
Chapter 2

Deterministic Problems

1 In this chapter, we focus on deterministic control problems (with perfect
information), i.e, there is no disturbance wk in the dynamics equation. For
such problems there is no advantage from the point of view of cost optimization
in using a closed-loop feedback control policy instead of an open-loop policy
computed at the initial time. We review this fact in the first section. In
addition, for deterministic problem we can execute the DP algorithm forward
in time, a fact which can be useful for real-time applications. The forward and
backward DP algorithms have also various applications in algorithm design,
in particular to compute shortest paths in graphs. The rest of the chapter
describes a few of these applications.

2.1 The Value of Information: Open-Loop vs.
Closed-Loop Control

Recall from chapter 1 that our objective, now in the absence of disturbances or
measurement uncertainty, is to minimize

J0(x0, π) = cN (xN) +
N−1∑

k=0

ck(xk, µk(xk)), (2.1)

over all policies π = {µ0, . . . , µN−1}, subject to the dynamics

x0 given, xk+1 = fk(xk, uk).

Recall that the control a time k, uk = µk(xk), is allowed to depend on the state
at time k 2, i.e., this choice of control can depend on information obtained
while the system is running. These policies are called closed-loop or feedback

1This version: September 12 2009
2recall that by definition of the state, there is no point in storing more information than

xk about the past trajectory in order to choose the control uk. See also [Ber07, vol. II, p.
10]

17

policies. Generating a feedback policy requires sensors to observe the trajectory
of the system and on-line computations of the controls based on the sensor
measurements. An alternative, usually less demanding setup, and one that
cannot be avoided if the system trajectory cannot be observed, is to ask that
a given set of fixed control inputs u0, u1, . . . , uN−1 (vectors, not functions as
in our feedback policies) be computed once and for all at time t = 0. The
resulting policy is such that µk(xk) = uk is independent of the value of the
state xk, and is called an open-loop policy. An optimal open-loop policy can
be computed for deterministic problems by solving the optimization problem

J0(x0, π) = min
u0,...,uN−1

[
cN (xN) +

N−1∑

k=0

ck(f (k)(x0, u0, . . . , uk−1), uk)

]
, (2.2)

where fk(x0, u0, . . . , uk−1) is defined recursively as

f (0)(x0) = x0, f (k)(x0, u0, . . . , uk−1) = fk−1(f (k−1)(x0, u0, . . . , uk−2), uk−1).

That is, x0 and a given choice of controls u0:N−1 determines the trajectory
x1:N of the system and we can just propagate the dynamics in the cost func-
tion to express it only in terms of x0 and our control inputs. For systems
subject to perturbations, one can obtain significant improvements by using
closed-loop policies over open-loop policies. In fact, in the control of physical
systems, completely open-loop policies rarely make sense because disturbances
and model uncertainties are unavoidable and can have disastrous consequences
if not properly taken into account (see problem set 1). Nonetheless, because
open-loop policies are sometimes easier to compute than closed-loop policies,
or can be computed offline before the system starts, which is advantageous for
real-time applications, they can form the basis of heuristics which periodically
adjust the policy while running open loop most of the time.

In the ideal set-up where disturbances are absent, closed-loop policies do
not in fact achieve a smaller cost than open-loop policies. This comes from our
remark that a set of control inputs completely determines the future trajec-
tory of the system, not just probabilistically but deterministically. Once u0 is
chosen, this determines x1 and there is no advantage in waiting until the next
time step to decide the control input u1, etc. Hence for deterministic problems,
there is a variety of techniques available to minimize (2.1). One can use the DP
algorithm or try to solve directly the (large) optimization problem (2.2). The
DP algorithm will provide a closed-loop policy: i.e., a sequence of functions
µk(xk). In contrast, the optimization method will produce a sequence of con-
trols u = [u0, . . . , uN−1]. This optimization problem needs to be solved again
if one wants to obtain a new sequence for a different value of the initial con-
dition x0, although specialized optimization techniques such as “warm start”
can help alleviate this problem (see chapter 9). From a closed-loop policy, one
can easily extract an open-loop policy once the initial condition x0 is fixed by
propagating the dynamics, using u0 = µ0(x0), u1 = µ1(f0(x0, µ0)), . . . Since
closed-loop and open-loop policies have the same performance in this case, from

18

a mathematical point of view, if x0 is fixed, a closed-loop policy contains a lot
more information that is necessary. However in practice, it can still be used
on a system that deviated from its deterministic trajectory due to unmodelled
disturbances, while still maintaining the optimality for the remaining periods
after deviation. Using an unmodified sequence of open-loop controls on a sys-
tem whose trajectory has been perturbed can be a very bad idea (again, see
problem set 1), and maybe in fact infeasible since the control constraint sets
Uk(xk) depend on the state.

Let us mention an alternative optimization technique, in fact typically
preferable to (2.2), to solve the deterministic optimal-control problem. In-
stead of propagating the dynamics as in (2.2), we consider the problem as an
equality constrained optimization problem

J∗(x0) =min cN (xN) +
N−1∑

k=0

ck(xk, uk) (2.3)

subject to xk+1 = fk(xk, uk), k = 0, . . . , N − 1
uk ∈ Uk(xk).

In this optimization problem we can take as our decision variables all the vari-
ables u0, . . . , uN−1, x1, . . . , xN . If the control and state variables are continu-
ous, and the set Uk(xk) has a description say in terms of inequality constraints,
then once can use an off-the-shelf nonlinear programming solver.

Exercise 4. When is the optimization problem (2.3) convex?

The constrained optimization point of view also leads to a discrete-time
version of the minimum principle (a term more often used for continuous-time
systems, which we do not cover in this course), see [Ber07, Vol. I, p.129]. Let
us assume that Xk = Rn, Uk(xk) = Rm for all k (in particular, the controls
are unconstrained). Since we will use differential calculus, we assume sufficient
differentiability properties when necessary. Let us adjoin the dynamics con-
straints to the objective using the Lagrange multipliers λ1, . . . λN to form the
Lagrangian:

L(x,u, λ) = cN (xN) +
N−1∑

k=0

ck(xk, uk) +
N−1∑

k=0

λT
k+1(fk(xk, uk)− xk+1)

= cN (xN) +
N−1∑

k=0

ck(xk, uk) + λT
k+1(fk(xk, uk)− xk+1),

with x = (x1, . . . , xN), u = (u0, . . . , uN−1). Then if (x,u) is optimal, the
gradient of the Lagrangian with respect to (x,u) and with respect to λ must
be 0 (necessary condition). Define the “Hamiltonian” function

Hk(xk, uk, λk+1) = ck(xk, uk) + λT
k+1fk(xk, uk), k = 0, . . . , N − 1.

19

The condition ∇ukL(x,u, λ) = 0 gives

∇ukHk = ∇ukck(xk, uk) +
(

∂fk

∂uk

)T

λk+1 = 0, (2.4)

where ∂fk/∂uk is the (partial) Jacobian matrix of fk as a function of uk. The
condition ∇xkL(x,u, λ) = 0 gives the backward recursion (note that the sum
in the Lagrangian has two terms involving xk)

λk = ∇xkHk = ∇xkck(xk, uk) +
(

∂fk

∂xk

)T

λk+1, (2.5)

called the discrete-time adjoint equation, with terminal condition

λN = ∇xN cN (xN). (2.6)

The variable λ is sometimes called the co-state. For a problem where uk is
constrained to belong to a set Uk(xk) and this set is convex, some knowledge
of convex analysis or a picture will tell you that (2.4 must be replaced by

∇ukHk(x∗k, u∗k, λk+1)(uk − u∗k) ≥ 0,∀uk ∈ Uk(x∗k), (2.7)

where u∗k and x∗k are an optimal input and a state on the corresponding optimal
trajectory. If in addition Hk is a convex function of uk for any fixed xk and
λk+1, then (2.7) is also a sufficient condition to characterize the minimum of
Hk with respect to uk so in that case

u∗k ∈ arg min
uk∈Uk(x∗k)

Hk(x∗k, uk, λk+1).

It is good to remember that the minimum principle (2.7), (2.5), (2.6) is a nec-
essary condition for optimality, similar to a first-order optimality condition in
classical optimization. In successful applications, the minimum principle is used
to isolate a small set of possible candidate optimal solutions. For example, if we
have a unique candidate and we know by other means that the problem must
have a minimum, then this candidate is the optimum. In contrast, dynamic
programming leads to a sufficient solution for optimality. Finally, it is inter-
esting to note that for continuous-time problems, the convexity assumption on
Uk is not needed. The intuitive reason is that we can always “convexify” the
set of allowed velocity directions fk(xk, uk) at xk by using controls switching
arbitrarily fast (chattering controller).

2.2 Deterministic DP and Algorithm Design

You might be already familiar with the dynamic programming principle from a
previous algorithm course. In this section, we explore the use of the DP algo-
rithm to solve various problems more efficiently, and in particular its connection
to shortest path problems.

20

Dynamic Programming in Combinatorial Optimization

Dynamic programming is a fundamental tool to solve certain combinatorial
optimization problems in polynomial time, and in other cases it can be used
to speed-up computations compared to naive enumeration, even if it does not
achieve polynomial-time performance, see [BT97, section 11.3]. One such prob-
lem is the famous traveling salesman problem (TSP), which is NP-complete.
In the TSP we have n cities and we are given the distances dij between each
pair (i, j) of cities. We want to find a minimum length tour that visits every
city once and returns to the origin city. Let us call the origin city 1. To solve
the TSP using dynamic programming, we define as the state the set S of cities
already visited as well as the current location l ∈ S. The state (S, l) can be
reached from any state of the form (S \{l}, m) with m ∈ S \{l}, for a traveling
cost cml. We immediately get the recursion for the optimal cost of visiting S
and finishing at l ∈ S:

C(S, l) = min
m∈S\{l}

{
C(S \ {l}, m) + cml

}
,∀l ∈ S,

and the initialization C({1}, 1) = 0. Finally, the length of the optimum tour
is given by minl

{
C({1, . . . , n}, l) + cl1

}
. This algorithm of course still runs in

exponential time, in fact in time O(n22n). Note that the reason why the DP
algorithm does not lead to tractable algorithms for hard problems is in general
due to the number of states growing exponentially, a problem that we will en-
counter frequently in various settings. Still, DP is much better than naive enu-
meration of all n! tours of cities (recall Stirling’s formula: n! ∼ (n/e)n

√
2πn).

Exercise 5. Give the details on how to solve TSP in time O(n22n).

Deterministic Finite-State Finite-Horizon Optimal Control
Problems as Shortest Path Problems

Consider a deterministic problem as described in section 2.1. Let us now assume
that the state space Xk is finite, for all k. Then the control problem (2.1) can
be solved by solving a shortest path problem in a graph that is constructed as
follows (see Fig. 2.1). The graph can be decomposed into levels, with one level
per time period k = 0, 1, . . . , N . There is an additional artificial terminal node
t to which point all the nodes of the last level k = N . A node in the graph
at level k corresponds to a value of the state at time k. Hence there are |Xk|
nodes at level k (|S| denotes the cardinal of a set S). Nodes at level k have
edges to nodes at levels k + 1. A node corresponding to state value xk has an
edge to a node with state value xk+1 if and only if xk+1 = fk(xk, uk), i.e., there
is a control value uk which drives the system from system from xk to xk+1. An
edge in the directed graph from node xk to node xk+1 corresponding to control
uk is associated to an edge cost equal to ck(xk, uk). The terminal edges from
a node xN at level N to node t are associated with the terminal cost cN (xN).
Clearly a trajectory of the system corresponds to a path in the graph from a

21

x00

x01

x10

x11

x12

x13

x20

x21

x22

x23

· · ·

· · ·

· · ·

· · ·

xN0

xN1

xN2

xN3

t

c0(x00, u0)

c0(x01, u′0)

cN (xN0)

Figure 2.1: Directed graph representing a deterministic control problem. The
nodes at stage k correspond to the possible values of xk. Leaving a node xk

are edges corresponding to the possible controls uk ∈ Uk(xk). Two nodes xk

and xk+1 are linked if their state values satisfy xk+1 = fk(xk, uk). An edge
from xk corresponding to uk has cost ck(xk, uk).

node at the initial level k = 0 to a node at the terminal level k = N . The cost
of a path from a node a level k = 0 to the terminal node t is defined as the sum
of the edges of the path. We see therefore that the cost (2.1) of a sequence of
control u0, . . . , uN−1 starting from x0, including the terminal cost, is equal to
the cost of the corresponding path in the graph from x0 to the terminal node
t. The optimal cost starting at x0 is equal to the cost of the shortest path from
x0 to t.

The DP algorithm for computing the optimum trajectory from x0 to t is a
direct translation of the algorithm (1.12), (1.13), presented in section 1.2. We
can denote the cost of a transition from the state value i ∈ Xk at level k to
state value j ∈ Xk at level k + 1 by ck

ij instead of ck(xk, uk) (the control uk

determines the resulting state j uniquely in a deterministic problem). Then
the DP algorithm is

J∗N (i) = cN
it , i ∈ XN ,

J∗k (i) = min
j∈Xk+1

[
ck
ij + J∗k+1(j)

]
, i ∈ Xk, k = 0, . . . , N − 1.

The optimal cost J∗0 (x0) is then the cost of the minimum cost path from x0 to
t. The quantity J∗k (i) is the optimal cost-to-go from i ∈ Xk to t.

Conversely, consider a directed graph with N nodes labeled 1, 2, . . . , N, t,
and edge costs cij for edge (i, j). Suppose we want to find the shortest path
from each node i to node t. Note that this problem requires that there is no
cycle of negative cost in the graph, otherwise there are paths of cost −∞. In
this case, any shortest path uses at most N edges. We reformulate the problem
to fit the set-up of the previous paragraph. Create a new graph with N levels

22

k = 0, . . . , N−1 and N nodes at each level, plus an additional level k = N with
only node t. Nodes at level k correspond to the N nodes of the original graph,
and are connected only to nodes at level k + 1. Node i at level k is connected
to node j at the next level if there is an edge (i, j) in the original graph, and
this edge is associated to a cost cij . If there is no edge (i, j) in the original
graph, we still add an edge from i at level k to j at level k + 1, but with cost
+∞. We also have all edges from i to i at successive levels, with associated
cost 0, which means considering paths with degenerate moves (staying at the
same node for one move) in the original graph. This way, we can capture paths
of length less than N in the original graph. It is easy to see now that finding
shortest paths in both graphs is equivalent. But the new graph is exactly the
graph of an optimal control problem.

Algorithmic Implications

From the previous discussion, we can conclude the following. First, the problem
of computing shortest paths in a graph with no negative cost cycle can be done
using the dynamic programming algorithm. The discussion above leads to the
DP recursion

J∗N−1(i) = cit, i = 1, . . . , N

J∗k (i) = min
j=1,...,N

[cij + J∗k+1(j)].

Here J∗k (i) has the intuitive meaning of the cost of the optimal path from j to t
using N −k−1 moves (J∗k (i) will be +∞ is no such path exists). The dynamic
programming approach to solving the shortest-path problem is essentially the
Bellman-Ford algorithm. There are other shortest-path algorithm which have
better worst-case performance for certain types of problems (e.g., Djikstra’s
algorithm, which works only for edges with nonnegative cost), but DP is still
very useful. The main issue with DP is that it explores every node of the graph,
whereas for solving a single shortest path problem in a graph with a large
number of nodes, most nodes are often not relevant for a particular shortest
path. There are other methods that try to explore only the relevant part of
the graph. A more detailed discussion of various shortest path algorithms can
be found in [Ber07, setion 2.3] or any book on algorithm design [CLRS03].
Remark. Note that the optimal control problem obtained from the shortest
path problem in a graph is time-homogeneous. That is, the edge cost cij

does not depend on the level k of the node i. Hence, we see from the DP
recursion that if J∗k+1(i) = J∗k (i) for all i, then after that the DP iterations
will not change the values of the cost-to-go any more so the algorithm can be
immediately terminated.

Moreover, we see that by representing an deterministic finite-state finite-
horizon optimal control problem in the form of a graph, any shortest path algo-
rithm can be applied to solve the problem instead of the DP algorithm. There
are indeed certain problems where other shortest path methods are preferable
to DP.

23

The Forward DP Algorithm

In the case of deterministic problems, we have a DP algorithm that progresses
forward in-time. Consider again Fig. 2.1. Now revert the direction of all the
edges, keeping the cost values identical. Consider now a single node x0 at level
k = 0. An optimum trajectory from x0 to t in the original graph is also an
optimum path from t to x0 in the “reversed graph”. Let us call the optimum
cost for the reversed problem J̃0(t), then

J̃∗0 (t) = J∗0 (x0).

Now J̃∗0 (t) can be computed by the DP algorithm on the reversed graph. This
algorithm starts with the nodes at stage k = 1

J̃∗N (j) = c0
x0,j , ∀j ∈ X1.

And then proceeds forward on the graph

J̃∗t (j) = min
i∈XN−t

[
cN−t
ij + J̃∗t+1(i)

]
, j ∈ XN−t+1, t = N − 1, N − 2, . . . , 1.

The minimization above is now effectively over the states i at stage N − t that
can reach state j at stage N − t + 1. The optimal cost is then

J̃∗0 (t) = min
i∈XN

[
cN
it + J̃∗1 (i)

]
.

Here J̃∗t (j) has the interpretation of the optimum cost-to-arrive to state j from
state x0, in N − t+1 steps. Note that this forward DP algorithm is in fact the
algorithm we used for the TSP at the beginning of this section.

Efficiency of the DP algorithm

From the graphical representation of Fig. 2.1, we can see why DP is an in-
teresting algorithm from the computational point of view. For a given level
k, the computations performed for k = N, N − 1, . . . , k are all summarized
in the value function J∗k (i), i = 1, . . . , N. Assume that at each level, there
are at most n nodes. The computation of the optimum control value at each
node using DP then requires a minimization over at most n numbers, hence
n operations. Hence we see that computing J∗(i) at each level requires n2

operations. The total number of operations performed by the DP algorithm is
therefore O(Nn2). This is much better than evaluating all trajectories through
the graph, since there are O(nN) of these trajectories. Hence the DP algorithm
is a fairly efficient algorithm if we can control the number n of nodes at each
level, i.e., the number of values in the state-space Xk. Unfortunatly, in most
real-world problems, formulations tend to suffer from a state-space explosion
problem, i.e., the state-space cardinality n typically grows exponentially with
the problem parameters, as in the TSP example. This issue will occupy us for
most of the second part of the course.

24

2.3 Application: Maximum-Likelihood Estimation in
HMMs

We conclude this chapter with a classical algorithm for maximum likelihood
estimation in Hidden Markov Models (HMM) [Rab89] that can be interpreted
as a shortest path or DP algorithm. We consider a finite horizon N . An
HMM is specified by a Markov chain {Xk}1≤k≤N , which we assume here ho-
mogeneous and with a finite number of states. We know the transition matrix
P (Xk+1 = j|Xk = i) =: pij but we cannot observe the trajectories directly.
Instead, we have access to observations Yk, k ≥ 1, that depend on the states
Xk−1, Xk and are independent of the other variables Xj and observations Yj

given Xk−1, Xk. We are given the distributions P (Yk|Xk−1 = i, Xk = j) =:
r(Yk; i, j) for all i, j. The control of such partially observable models will be
the focus of chapter 5, but for now we only consider the following estimation
problem. Given a sequence of outputs y1:N , we wish to find the sequence of
states x̂0:N that is most likely, i.e., which maximizes P (x0:N |y1:N). Equiv-
alently, since P (x0:N |y1:N) = P (x0:N , y1:N)/P (y1:N) and P (y1:N) is a fixed
constant, we want to maximize P (x0:N , y1:N). It is not hard to see that

P (x0:N , y1:N) = ν(x0)
N∏

k=1

pxk−1,xkr(yk;xk−1, xk).

Maximizing this expression is equivalent to maximizing its logarithm

max
x0,...,xN

{
ln(ν(x0)) +

N∑

k=1

ln(pxk−1,xkr(yk;xk−1, xk))
}

.

The forward DP algorithm can be used to solve this maximization problem. It
is better than the backward DP algorithm or shortest path algorithms when
considering real-time applications, since we can execute the new step as soon
as a new observation arrives. In this context, this algorithm is known as the
Viterbi algorithm.

2.4 Practice Problems

Problem 2.4.1. Do all the exercises in the chapter.

25

