
Chapter 3

Stochastic Inventory Control

1 In this chapter, we consider in much greater details certain dynamic inventory
control problems of the type already encountered in section 1.3. In addition
to the fact that this is a classical topic in stochastic control, we emphasize the
following important idea. The dynamic programming algorithm is not only
useful for computations, it is also a basic tool for the theoretical investigation
of control problems. Using it, we prove here the optimality of the class of so-
called base stock and (s, S)-policies for a classical formulation of the inventory
management problem. References for this chapter are [Ber07, section 4.2],
[Por02]. Numerous variations are possible starting from the basic inventory
control problem, which aim at capturing different real-world situations.

3.1 Problem Formulation

In the dynamic inventory control problem (for a single product), the state xk

represents the level of inventory at the beginning of period k. We consider a
slightly different formulation compared to section (1.3), and assume backlog-
ging rather than lost sales if the demand at a given period cannot be met.
Hence we assume now that xk can take positive or negative values, which in
the later case represents backlogged orders. Backlogged orders must be fulfilled
first at the next period. Moreover, a unit penalty cost cB is charged for each
unit that is backlogged at each period. Using this device in fact allows us to
ignore sales revenues and simply seek to minimize the expected cost of running
the system. Each unit of positive leftover stock at the end of a period incurs a
holding cost cH ≥ 0 in that period.

The time axis is divided as usual into discrete periods k = 0, 1, . . . , N .
At the beginning of period k, we observe the current inventory level xk. We
can decide how much additional product uk to order, and we assume that the
order is fulfilled immediately, i.e., is received in time to serve the demand wk for
that period. This demand is uncertain but we assume that it is stochastic, and
more precisely that the wk’s are independent identically distributed (i.i.d.) and

1This version: September 19 2009

27

bounded random variables with a known distribution 2. The state dynamics
(1.1) are then

xk+1 = xk + uk − wk, k = 0, 1, . . . , N − 1.

The (convex) holding and shortage cost for a period is of the form (see Fig.
3.1)

L(x) = cB (−x)+ + cH x+,

where x+ = max(0, x). In addition, there is a cost c ≥ 0 per unit of ordered
product. We assume cB > c, so that it is not optimal to never order anything
and simply accumulate backlog penalty costs. We also assume c + cH > 0 (so
at least one of these coefficients is positive). Finally, we assume that if the
inventory level at period N is x, a convex and nonnegative terminal cost vN (x)
is incurred 3. We wish to minimize the total cost

E

[
N−1∑

k=0

(cuk + L(xk + uk − wk)) + vN (xN)

]
.

Note that we decided, somewhat arbitrarily, that the shortage and holding costs
are both charged at the end of each period (i.e., for the inventory left after the
demand is realized). Applying the DP algorithm (1.12, 1.13), we obtain

J∗N (xN) = vN (xN)

J∗k (xk) = min
uk≥0

{
cuk + L(xk + uk) + Ewk

[
J∗k+1(xk + uk − wk

]}
, 0 ≤ k ≤ N − 1,

where we defined L(y) = Ew[L(y−w)], and Ew is the expectation with respect
to the distribution of w0 (recall that we assume the wi’s to be i.i.d.).

3.2 Proving Properties of the Value Function via DP
and Backward Induction

For this problem, it is convenient to make a change of variable and define the
new control to be the level of inventory after ordering yk = xk + uk, with the
corresponding constraint yk ≥ xk. Define

Gk(y) = cy + L(y) + Ew[J∗k+1(y − w)]. (3.1)

Then we can rewrite the DP recursion as

Jk(xk) =
{

min
yk≥xk

Gk(yk)}
}
− cxk. (3.2)

2Everything probably works with wk dependent on xk, uk as in our basic model, but I
haven’t checked the details. Also, probably something weaker than the boundedness assump-
tion works

3it might be possible to remove the nonnegativity assumption. I leave this for a future
revision.

28

cH

cB

x

L(x)

Figure 3.1: Immediate cost function in the dynamic inventory management
problem.

Hence we see that the main issue becomes to understand the minimization
problem for Gk(y) over the interval [xk,∞). Now assume for a moment that
Gk has an unconstrained minimum at Sk

Sk ∈ arg min
y∈R

Gk(y).

Suppose also that for any such minimizer and y ≥ Sk, Gk is nondecreasing (see
Fig. 3.2). Then (in addition to guaranteeing that the set of minimizers is an
interval), we see that the constrained minimization problem in this case has a
simple solution: set y = xk if xk ≥ Sk, and y = Sk if xk < Sk. So we bring the
inventory level back to Sk as soon as it drops below this level. In terms of the
original control parameter, we would have the optimal policy of the form

µ∗k(xk) =

{
Sk − xk if xk < Sk

0 if xk ≥ Sk.
(3.3)

We will prove shortly that our conjecture on the shape of Gk is true, and that
in fact something much stronger holds, namely that Gk is convex4 and coercive,
i.e.,

lim
|y|→+∞

Gk(y) = +∞.

A decision rule of the form (3.3) is called a base stock policy. For practical use
such a policy is very convenient5. We only need to compute in advance and
record the set of scalars S0, S1, . . . , SN−1, called the base stock levels. Then at
the beginning of period k, the inventory manager simply observes the inventory

4convexity could be guessed directly for J∗k , as a result of partial minimization in a
stochastic convex program.

5There are also computational advantages to know that there is such a simple
parametrization of the optimal policy, which will become clear once we look at approxi-
mation methods, rollout and policy iteration.

29

y

Gk(y)

Sk

Figure 3.2: Structure of the function Gk guaranteeing the optimality of base
stock policies with no fixed cost.

level xk, does nothing if xk ≥ Sk, and brings it to level Sk otherwise by ordering
the quantity Sk − xk.

Our goal for the rest of the section is thus to prove that, for all 0 ≤ k ≤ N−1,
the function Gk is convex and coercive. This guarantees the existence of the
base stock levels Sk and the optimality of the base stock policy (3.3). The
method employed to do this is very important and must be remembered. We
use the DP algorithm and a backward induction argument to prove a certain
property of the optimal value function, in this case convexity. First note the
following

Lemma 3.2.1. If J∗k+1 is convex and nonnegative, then Gk is convex and
coercive.

Proof. This follows from the definition (3.1). First, by exercise 6 below, y →
L(y) and y '→ Ew[J∗k+1(y − w)] are convex, so Gk is convex. Because J∗k+1 is
nonnegative, we have Gk(y) ≥ cy+L(y). Then limy→+∞Gk(y) = +∞ because
c + cH > 0, and limy→−∞Gk(y) = +∞ because cB > c (and |E[w]| <∞).

Exercise 6. Prove the result skipped above, namely, if h : R → R is a convex
function, then y '→ Ew[h(y − w)] is also convex.

Hence everything is proved if we show the following

Lemma 3.2.2. The value function J∗k is a convex and nonnegative function,
for all 0 ≤ k ≤ N .

Proof. We proceed using backward induction. For k = N , we have J∗N (x) =
vN (x) and so the lemma is true by hypothesis. Suppose now that J∗k+1 is

30

nonnegative and convex, we show that J∗k is also nonnegative and convex.
Now using lemma 3.2.1, we deduce the existence of Sk, a minimizer of Gk. As
shown previously, the minimizer in the DP equation (3.2) is given by (3.3). We
have then

J∗k (xk) =

{
c(Sk − xk) + L(Sk) + Ew[J∗k+1(Sk − wk)] if xk < Sk

L(xk) + Ew[J∗k+1(xk − wk)] if xk ≥ Sk.

or equivalently:

J∗k (xk) =

{
Gk(Sk)− cxk if xk < Sk

Gk(xk)− cxk if xk ≥ Sk.

Now the nonnegativity of J∗k is immediate from the first expression since J∗k+1
and L are nonnegative. For the convexity, consider the second expression. The
function which is constant equal to Gk(Sk) for xk < Sk and then equal to
Gk(xk) for xk ≥ Sk is convex, since Sk is a minimizer of Gk (which is convex
by lemma 3.2.1 and our induction hypothesis). Adding the linear function
x '→ −cx preserves convexity, so J∗k (xk) is convex. This concludes the induction
step.

Theorem 3.2.3. The base stock policy (3.3) is optimal at each period of the
finite-horizon inventory control problem.

Exercise 7. Convince yourself that we showed that the base stock policy (3.3)
is indeed optimal by collecting the elements for the proof of the theorem 3.2.3.

Remark. In a problem that you encounter for the first time, it can be hard to
find which property of the value function will be useful... Typically you can
try to compute the solution for problems with a few periods (starting with 1;
actually here the inventory control problem with one period is also important
in management science, it is called the newsvendor problem). Then try to find a
pattern that can be propagated through induction. The next section introduces
a complication to the previous formulation that gives an additional example of
the technique, and the problems and following chapters will also give you the
opportunity to practice. It is useful to know some basic results and examples
of problems with a nice structure. However, properties of the value function
tend to be quite fragile, i.e., small changes in the assumptions of the problem
can have a dramatic impact on the properties of the value function.

3.3 Adding a Positive Fixed Ordering Cost

Suppose now that ordering any quantity of product involves a fixed positive
cost K in addition to the unit ordering cost. Thus, the cost for ordering a
quantity u of product is 0 if no product is ordered and K + cu if u > 0. The
addition of this fixed cost significantly complicates the analysis of the problem,
and in particular the value function is not convex any more in general. A

31

more general notion, K-convexity, was introduced by Scarf [Sca60] to solve
this problem. Intuitively, the base stock policy (3.3) should not be optimal
in the presence of a fixed cost, which penalizes the frequent ordering of small
quantities. Instead, we should delay new orders so that the fixed cost does not
represent an exaggerated proportion of the total ordering cost. The optimal
policy turns out to be characterized by two levels denoted Sk and sk at each
period, with sk < Sk. It consist in waiting that the inventory level drops below
sk and then prescribes to bring the inventory back to level Sk. Such a policy
is imaginatively called an (s, S) policy.

The DP recursion step (3.2) is now replaced by

J∗k (xk) = min
{

Gk(xk), min
yk>xk

(K + Gk(yk))
}
− cxk, (3.4)

again using as new control variable yk = xk + uk, the level of inventory after
ordering. The first term in the minimization corresponds to not ordering any
product. To understand this minimization problem, we plot Gk(y), and look
for the values y greater or equal to xk. If there is a value of Gk(y) that is
smaller than Gk(xk) by more than K, then it is advantageous to move to that
level of inventory. Referring to Fig. 3.3, we see that for xk ≤ sk, we should set
yk = Sk, whereas for xk > sk, we should not change the inventory level because
the function Gk(y) never drops below Gk(xk) by more than K for y ≥ xk. We
will see however that this function is not K-convex, hence K-convexity is only
a sufficient condition guaranteeing the optimality of (s, S) policies. On the
other hand, on Fig. 3.4 we have a function Gk for which an (s, S) policy is not
optimal. Indeed if we have s̃k ≥ xk ≥ t with t > Sk and s̃k, S̃k defined on the
figure, then it is optimal to bring the level of inventory to S̃k instead of leaving
it unchanged. This situation will be ruled out by K-convexity.

K-convexity is a generalization of convexity for functions of a single real
variable. There are a number of equivalent characterizations of K-convexity,
but perhaps the easiest way of seeing that the functions on Fig. 3.3 and 3.4
are not K-convex is by using the following definition

Definition 3.3.1. A function f : R → R is K-convex, with K ≥ 0, if for each
y ≤ y′, 0 ≤ θ ≤ 1, we have

f(θy + (1− θ)y′) ≤ θf(y) + (1− θ)(K + f(y′)).

Hence clearly a 0-convex function is synonymous with a convex function.
For a function to be K-convex, it must lie below the line segment connecting
(y, f(y)) and (y′, f(y′) + K) on the interval [y, y′]. Such a function can be
discontinuous, but the jumps at the discontinuity point must necessarily be
downwards and cannot be too large. A K-convex function for K > 0 need
not be convex or even quasi-convex, and can have several local minima. The
following property is immediate from the definition.

Lemma 3.3.1. If f is K-convex, y < y′, and f(y) = K + f(y′), then f(z) ≤
K + f(y′) for all z ∈ [y, y′].

32

Exercise 8. Prove Lemma 3.3.1.

A K-convex function can cross the value K+f(y) at most once on (−∞, y).
We see immediately then that the function on Fig. 3.3 is not K-convex because
it does not remain under the horizontal dotted line f(y′) + K on the interval
[y, y′] shown on the figure. The same idea applies to the function of Fig. 3.4.
Here are some additional properties of K-convex functions.

Lemma 3.3.2. 1. A function f : R → R is K-convex iff

K + f(y + a) ≥ f(y) +
a

b
[f(y)− f(y − b)], for all x ∈ R, a ≥ 0, b > 0.

2. If f is differentiable, then f is K-convex iff

K + f(y) ≥ f(x) + f ′(x)(y − x), for all x ≤ y.

3. If f1 and f2 are K- and L-convex (K, L ≥ 0), and α,β > 0, then αf1+βf2

is (αK + βL)-convex.

4. If f is K-convex and w is a random variable, then Ew[f(y − w)] is also
K-convex, provided that Ew[|f(y − w)|] <∞ for all y.

Exercise 9. Prove Lemma 3.3.2.

Next we show that if Gk is K-convex, continuous, and coercive, then an
(s, S) policy is optimal at stage k.

Lemma 3.3.3. If f is a continuous and coercive K-convex function, then there
exist scalars s ≤ S such that

1. S minimizes f : f(S) ≤ f(y), ∀y ∈ R.

2. f(S) + K = f(s) and f(y) > f(s) for all y < s.

3. f(y) is a decreasing function on (−∞, s).

4. f(y) ≤ f(y′) + K for all s ≤ y ≤ y′.

Proof. S exists because f is continuous and coercive. Define s to be the smallest
number z in R such that z ≤ S and f(S) + K = f(z). The rest follows more
or less directly from lemma 3.3.1, it is best to draw a picture.

Exercise 10. Use lemma 3.3.3 to show that if Gk is continuous, K-convex
and coercive, with K equal to the fixed ordering cost, then an (s, S) policy is
optimal at stage k. Give a characterization of the inventory levels s and S in
terms of the value of Gk at these points.

The final step consists in showing that Gk is K-convex, continuous, and
coercive, for k = 0, . . . , N − 1. This implies the optimality of an (s, S) policy
at all stages by lemma 3.3.3 and exercise 10. As you have probably guessed by
now, we show the crucial properties of Gk by backward induction. The proof
follows the argument of section 3.2 with convexity replaced by K-convexity.

33

Lemma 3.3.4. If J∗k+1 is K-convex, nonnegative and continuous, then Gk is
K-convex, coercive, and continuous.

Proof. K-convexity and coercivity of Gk follow as in lemma 3.2.1, using the
properties in lemma 3.3.2. Continuity of Gk uses the assumption that w is
bounded to get that L(y) and Ew[J∗k+1(y − w)] are continuous.6

Hence it is now sufficient to show the following result.

Lemma 3.3.5. The value function J∗k is a K-convex, nonnegative and contin-
uous function, for all 0 ≤ k ≤ N .

Proof. At stage N , we have J∗N (xN) = vN (xN) convex and nonnegative, so the
result is true by hypothesis. Now assume that J∗k+1 is K-convex, nonnegative
and continuous. This implies that Gk is K-convex, coercive and continuous by
lemma 3.3.4. Next, J∗k is defined by (3.4). We deduce that J∗k has the following
form

J∗k (x) =

{
K + Gk(Sk)− cx, for x ≤ sk,

Gk(x)− cx, for x ≥ sk,

where sk, Sk are defined as in lemma 3.3.3. J∗k is continuous, by definition
of sk and since Gk is continuous. The nonnegativity of J∗k follows say from
the definition of J∗k as cost-to-go, where all costs are nonnegative. We want
to show that J∗k is K-convex. Equivalently since x '→ cx is 0-convex and by
lemma 3.3.2, we want to show that G̃k defined by G̃k(x) = J∗k (x) + cx is K-
convex. We consider definition 3.3.1. If sk ≤ y ≤ y′ then G̃k = Gk with Gk

K-convex so the K-convexity inequality is satisfied. If y ≤ y′ ≤ sk then G̃k is
constant (equal to Gk(sk) = K + Gk(Sk)) so again the K-convexity inequality
is satisfied. The remaining case is y < sk < y′. Consider z ∈ [y, y′]. We need
to show that G̃k(z) is below the line segment connecting (y, Gk(sk)) (since
G̃k(y) = Gk(sk)) and (y′, Gk(y′)+K) (since G̃k(y′) = Gk(y′)). First note that
K +Gk(y′) ≥ K +Gk(Sk) = G̃k(y) so this line segment is “increasing”. Then if
y ≤ z ≤ sk this is clear because G̃k is constant on that interval. If sk ≤ z ≤ y′

we first have by K-convexity on [sk, y] that G̃k(z) is below the line segment
connecting (sk, Gk(sk)) and (y′, Gk(y′) + K). Then it is not hard to see (draw
it!) that this later line is itself below the line of interest. This concludes the
proof of the K-convexity of J∗k and the induction step.

3.4 Practice Problems

Problem 3.4.1. Do all the exercises found in the chapter.

6a better argument and assumption on w can probably be made here.

34

y

Gk(y)

Sk
sk

K

K

y′y

Figure 3.3: Structure of the function Gk guaranteeing the optimality of an
(s, S) policy (although this function is not K-convex).

y

Gk(y)

Sk
sk

K

K

t s̃k S̃k

Figure 3.4: A function Gk for which an (s, S) policy is not optimal.

35

