
Chapter 5

Problems with Partial Information

In most real-world applications, controllers operate under partial information,
i.e., they do not have a complete and perfect measurement of the full state of
the system at each time. If some unobserved part of the state cannot be simply
ignored for reasonable performance, then the standard strategy is to augment
the controller with an observer, in charge of constructing a state estimate. Op-
timal control problems under partial information are typically very difficult to
solve and require some kind of approximation, some of which we will cover
in the second part of the course. Indeed they couple an already intractable
problem, optimal nonlinear filtering, to the control problem. Both aspects (es-
timation and control) can influence each other in general. For example, the
controller might need to drive the state temporarily in a region where the es-
timator has better performance even if this means a higher cost in the short
term. So our discussion of the optimal control problem under partial infor-
mation will be relatively superficial. Still, we cover one of the tractable cases,
the Linear-Quadratic Gaussian problem, and give a introductory discussion of
problems with discrete-state spaces (often called Partially Observable Markov
Decision Processes or POMDPs).

References: [Ber07, chapter 5], [TBF05].

5.1 Partial Information Model

DP Using the Full Information Vector

Often the basic problem formulation of chapter 1 needs to be modified to
consider the situation where the controller does not have perfect knowledge of
the state xk. Instead, it only has access to measurements yk, k = 0, . . . , N −
1, and must design the control policy based on these measurements only (as
well as the memory of the past controls). These measurements give only a
partial description of the state in general, and moreover they can be subject
to noise. Let us assume that the measurement yk of the state xk is made
before the control uk is applied (see Fig. 5.1. Another ordering of events, with
control preceding observation, leads to straightforward modifications). The
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Figure 5.1: Dynamic Bayes network characterizing the evolution of controls,
states and measurements.

observations are then of the form

y0 = g0(x0, v0), yk = gk(xk, uk−1, vk), k = 1, . . . , N − 1,

where the measurement yk belongs to a given observation space Yk, and the
observation disturbance vk to a space Vk. As for the process noise, we assume
that these disturbances can be described probabilistically. The variable vk has
a known probability distribution which could a priori depend on the whole
history of the system up to the end of period k − 1, denoted

Hk−1 = (xk−1, . . . , x0, uk−1, . . . , u0, wk−1, . . . , w0, vk−1, . . . , v0)

as well as the current state xk. In the following, it is useful to introduce the
notation xi:j to denote a set of variables xi, xi+1, . . . , xj . The realization of
vk follows the conditional distribution Pvk(·|xk,Hk−1). The initial state x0

itself is random with known distribution Px0 . The rest of the model is as in
chapter 1, except that we assume that the control set Uk doe not depend on
xk (otherwise we would not even know with certainty which constraints our
control input should respect!).

The information vector (or information state) Ik consists of all the infor-
mation available at time k to the controller to make its decision uk:

I0 = y0,

Ik = (y0, y1, . . . , yk, u0, u1, . . . , uk−1), k = 1, 2, . . . , N.

The controller can only implement an admissible policy π = {µ0, µ1, . . . , µN−1},
where each function µk maps the information vector Ik (instead of the state
in the perfect information case) into the control space Uk. Note the dramatic
increase in complexity with respect to the full-information problem: the policy
at time k should specify a control for every possible state of information at
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time k, and this information state depends on past observations and controls.
We want to find an admissible policy π minimizing the cost function

E

{
cN (xN ) +

N−1∑

k=0

ck(xk, µk(Ik), wk)

}
.

Note in passing that the controller does not observe directly the incurred stage
costs ck(xk) since it does not have access to the internal state xk.

Example: Slotted Aloha, Bertsekas p.219.

Setting the computational difficulties aside for the moment, we can in theory
treat the problem in the standard framework by taking the information vector
as the new state. First, we know its dynamics

Ik+1 = (Ik, yk+1, uk).

Here yk+1 plays the role of the disturbance entering the system dynamics, as
in (1.1) (yk+1 is independent of the past information Ik−1 given Ik and uk,
since this information is already part of Ik). Using the tower property of the
conditional expectation

E[ck(xk, uk, wk)] = E[E[ck(xk, uk, wk)|Ik, uk]]

and defining c̃k(Ik, uk) = E[ck(xk, uk, wk)|Ik, uk], the cost function can be
rewritten in our original framework as

E

{
c̃N (IN ) +

N−1∑

k=0

c̃k(Ik, µk(Ik))

}
.

The DP algorithm is then simply

J∗
N (IN ) = c̃N (IN )

J∗
k (Ik) = min

uk∈Uk

{
c̃k(Ik, uk) + E

[
J∗

k+1((Ik, yk+1, uk))
∣∣∣Ik, uk

]}
, (5.1)

k = 0, . . . , N − 1.

Recall that I0 = y0. The optimal expected cost is then J∗ = Ey0 [J∗
0 (y0)]. Now

this naive formulation is obviously really difficult to use. Even to initialize the
algorithm at time N , one has to consider all possible histories of observations
and controls IN , and for each such information vector, compute the conditional
expectation c̃N (In) = E[cN (xN )|IN ].

Sufficient Statistics

As mentioned previously, an important drawback of the DP algorithm above
is that the information vector Ik (our new state after transformation to an
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equivalent full information problem) grows with k. For estimation and control
purposes, it turns out however that one can often find equivalent representa-
tions of the information contained in the observations that provide a signif-
icant reduction of the data to remember. We now introduce the concept of
sufficient statistic. Classically, a statistic is just a function of the observations
f(Y1, . . . , Yn). In the problems where this concept appears, the observations
have a distribution which depends on some underlying unknown parameters.
Intuitively, a statistic is called sufficient when no other statistic which can
be calculated from the same observations provides any additional information
for the estimation or control purpose, see [Fis22]. For example, given a sam-
ple X1, . . . , Xn where the Xj are i.i.d., with normal distribution N(θ, 1) with
unknown mean θ, the sample mean X̄ = (X1 + . . . Xn)/n turns out to be a
sufficient statistic for the estimation of the unknown parameter θ. Hence if
our purpose is simply the estimation of this parameter, there is no need to
remember all the observations. Recording only their sample mean is enough.
The degree of data compression achieved by a sufficient statistics T depends
on the target space of this function. You can define the amount of compression
realized by a statistics as

rc =
Number of bits of memory required to store T (X)

Number of bits of memory required to store X
.

Note that there is always the trivial sufficient statistics

T (X1, . . . , Xn) = (X1, . . . , Xn),

which achieves no compression (rc = 1)!
Remark. In numerous applications, and certainly in the dynamic problems we
have in mind, the samples Xj above appear sequentially. We would like to
start the estimation process as soon as the first sample appear, and moreover,
we want to make sure that if a new sample arrives, we do not need the past
samples to update the value of the sufficient statistic! For this purpose, one
typically has recursive versions of the classical sufficient statistics. For example,
denoting the sample mean above Mn, it is easy to see that

Mn+1 = Mn +
1

n + 1
[Xn+1 −Mn].

Recursive algorithms of this type will come up later on in the course.
The topic of sufficient statistics is quite interesting but giving a detailed

presentation of it would take us too far away from our subject. You can refer
to any classical textbook on statistics, e.g., [BD06, LC98], or [Dud03] for a
measure-theoretic presentation. Still, it’s good to know a few things about this
topic. Consider a random variable X with discrete values and probability dis-
tribution Pθ depending on an unknown parameter θ. A statistic T is sufficient
for θ if

Pθ(X = x|T = t) = f(x, t)

48



where f is a function that does not depend on θ. Hence once we have computed
T , there is no need to keep the initial data X. There is a similar definition if X
is a continuous variable with a density, and also a general definition that you
can find in the references above. This definition is not easy to use directly. In
practice, we use the following result. Suppose the family of distributions {Pθ}θ

is such that we can write dPθ(x) = f(θ, x)dµ(x), for some fixed measure µ. The
basic cases are X a discrete random variable, where f(θ, x) is the probability
of the event {X = x} (and µ is the counting measure), and X a continuous
random variable with density f(θ, x) (and µ the Lebesgue measure). Then T
is a sufficient statistic for θ if the we have

f(θ, x) = G(θ, T (x))h(x),

for some functions G and h. This is called the (Fisher) factorization theorem,
and is usually much easier to verify than the definition. For example, the order
statistics T (X1, . . . , Xn) = [X(1), . . . X(n)], where X(i) denotes the ith smallest
value in the sample (X(1) ≤ . . . X(n)) achieves a compression ratio rc = 1/2
(the time stamps are removed) and is sufficient if the X ′

is are i.i.d. since the
joint pdf can be factorized as

f(x1, . . . , xn) =
n∏

i=1

f(xi) =
n∏

i=1

f(x(i)).

Coming back to the DP algorithm, since our observations form the infor-
mation vector Ik, we are looking for a statistic Tk(Ik) for each k such that the
minimization problem (5.1) can be rewritten as

min
uk∈Uk

Hk(Tk(Ik), uk),

for some function Hk. Then the control policy can clearly be given as a function
of Tk(Ik) as well

µ∗k(Ik) = µ̄k(Tk(Ik)).

To achive data compression with respect to the full vector Ik, we would like
the range space of Tk to be of smaller dimension than its domain (where the
information vector lives). Moreover, since Tk(Ik) will then serve as our new
state in the DP recursion, we will need a recursive way of computing Tk+1(Ik+1)
from Tk(Ik), uk and yk+1, to obtain the equivalent of the system dynamics
equation.

The Conditional State Distribution as a Sufficient Statistic
and the Bayes Filter

In this section, we make the following extra assumption. Conditioned on
xk+1, wk and uk, the observation vk+1 is independent of the past states, controls
and disturbances x0:k, u0:k−1, w0:k−1, v0:k. Then, besides the identity function,
there is another function that always provide a sufficient statistic for our partial
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information control problem. This function is the conditional distribution of
the system state xk given the information Ik, i.e., function Tk(Ik) = Pxk(·|Ik).
It is important to understand what this means, in particular the fact that this
does not achieve any data compression in general, and could be even worse than
the representation in terms of Ik. Indeed, this function maps the space where
Ik lives, which is typically finite dimensional although growing with time, to a
space of probability measures, which is infinite dimensional! For example, let
us assume that the measurements y0, . . . , yk and controls u0, . . . , uk−1 are all
real valued. Then Ik ∈ R2k+1. Now assume that the state xk is also real valued
(we will encounter such a situation in section (5.2)). Then Tk(Ik), being a con-
ditional distribution, is a function that associates to every (Borel measurable)
subset of R a number between 0 and 1:

Tk(Ik)(A) = P (Xk ∈ A|Ik),∀A ∈ B(R).

Here B(R) is the Borel σ-algebra of R, which consists of pretty much all sub-
sets of R that you can think of (closed sets, open sets, and countable in-
tersections and unions of these; so even the Cantor set is Borel measurable
since it is closed). In this case, admittedly I’m exaggerating a bit because for
xk real we can characterize Pxk(·|Ik) completely by its distribution function
x %→ F (x|Ik) = P (Xk ≤ x|Ik), but the range space of Tk(Ik) is still infinite-
dimensional.

In any case, this sufficient statistic still has value in a number of very
important cases, because in some instances the conditional probability distri-
bution can be summarized by a finite number of parameters, in fact a much
smaller number than the dimension of the space of Ik. That is, there are im-
portant cases where we can find another statistic T̂ (Ik) such that Pxk(·|Ik) =
Gk(T̂k(Ik)) for some function Gk, and this implies then that Tk(Ik) is also a
sufficient statistic. We could have tried to find this sufficient statistic T̂k di-
rectly starting from Ik, but it seems that it is typically easier to do this with
the representation in terms of conditional distributions. For example, if we
can show that Pxk(·|Ik) is a Gaussian distribution, then its mean and covari-
ance matrix can serve as a finite dimensional sufficient statistic T̂k, and the
dimension of this statistic remains the same as time evolve if the dimension of
the state space Xk does not change. This case actually arises in the important
Linear-Quadratic-Gaussian control problem of section 5.2.

As mentioned previously, we also need a recursive procedure to update the
sufficient statistic when a new measurement is obtained. This procedure is
provided by Bayes’ rule, which gives a dynamics equation of the form

Pxk+1(·|Ik+1) = Φk(Pxk(·|Ik), uk, yk+1). (5.2)

Indeed, assuming we know the conditional distribution of xk, we need to up-
date it to obtain the conditional distribution of xk+1 based on the additional
knowledge of the new control and observation uk, yk+1. Writing the recursion
in the general case is useful, because it can be taken as the basis for developing
practical algorithms, including Kalman filters and particle filters.
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Recall that we assumed the time evolution as in fig. 5.1. The procedure
to compute the evolution (5.2) is usually carried in two steps for discrete time
problems. In the first step, called the propagation step, we compute the condi-
tional probability according to our knowledge of the control input uk and the
model of the dynamics, but without incorporating the measurement yk+1, i.e.,
we propagate the dynamics of the system through the probabilistic model. We
have

P (Xk+1|Ik, uk) =
∫

P (Xk+1|Ik, uk, xk) dP (xk|Ik, uk)

=
∫

P (Xk+1|uk, xk) dP (xk|Ik). (5.3)

Here P (Xk|Ik, uk) = P (Xk|Ik) since uk itself is a function of Ik (recall uk =
µk(Ik)). The distribution P (Xk|Ik) is assumed known from the previous step,
and P (Xk+1|uk, Xk) can be computed directly from the distribution of the
system disturbance wk (or specified directly in the controlled Markov chain
model).

In the second step, called the update step, we take the new measurement
yk+1 into account. This decreases the uncertainty on the state xk+1 in general.
The equation for this step, using Bayes’ rule and our conditional independence
assumptions on vk+1, is

P (Xk+1|Ik+1) = P (Xk+1|Ik, uk, yk+1)
= Z P (yk+1|Xk+1, Ik, uk)P (Xk+1|Ik, uk),
= Z P (yk+1|Xk+1, uk)P (Xk+1|Ik, uk) (5.4)

where Z is a normalization factor

Z =
(∫

P (yk+1|xk+1, uk) dP (xk+1|Ik, uk)
)−1

.

Note that the distribution P (Xk+1|Ik, uk) appearing in these equations was
obtained from the propagation step. The distribution P (Yk+1|Xk+1, uk) can
be computed directly from the distribution of the measurement noise vk+1, or
again specified directly in a controlled (hidden) Markov chain model.

These equations can be specialized to the case of discrete distributions or
continuous distributions with densities for example. In some fields, in partic-
ular artificial intelligence and robotics [TBF05], the conditional distribution
Pxk(·|Ik) is often called the “belief state”, reflecting the fact that this function
serves as the actual state for planning purposes. The recursion expressing the
new conditional distribution in terms of the previous one, the new control and
new observation, is sometimes called the Bayes filter. To help fix ideas, let us
assume that the distributions all have a density. Also, to simplify the notation,
let us rename these densities p(xt+1|Ik, uk) =: bel(xk+1) for the density before
incorporating the new measurement, and p(xk+1|Ik+1) =: bel(xk+1) for the
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density of the belief state. Then the recursion in terms of densities is

bel(xk+1) =
∫

p(xk+1|uk, xk) bel(xk)dxk,

bel(xk+1) = Z p(yk+1|xk+1, uk)bel(xk+1),

Z =
(∫

p(yk+1|xk+1, uk) bel(xk+1)dxk+1

)−1

.

To link the densities p(xk+1|uk, xk) and p(yk+1|xk+1, uk) to the dynamics and
measurement noise for which the stochastic properties are usually given, note
that we can write, assuming again that the distributions have densities:

p(xk+1|uk, xk) =
∫

p(xk+1|uk, xk, wk)p(wk|uk, xk)dwk

=
∫

δ{xk+1 = fk(xk, uk, wk)} p(wk|uk, xk)dwk, (5.5)

and similarly for the sensor noise.

Proof that the conditional distribution forms a sufficient statistic
for DP. Once we have a recursive equation for the the conditional distribution
P (Xk|Ik), this distribution can play the role of state for control purposes and we can
write the corresponding DP algorithm. Hence our goal is to show that we can write

J∗k (Ik) = min
uk∈Uk

Hk(Pxk (·|Ik), uk) = J
∗
k(Pxk (·|Ik)), (5.6)

for some appropriate functions Hk and J
∗
k. For the last period, we have

J∗N (IN ) = E[cN (xN )|IN ]

=

Z
cN (xN ) dP (xN |IN )

= J
∗
k(PxN (·|IN )). (5.7)

Let us repeat here the DP recursion in terms of the full information vector

J∗k (Ik) = min
uk∈Uk

E
h
ck(xk, uk, wk) + J∗k+1((Ik, uk, yk+1))

˛̨
˛ Ik, uk

i
(5.8)

Recall that we know the distributions P (Wk|Xk, uk) and P (Vk+1|Xk+1, Wk, uk) for
all k. From the observation noise distribution, as we saw above for the process noise,
we can deduce the distribution of the observations P (Yk+1|Xk+1, Wk, uk). Then the
first term on the right hand side of of the DP recursion (5.8) can be written

E[ck(xk, uk, wk)|Ik, uk] = E[Ewk [ck(xk, uk, wk)|xk, uk] | Ik, uk]

=

Z
ĉk(xk, uk) dP (xk|Ik, uk) (5.9)

=

Z
ĉk(xk, uk) dP (xk|Ik) = c̃k(Pxk (·|Ik), uk).
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with ĉk(xk, uk) =
R

ck(xk, uk, wk) dP (wk|xk, uk). We have already seen in the deriva-
tion of the Bayes filter that the last equality holds because uk is constrained to be
itself a function of Ik. Similarly for the second term

E
h
J∗k+1(Ik, uk, yk+1)

˛̨
˛Ik, uk

i
= E

h
Eyk+1 [J

∗
k+1(Ik, uk, yk+1)|xk+1, uk, wk]

˛̨
˛Ik, uk

i
.

The inner conditional expectation

F (xk+1, uk, wk) = Eyk+1 [J
∗
k+1(Ik, uk, yk+1)|xk+1, uk, wk],

is simply an integration with respect to the distribution P (Yk+1|Xk+1, Wk, uk), which
is known. Then the computation of

E[F (xk+1, uk, wk)|Ik, uk]

requires the distribution P (Xk+1, Wk|Ik, uk). This distribution is obtained as

P (Xk+1, Wk|Ik, uk) = P (Xk+1|Wk, Ik, uk)P (Wk|Ik, uk).

Then
P (Wk|Ik, uk) =

Z
P (Wk|xk, uk) dP (xk|Ik),

with P (Wk|xk, uk) known. Finally for the distribution P (Xk+1|Wk, Ik, uk):

P (Xk+1 ∈ A|Wk, Ik, uk) =

Z
1{fk(xk, uk, Wk) ∈ A} dP (xk|Wk, Ik, uk)

and by Bayes’ rule

P (Xk|Wk, Ik, uk) = Z1P (Wk|Xk, uk)P (Xk|Ik),

where Z1 is a normalization factor. Hence all the terms appearing on the right-hand
side of (5.8) have been written as functions of Pxk (·|Ik) and uk, and (5.6) holds. The
DP recursion step can be written

J
∗
k(Pxk (·|Ik)) = min

uk∈Uk

n
c̃k(Pxk (·|Ik), uk) + E

h
J
∗
k+1(Pxk+1(·|Ik+1))

˛̨
˛Pxk (·|Ik), uk

io
,

(5.10)
with the recursion

Pxk+1(·|Ik+1) = Φk(Pxk (·|Ik), uk, yk+1).

Finally, note the conceptual importance of the representation of the optimal
policy as a sequence of functions of the conditional distribution

µ∗k(Ik) = µk(Pxk(·|Ik)), k = 0, . . . , N − 1.

This representation provides a decomposition of the optimal controller into two
parts:

• An estimator, which uses at time k the measurement yk and the control
uk−1 to generate the probability distribution Pxk(·|Ik).
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• An actuator, which generates a control input to the system as a function
of the probability distribution Pxk(·|Ik).

Note that the optimum control problem remains very hard in the general,
because of two main factors:

• The practical computation of the Bayes filter in hard in the general case.
For example, the propagation and update steps involve the computa-
tion of multidimensional integrals, which is difficult in high-dimensions.
Simulation methods, such as particle filters, can be used but are compu-
tationally intensive.

• Perhaps more importantly, the control uk has now two roles. Firstly, it
should drive the state in a good state from the cost point of view, as in
the perfect information case. Secondly, it influences the next observation
yk+1, sometimes directly through hk+1 but always indirectly through
xk+1. Since the next observations are critical for keeping a good state
estimate and designing good control inputs in the future, we see that the
influence of uk on the cost of the trajectory becomes quite complicated
to characterize. This dual role of the control can be seen as a form of
the famous exploitation vs. exploration principle. Inputs that minimize
the stage cost in the short term are not necessarily good if they are too
detrimental to the state estimation problem.

Hence although the decomposition of the controller in terms of estimation and
control holds in terms of implementation it does not mean that the solutions
of the optimal estimation and control problems are decoupled. Nonetheless,
this decomposition is useful for developing heuristics for hard control problems
under imperfect information, see e.g. chapter 11.

5.2 Linear Quadratic Problems

We will now study a particular importance case where the difficulties mentioned
at the end of the previous section do not apply, namely where the estimation
and control problems actually decouple and can be solved independently. A
reference for our approach is [Ber07, section 5.2]. The dynamics of the system
are as in chapter 4

xk+1 = Akxk + Bkuk + wk, k = 0, 1, . . . , N − 1,

assuming that the initial state x0 is random, with known finite mean x̄0 and
covariance matrix Σ0. In addition, the measurements are linear in the state,
of the form

yk = Ckxk + vk, k = 0, . . . , N − 1.

Here xk ∈ Rn, uk ∈ Rm, yk ∈ Rp and the matrices Ak, Bk, Ck are of appropriate
dimensions. As in chapter 4, the variables wk are assumed to be independent,
and independent of x0, zero mean, and have a finite covariance matrix Wk. Now
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