
Chapter 4

Linear-Quadratic Optimal Control:
Full-State Feedback

1 Linear quadratic optimization is a basic method for designing controllers
for linear (and often nonlinear) dynamical systems and is actually frequently
used in practice, for example in aerospace applications. Moreover it also has
interpretations in terms of “classical control” notions, such as disturbance re-
jection, phase and gain margin, etc. (topics we will not cover, but a reference is
[AM07]). In estimation, it leads to the Kalman filter, which we will encounter
in chapter 5. In this chapter however, we continue with our investigation of
problems where the full state of the system is observable, and describe the
solution of the Linear Quadratic Regulator (LQR) problem.

Some references: [Ber07, section 4.1], Slides from Stephen Boyd’s EE363
class [Boya], [Ath71, AM07] (mostly continuous-time).

4.1 Model

We consider in this chapter a system with linear dynamics

xk+1 = Akxk + Bkuk + wk,

where xk and uk are real vectors of dimension n and m respectively, the states
and controls uk are unconstrained (Xk = Rn, Uk(xk) = Rm for all k), and
the disturbances wk are independent random vectors (independent of xk and
uk), with a known probability distribution with zero mean and finite second
moment matrix Wk = E[wkwT

k ]. The matrices Ak ∈ Rn×n and Bk ∈ Rn×m are
called the dynamics and input matrices respectively. Such a model sometimes
comes from the discretization of a continuous-time system, as in example 1.1.2
of chapter 1, but sometimes the discrete-time nature of the model is more
intrinsic, for example in production planning or inventory control problems.

1This version: September 19 2009
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We wish to minimize the quadratic (finite-horizon) cost

E

{
N−1∑

k=0

(xT
k Qkxk + uT

k Rkuk) + xT
NQNxN

}
, (4.1)

where the expectation is with respect to the disturbances w0, . . . , wN−1. We
assume that the matrices Qk, k = 0, . . . , N (the stage cost and final stage
cost matrices) are positive semidefinite (denoted Qk " 0) and the matrices
Rk, k = 0, . . . , N − 1 (the input cost matrices) are positive definite (Rk $ 0).
The signification of this cost function is that we wish to bring the state close to
the origin x = 0 (regulation problem) using the term xT

k Qkxk. Linear systems
theory tells us that in the absence of disturbances we can always bring the
state to 0 in at most n steps (recall that n is the dimension of the state space),
but this might require large control inputs. The additional terms uT

k Qkuk

penalizes large inputs and thus seeks to obtain more realistic designs since
systems are always subject to input constraints. This problem, often without
the disturbances wk, is called the Linear-Quadratic Regulator (LQR) problem.
There are numerous variations and complications of this basic version of the
problem (see e.g. [AM07]), such as adding cross-terms in the cost function,
state-dependent noise statistics, random dynamics and input matrices ([Ber07,
p. 159]; this is useful in recent work on networked control), etc. We will explore
some of them in the problems.

Finally, it is important to note that the choice of the weighting matrices
Qk and Rk in the cost function is not trivial. Essentially, the LQ formulation
translates the difficulty of the classical control problems, where specifications
are typically given in terms of settling times, slew rates, stability and phase
margins, and other specifications on input and output signals, into the choice
of the coefficients of the cost matrices. Once these matrices are chosen, the
design of the optimum controller is automatic (in the sense that you can call
a MATLAB function to do it for you). In practice, an iterative procedure is
typically followed where the properties of the synthesized controller are tested
with respect to the given specifications, the cost matrix coefficients are read-
justed depending on the observed performance, the new design is retested, and
so on. There are also guidelines to understand the impact of the choice of cost
coefficients on classical specifications [AM07]. Testing is necessary in any case
to verify that differences between the real-world system and the mathematical
model specified by the matrices Ak, Bk does not lead to an excessive drop in
performance.

Remark. We consider the addition of hard state and control constraints in
chapter 11 on model predictive control. The unconstrained linear quadratic
problem, even if less realistic, is still widely used, if nothing else because it
yields an analytical formula for the control law.
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4.2 Solution of the Linear Quadratic Regulator

Intuition for the Solution

As usual, we write J∗0 (x0) for the value function (cost function of the optimal
policy). Suppose for a moment that there are no disturbances, so that the
problem is deterministic and we can solve it as an optimization problem to
design an open-loop control policy, see chapter 2 and problem B.1.7. Then we
can view J∗0 (x0) as the optimum value of a (linearly constrained) quadratic
program for which x0 is a parameter on the right-hand side of the linear con-
straints. Hence we know from standard convex optimization theory that J∗0
is a convex function of x0. In fact, since J∗0 (x0) can be seen as the partial
minimization of a quadratic function of x, u, over all variables except those
in x0, we have, essentially by using the Schur complement [BV04, appendix
A.5.5], that J∗0 (x0) is a convex quadratic function of x0. It turns out that in
the presence of stochastic disturbances {wk}0≤k≤N−1, we simply need to add
a constant term to the deterministic solution for J∗0 (x0).

Since we will use the Schur complement in a moment, let us recall the result
here. Consider the minimization of the quadratic function

min
u

xT Ax + uT Cu + 2xT Bu = min
u

[
x
u

]T [
A B

BT C

] [
x
u

]

over some of its variables u, under the assumption C $ 0. The solution is u =
−C−1BT x and the minimum value is equal to xT Sx, where S = A−BC−1BT

is called the Schur complement of C in the matrix

X =
[

A B
BT C

]
.

If X " 0, we know from convex analysis that the minimum value is a convex
function of x, so S " 0.

Exercise 11. Rederive the formula S = A−BC−1BT .

Remark. Under additional assumptions, the problem has sometimes a solution
even if C is singular. For example, if C " 0 and Bx ∈ Im(C), then the same
result holds with C−1 replaced by C†, the pseudo-inverse of C. If Bx /∈ Im(C)
or C ! 0, the problem is unbounded. Note also that we have the following
converse for the result above. If C $ 0 and S " 0, then X " 0, because
in this case the minimization over x and u (which can be performed by first
minimizing over u and then over x) yields a finite value.
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Solution using Backward Induction

In this section, we compute the optimal cost and optimal policy for the LQR
problem. The DP algorithm gives

J∗N (xN ) = xT
NQNxN

J∗k (xk) = min
uk

Ewk

{
xT

k Qkxk + uT
k Rkuk + J∗k+1(Akxk + Bkuk + wk)

}
.

Similarly to chapter 3, we show the key property of the value function using
backward induction. In this case, we show that J∗k (xk) = xT

k Pkxk + qk, for
some matrix Pk " 0 and constant qk ≥ 0. That is, the cost function is convex
quadratic in the state (with no linear terms). The induction hypothesis is true
for k = N , with PN = QN and qN = 0. Assuming it is true for index k + 1, we
show that it is then true for index k. In the DP recursion, we obtain

J∗(xk) = min
uk

{xT
k Qkxk + uT

k Rkuk

+ Ewk [(Akxk + Bkuk + wk)T Pk+1(Akxk + Bkuk + wk)]} + qk+1.

When evaluating the expectation, all terms that are linear in wk vanish because
wk is zero mean. So we obtain

J∗(xk) = min
uk

{xT
k (AT

k Pk+1Ak + Qk)xk + uT
k (BT

k Pk+1Bk + Rk)uk

+2xT (AT
k Pk+1Bk)uk} + Ewk [wT

k Pk+1wk].

We can rewrite the last term (it’s useful to remember this trick for other opti-
mization problems, although here it’s not adding much)

Ewk [wT
k Pk+1wk] = Ew[Tr(Pk+1wkwT

k )] = Tr(Pk+1Wk).

Now the minimization over uk in the first term corresponds to our result in the
previous paragraph on the partial minimization of a quadratic function, with
matrix

X =
[
AT

k Pk+1Ak + Qk AT
k Pk+1Bk

BT
k Pk+1Ak BT

k Pk+1Bk + Rk

]
.

Because of our assumption that Rk $ 0, the matrix BT
k Pk+1Bk +Rk is positive

definite. The solution is then a control law that is linear in the state

uk = Kkxk,with Kk = −(BT
k Pk+1Bk + Rk)−1BT

k Pk+1Ak, (4.2)

and using the Schur complement result, we obtain directly that J∗k (xk) =
xT

k Pkxk + qk, with

Pk = AT
k Pk+1Ak + Qk −AT

k Pk+1Bk(BT
k Pk+1Bk + Rk)−1BT

k Pk+1Ak (4.3)

and qk = qk+1 + Tr(Pk+1Wk). Note that for all k we have Pk " 0, which
can be seen simply by observing that the cost J∗k (xk) is by its initial definition
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lower bounded by 0, hence the minimization of xT
k Pkxk yields a bounded value.

Finally, we see that the optimal cost for the problem is

J∗0 (x0) = xT
0 P0x0 +

N−1∑

k=0

Tr(Pk+1Wk)

= Tr(P0X0) +
N−1∑

k=0

Tr(Pk+1Wk), (4.4)

where X0 = x0xT
0 .

Remark. Without the assumption Rk $ 0, we could use the more general Schur
complement result and replace inverses by pseudo-inverses under appropriate
assumptions, following the remark in the previous paragraph.

This solution has a number of attractive properties which help explain its
popularity. First, we automatically obtain a closed-loop feedback law (as al-
ways with the DP approach) (4.2) which has the convenient property of being
linear. Hence we can synthesize automatically a optimum linear controller once
the cost matrices have been specified. This control law depends on the avail-
ability of the gain matrices Kk, which can be computed in advance however and
stored in the memory of the controller. This computation requires the compu-
tation of the matrices Pk using the backward difference equation (4.3), called
the (discrete-time) Riccati difference equation, initialized with PN = QN .

Moreover, a remarkable property of the solution is that the gain matrices
Kk and the Riccati equation do not depend on the actual characteristics of the
disturbances wk, which only enter in the total cost (4.4). The deterministic
problem with no disturbance (variables {wk} deterministic and equal to their
mean, 0 in this case) has the exact same solution, with total cost simply equal
to Tr(P0X0). This special property shared by most linear quadratic optimal
control problems is called the certainty equivalence principle. We could have
designed the optimal controller even if we had assumed that the values of the
disturbances were certain and fixed to their mean. Note that although this
might be an positive characteristic from a computational point of view, it is
not necessarily so from a modeling point of view. Indeed, a consequence of the
certainty equivalence principle is that the controller does not change with the
disturbance variability as long as it is zero-mean, i.e., the LQR controller is risk-
neutral. There is a more general class of problems (linear exponential quadratic
[Jac73]), which allows us to take into account the second order properties of
the process noise, while still admitting a nice linear solution for the control
law. A brief introduction to this risk sensitive control problem will be given in
the problems.

Finally, note that we could use this solution for the inventory control prob-
lem, for which the dynamics are linear, as long as we assume the cost to be
quadratic. This was proposed in 1960 by Holt et al. [HMMS60]. However,
according to Porteus [Por02, p. 112], “the weakness of this model lies in the
difficulty of fitting its parameters to the cost functions observed in practice and
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in the fact that it must allow for redemption of excess stock as well as replen-
ishment of low stock levels”. Indeed, this does not allow for a fixed positive
ordering cost. Moreover, reductions in the stock level are allowed.

4.3 A First Glimpse at the Infinite-Horizon Control
Problem

Let us briefly consider the problem as the length N of the horizon increases. We
assume now that the problem to be time-homogeneous (often called stationary),
i.e., the matrices A, B,Q, R,W are independent of k, although we can still have
a different terminal cost matrix QN . Let us consider the simple 2-dimensional
system

xk+1 =
[
1 1
0 1

]
xk +

[
0
1

]
uk + wk, x0 =

[
1
0

]
(4.5)

with W = 10−4I, Q = I, R = ρI, QN = λI. Fig. 4.1 shows two examples of
control and state trajectories, for ρ = 0.1 and ρ = 10. We see that increasing
the control costs clearly has an effect on the amplitude of the resulting optimal
controls. Here however we are more interested in fig. 4.2, which shows that the
gain matrices Kk and in fact the matrices Pk in the Riccati equation quickly
converge to constant values as the terminal stage becomes more distant. Only
when the final period N of the problem approaches do the gain values change
noticeably.

This phenomenon is general (in economics, it is related to the concept
of “turnpike theory” [tur, Ace08]), and exhibited by solutions of the Riccati
difference equation (4.3). Because this equation has a number of important
applications, in control theory and dynamical systems in particular, it has been
extensively studied, with entire books devoted to the subject, see e.g. [BLW91].
In particular, its asymptotic properties are well-understood. A introductory
discussion of these properties can be found in [Ber07, p. 151]2. Suffice to say
for now that under certain assumptions on the problem matrices (e.g. (A, B)
controllable, (A, Q1/2) observable), the matrices Pk converge as k → −∞ to a
steady-state matrix P , solution of the algebraic discrete-time Riccati equation
(ARE)

P = AT PA + Q−AT PB(BT PB + R)−1BT PA. (4.6)

Equivalently, we start at k = 0 and consider an infinite-horizon problem.
The optimal control for this problem is then a constant-gain linear feedback
uk = Kxk, with K = −(BT PB + R)−1BT PA. Moreover, this stationary con-
trol law has the important property of stabilizing the system. In our stochastic
framework, this means that this control law is guaranteed to bring the state
close to 0. This is another major advantage of linear quadratic methods, namely
we automatically get stabilizing controllers, whereas in classical control stabi-
lization is treated separately.

2we might discuss this again when we cover dynamic programming for infinite-horizon
problems, depending on the background of the class in linear systems theory
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Figure 4.1: Sample state and control trajectories for the problem (4.5) with
two different control costs. The realization of the noise trajectory is the same
in both cases.

Note here already that there is an apparent difficulty in defining the optimal
control problem as N → ∞ because the total cost (4.4) diverges, at least in
the presence of noise. The appropriately modified cost function in this case
consists in studying the average-cost

J∗ = lim
N→∞

1
N

E

{
N−1∑

k=0

(xT
k Qkxk + uT

k Rkuk)

}
. (4.7)

The optimal average-cost value, obtained by using the steady state controller
K described above, is then Tr(PW ), and in particular it is independent of the
initial condition! For practical applications, the optimal steady-state controller
is often used even for finite horizon problems because it is simpler to compute
and much easier to store in memory than the time-varying controller. Its good
practical performance can be explained by the rapid convergence observed as
in Fig. 4.2.

4.4 Practice Problems

Problem 4.4.1. Do all the exercises found in the chapter.
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Figure 4.2: Controller gains Kk for different values of the final state cost matrix.
Note in every case the rapid convergence as the horizon becomes more distant.
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