG).
We have seen that the matrices Σk are then constants independent of Ik. The
optimal cost (5.16) can then be written

J∗ = Tr(P0X0) +
N−1∑

j=0

Tr(P̃jΣj) +
N−1∑

j=0

Tr(Pk+1Wk)

= Jlqr + Jest

where Jlqr is the term corresponding to the cost (4.4) of the LQR problem,
and Jest is an additional cost for having to estimate the state

Jest =
N−1∑

j=0

Tr(P̃jΣj).

The corresponding infinite horizon average cost is

J∗avge = lim
N→∞

E

{
N−1∑

k=0

xT
k Qkxk + uT

k Rkuk

}
= Tr(P̃Σ) + Tr(PW ).

Here P, P̃ and Σ are the steady state versions of the matrices Pk, P̃k, and
Σk. The term Tr(PW ) is what we would get in the LQR problem (perfect
information). The additional term Tr(P̃Σ) is due to the average estimation
error. This average cost does not depend on X0 or of any transient modification
of the optimal control law. An optimal policy for this infinite horizon problem
consists in using the steady state Kalman filter and using the corresponding
estimate in the steady-state LQR controller.
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