
Chapter 1

Dynamic Programming

1.1 The Basic Problem

Dynamics and the notion of state

Optimal control is concerned with optimizing of the behavior of dynamical
systems, using information that becomes progressively available as the systems
evolve. In this course, we will treat a discrete-time version of the problem.
Moreover in this chapter and the first part of the course, we will also assume
that the problem terminates at a specified finite time, to get what is often
called a finite horizon optimal control problem. We denote the horizon of the
problem by a given integer N . The dynamic system is characterized by its
state at time k = 0, 1, . . . , N , denoted by xk 1. The evolution of the state is
subject to control and disturbances, and we will encounter two ways of modeling
these dynamics. In the first type of models, the state evolves according to the
difference equation

xk+1 = fk(xk, uk, wk), k = 0, 1, . . . , N − 1. (1.1)

The state xk is an element of the set Xk, the state space at time k. The control
uk is required to belong to the set Uk at time k, and the process disturbance wk
(also called plant disturbance, or process noise) to the space Wk. In this course,
we will assume a random disturbance model, where wk is characterized by a
probability distribution Pwk

(·|xk, uk) that may depend on the state xk and
control uk. However, conditioned on xk, uk, the disturbance wk is assumed
independent of the past w0:k−1, x0:k−1, u0:k−1

P (Wk|X0:k, U0:k,W0:k−1) = P (Wk|Xk, Uk),∀k.

There are situations where a worst-case or adversarial model of the disturbances
is more adapted (which leads to minimax control and game theory), and we

1In this course we use exclusively state-space models. For input-output models however,
see chapter ??[not written].
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might briefly touch upon those. Finally, the initial state x0 can also be random
and characterized by a probability distribution ν, i.e., P (x0 ∈ A) = ν(A) for
all (Borel measurable) subset of X0.

Notation. We use the notation vi:j to denote the sequence vi, vi+1, . . . , vj .

The notion of state is of fundamental importance. By definition, given
the state xk at time k and the sequence of controls uk, . . . , uN−1, the future
trajectory of the system xk+1, . . . , xN should be completely characterized. In
the case of random disturbances wk, this means that we can compute the
probability that any of these trajectories occur. If we know xk, we do not need
to remember the past state, control or disturbance values prior to time k to
compute this probability distribution. In particular, given the state xk and the
control uk, the disturbance wk must be independent of w0:k−1 = w0, . . . , wk−1.
If not, then xk is not a proper state vector and its size must be increased to
add the necessary memory of the past.

Example 1.1.1 (on the proper choice of a state vector). In [Ber07,
section 1.4], Bertsekas discusses a notion of “enlarged state” or “augmented
state”, in particular for problems with time lags and correlated disturbance
noise. This notion is confusing and the confusion only comes from the fact that
the notion of state is never defined. Here is an example from [Ber07, section 1.4]
which highlights the importance of not being fooled by the notation. Suppose
we consider a system which evolves according to the recursion

x0 given; x1 = f0(x0, u0, w0); xk+1 = fk(xk, xk−1, uk, uk−1, wk), k ≥ 2,

with the same assumption that wk is independent of w0:k−1 given xk and uk.
We see that the recursion is not quite of the form (1.1) because of the presence
of an additional time delay. Now suppose we know xk for some k ≥ 2 say.
Is the (probabilistic) future evolution of the system characterized once the
sequence of inputs uk, uk+1, . . . is given? In order to compute the probability
distribution of xk+1, we need to know xk−1 and uk−1 in addition to xk and uk.
So the conclusion is that xk is not a proper state for the system. What would
constitute a state then? Following the idea of our previous counterexample,
it is reasonable to think that x̃k = [xk, xk−1, uk−1]T would constitute a state.
This is easy to see if we write a recursion of the form (1.1) for x̃k

x̃k+1 =

x1
k+1

x2
k+1

x3
k+1

 =

fk(x1
k, x

2
k, uk, x

3
k, wk)

x1
k

uk

 = f̃k(x̃k, uk, wk).

Clearly, wk is also conditionally independent of w0:k−1 given x̃k, uk, since the
later vectors contain more information that xk, uk. We conclude that x̃k con-
stitutes a proper state for the system.

Remark. The choice of a good state representation can play a crucial role in
the ability of solving a problem. It is important to spend time thinking about
this in the earlier part of the course and in the exercises.
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The second way of modeling the system of interest consists in representing
it directly as a controlled Markov chain. Namely, we specify directly for each
time k and each value of the control u ∈ Uk at time k a transition kernel
Puk (·, ·) : (Xk,Xk+1)→ [0, 1], where Xk+1 is the Borel σ-algebra of Xk+1. This
means that if Xk = x and Uk = u at time k, the probability that Xk+1 ∈ A at
time k + 1, with A a (Borel measurable) subset of Xk+1, is given by Puk (x,A).
The fact that we have a controlled Markov chain is then captured by the
property

P (Xk+1 ∈ A|Xk, Xk−1, . . . X0, Uk, . . . , U0) = PUk

k (Xk, A).

We also specify a probability distribution ν for the initial state, i.e.

ν(A) = P (X0 ∈ A), ∀A ∈ X0.

What you remember from this is that the sequence of states X0, X1, . . . evolves
as an (inhomogeneous) Markov chain once the control values u0, u1, . . . have
been fixed.

Remark. Often we will work with models where the state spaces Xk are count-
able (finite of infinite), for all k. In this case, the transition kernels are specified
by the data

Puk (x, x′) = P (Xk+1 = x′|Xk = x, uk = u).

For each k and u, we can then think of Puk as a matrix, although infinite if
the state spaces are. In particular when the state spaces are finite, then for
a given k and u, we can think of Puk as a matrix. Later on, we will consider
homogeneous or stationary models, where the transition kernels do not depend
on k. Other notations for Pu(x, x′) will then be used occasionally and can be
found in the references, e.g. Px,u,x′ , Pu(x, x′), px,x′(u), etc. Markov chains on
finite (and sometimes countably infinite) state spaces are often represented as
a graph with one node per state and edges labeled by transition probabilities.
For controlled Markov chains, this gives different graphs for different choices
of controls.

You can probably guess that there is a relationship between the the Markov
property in the controlled Markov chain model and the definition of state that
we considered with the model based on the difference equation (1.1). The main
difference consisted in specifying the distribution of the disturbance wk in the
first model or directly the transition kernel of the state xk in the second model.
Now suppose that we start with a state space model of the form (1.1), and we
wish to transform it into a controlled Markov chain model. We simply use in
the third equality below the conditional independence of wk and the past given
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xk, uk

P (Xk+1 ∈ A|X0:k, U0:k) = E[1{Xk+1 ∈ A}|X0:k, U0:k]
= E[1{fk(Xk, Uk,Wk) ∈ A}|X0:k, U0:k]
= E[1{fk(Xk, Uk,Wk) ∈ A}|Xk, Uk]

=
∫

1{fk(Xk, Uk,Wk) ∈ A} dP (Wk|Xk, Uk)

= PUk

k (Xk, A).

Hence the Markov property is verified and the transition kernel can be com-
puted from the knowledge of the conditional distribution of Wk given Xk, Uk.
Conversely, we can transform a controlled Markov chain model into a recursive
model of the form (1.1). Just define the random disturbance Wk on the space
Xk+1 and set

Xk+1 = Wk

with P (Wk ∈ A|Xk, Uk) = PUk

k (Xk, A), ∀A ∈ Xk+1. Variations of this ar-
tificial representations are actually useful for simulation. Suppose we have a
homogeneous Markov chain {Xn}n≥0 on N (let’s assume no control for clarity)
with transition matrix P . Then starting with Xk, we can generate Xk+1 by
using the recursive formula

Xk+1 = j if Wk ∈

[
j−1∑
i=0

PXk,i,

j∑
i=0

PXk,i

]
,

where {Wk}k≥0 is i.i.d. uniform on [0, 1]. In conclusion, the two types of
models are equivalent, although for practical reasons one might be preferred to
the other in specific situations.

Controls and Measurements

The controls u0, . . . , uN−1 are parameters available to the decision-maker or
controller to influence the behavior of the system. The first order of business
is to determine the information on which the choice of control uk at time k can
be based. It is often the case that the full state xk of the system cannot be
measured directly. Instead we have measurements y0, y1, . . . are of the form

y0 = g0(x0, v0), yk = gk(xk, uk−1, vk), k = 1, 2, . . . N − 1, (1.2)

where vk is an observation noise and belongs to a given space Vk. In this course,
the observation noise is also assumed to be random, with a given probability
distribution

Pvk
(·|xk, . . . x0, uk−1, . . . , u0, wk−1, . . . , w0, vk−1, . . . v0),

which could in general depend on the current state and past states, controls,
and disturbances. An alternative equivalent model, at least for the case where
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vk is conditionally independent of the past given xk, uk−1 is to specify directly
the conditional distribution of the observation Yk+1 given Xk and Uk−1, i.e.,
specify the transition kernels PUk−1

k (·, ·) : Xk × Yk → [0, 1]. In the case of
a countable state space, we specify the matrices with elements Puk (x, y), the
probability of observaing y ∈ Yk when the state is x and the previous control
was u. The discussion is analog to our discussion of the model of the dynamics.

The information available to the controller at time k to compute the control
uk is called the information vector or information state at time k, denoted Ik.
When we consider problems with imperfect state information in chapter ??,
we will limit ourselves to the situation where the control vector uk at time k is
allowed to depend on all the available past and present information, i.e., the
past and current measurements as well as the past controls:

I0 = y0, Ik = (y0, . . . , yk, u0, . . . , uk−1), k = 1, . . . , N − 1.

Note that we always require the control law to be causal, i.e., uk is not allowed
to depend on information available after time k (the policy π is then also called
a nonanticipative policy in the operations research/queueing theory literature).
Hence uk is a function of Ik, denoted uk = µk(Ik). In practice, this might
require too much memory, or communication bandwidth in distributed control
problems, where this requires the sensors to communicate all the measurements
to the controller. But departure from this assumption has been an active
research area for at least the last four decades, and quickly leads to very difficult
issues. The influence of the choice of information state Ik can be very subtle
and the difficulty of the control problem depends crucially on it. We will leave
the discussion of the information state at this relatively abstract and perhaps
vague level for now, and come back to it at several times during the course,
starting with chapter ??. In the first lectures, we assume that we can measure
the state perfectly, i.e., yk = xk and so without loss of generality, we can take
Ik = {xk} (why?) and we look for a control law of the form uk = µk(xk). We
call these problems control problems with perfect information.

It is important to note that for each k, we look for a function µk(·) which
defines a control input uk for each value of the information vector Ik (or xk in
the case of perfect information). The policy or control law π = {µ0, . . . , µN−1}
is then called a closed-loop policy, or a feedback policy. This point is essentially
the difference between optimal control and optimization. In chapter ?? on
deterministic control problems, we encounter the concept of open-loop policy,
where the controls u0, . . . , uN−1 are chosen by the controller once and for all at
time t = 0, without taking into account any future measurement. In an ideal
world with no uncertainty and perfect models, such policies are equivalent to
closed-loop policies and there is a large literature devoted to the design such
laws (e.g., most of the motion planning literature in robotics, or even most
papers on air traffic control!). The reason is that the design of an open-loop
policy is a finite-dimensional optimization problem (more on this in chapter
??), which is familiar to most engineers, whereas optimizing over closed-loop
policies is an infinite-dimensional problem. However, using an open-loop policy

5



for a control problem is like taking your car in the morning and trying to drive
to work with your eyes closed, assuming you have perfectly memorized the
itinerary. For most purpose, you’ll probably be better off designing a reasonable
even suboptimal closed-loop policy...
Remark. More generally, the choice of control can be randomized, that is, uk is
chosen according to a probability distribution depending on Ik and k, although
in this course we will usually not need this extra generality. It becomes neces-
sary to consider such randomized control laws when dealing with constrained
Markov decision processes for example [Alt99], or minimax control criteria.

The next example illustrates the ideas seen so far, and their equivalent for
continuous-time systems. Do not worry too much about the technical details
associated with continuous-time noise models, we won’t deal with them in the
course. It also shows one way of obtaining a discrete-time linear state space
model from a continuous-time one by sampling (the so-called step-invariant
transformation [CF96]).

Example 1.1.2 (discretization of a continuous-time stochastic linear
time-invariant system). A vehicle moves on a one-dimensional line, with its
position ξ ∈ R evolving in continuous time according the differential equation

ξ̈(t) = u(t) + w(t),

where w(t) is a zero mean white Gaussian noise with power spectral density
ŵ. Hence E[w(t)] = 0, and the autocorrelation of the process is E[w(t)w(τ)] =
ŵ δ(t − τ), where δ(·) is the Dirac delta function 2. The deterministic part
of the equation corresponds to Newton’s law. That is, there is a force u(t)
available for the controller to modify the acceleration of the vehicle. However,
the acceleration is also subject to a perturbation w(t) modeled as a random
noise. What is the state of this system? Ignoring the stochastic component w(t)
at least for the moment, and by analogy with our definition in the discrete-time
domain, elementary notions of differential equations tell us that the information
necessary at time t to characterize the future evolution of the system consists
of both the position and velocity of the vehicle, that is, the state is the two-
dimensional vector x = [ξ, ξ̇]T . We can rewrite the dynamics as

ẋ =
[
0 1
0 0

]
x+

[
0
1

]
u+

[
0
1

]
w. (1.3)

More generally, the state-space representation of a continuous-time linear Gaus-
sian time-invariant system can be written as

ẋ(t) = Ax(t) +Bu(t) +Qw(t), (1.4)
2we will not spend time in this course on building rigorous foundations in stochastic

calculus, because most of the time we will work directly with a discrete-time model. When
needed, we will use continuous-time “white noise” freely, as does most of the engineering
literature, even though it is usually more convenient from a mathematical point of view
to work with integrals of the noise. For a gentle introduction to some of the mathematics
involved in a more rigorous presentation, see for example [Oks07].
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where x is the state vector of dimension nx, u is the input vector of dimension
nu, w is a zero mean white Gaussian process noise vector of dimension nw and
power spectral density matrix E[w(t)w(τ)T ] = W δ(t− τ), and A,B,Q,W are
known matrices of appropriate dimensions. The matrix A is called the system
matrix, B is the input gain and Q is the noise gain. The output of the system
(i.e., the available measurements) is assumed to be a vector of dimension ny of
the form

y(t) = Cx(t) +Du(t) +Rv(t). (1.5)

Here v is a zero mean white Gaussian measurement noise vector of dimension
nv and power spectral density matrix E[v(tv(τ)] = V δ(t− τ), and C is called
the measurement matrix. We assume that RV 1/2 is invertible. The general
solution of (1.4) can be written explicitely as

x(t) = eA(t−t0)x(t0) +
∫ t

t0

eA(t−τ)[Bu(τ) +Qw(τ)]dτ. (1.6)

The fact that w(t) is a white noise translates into the fact that x(t) satisfies the
properties necessary to represent the state of the system. In this probabilistic
model, it means that the distribution of x(t) at some time t conditioned on its
values up to an earlier time t′ depends only on the last value x(t′):

P (x(t)|x[−∞,t′], u[t′,t]) = P (x(t)|x(t′), u[t′,t]), for t′ < t.

In probabilistic terms, x(t) is a Markov process when the system is driven by
white noise (this would not necessarily be the case if w were not white, because
states prior to t′ could be used to predict w[t′,t] and x(t) in some way).

Now suppose that we sample the system (1.4) periodically with period T .
It is assumed that between samples, the input u(t) is kept constant

u(t) = u(kT ), ∀ kT ≤ t < (k + 1)T.

Let us write x(k) := x(kT ), and similarly for the other signals. Then from (1.6)
we deduce the following linear time invariant difference equation3 for x(k)

x(k + 1) = Ad x(k) +Bd u(k) + w̃(k), (1.7)

where

Ad := eAT , Bd := eAT

(∫ T

0

e−Asds

)
B,

w̃(k) =
∫ (k+1)T

kT

eA((k+1)T−τ)Qw(τ)dτ.

3this discretization step is exact for linear systems with such piecewise constant inputs,
that is, x(k) represents exactly the value of the signal x(t) at the sampling times, with no
approximation involved so far. It is one of the basic techniques in digital control system
design, worth remembering.
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From the assumption that w(t) is Gaussian, zero mean white and stationary
(i.e., W independent of t), it follows that {w̃(k)}k≥0 is i.i.d. Gaussian with
mean E[w̃(k)] = 0 and covariance matrix E[w̃(j)w̃(k)T ] = Wd δjk where

Wd =
∫ (k+1)T

kT

eA((k+1)T−τ)QWQT eA
T ((k+1)T−τ)dτ

=
∫ T

0

eA(T−u)QWQT eA
T (T−u)du.

Hence after discretization the system at the sampling times is described by
(1.7), which is a discrete time controlled random walk (CRW) of the form
(1.1). The process x(k) is a Markov chain, evolving over the continuous state
space Rnx . The CRW is driven by a discrete time zero mean Gaussian white
noise w̃ with covariance matrix Qd. Note that a first order approximation (as
T → 0) of Wd is

Wd ≈ (QWQT )T

Exercise 1. Rederive the expression of Wd in more details, starting from the
definition of the covariance E[w̃(j)w̃(k)T ]. You can proceed formally, using
properties of the Dirac delta, and not worry about the theory.

We now proceed to discretize the output of the sensor, i.e., the measurement
signal y(t) which can be used to design the control u(k). Here the mathematical
issues involved in dealing with continuous-time white observation noise appear
more clearly. We cannot usually work directly with the samples v(kT ) of the
observation noise, notably in the very important case of white Gaussian noise,
because this would not be well defined mathematically. Instead, we define the
discrete-time measurement equation to be

ỹ(k) = Cx(k) +Du(k) + ṽ(k), (1.8)

where ṽ is a discrete-time zero-mean white noise with covariance matrix

E[ṽ(j)ṽ(k)T ] =: Vdδjk.

This measurement equation is of the form (1.2) introduced earlier, except for
a time indexing convention for uk which is not important for the development
of the theory. It is possible to establish more formal relationships between
the continuous-time and discrete-time measurement equations (1.5) and (1.8),
however. Typically, we need to introduce an integration step, which we did not
have for the process noise because the system dynamics (1.4) already involve
a differential equation with w on the right hand side. It turns out that the
covariance of the corresponding discrete-time noise in (1.8) should be chosen
as

Vd :=
RV RT

T
. (1.9)
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In (1.8), we used the notation ỹ(k) instead of y(k) because ỹ(k) is not equal to
y(kT ). Instead, as in the derivation presented below, ỹ(k) can be thought of
as the time average of the signal y(t) over the period T

ỹ(k) =
1
T

∫ (k+1)T

kT

y(τ)dτ.

This is compatible with real-world measurement devices, which cannot sample
continuous-time values perfectly but perform a “short-term” integration. More-
over, in contrast to the discretization of the system dynamics, (1.8) involves
an approximation, namely, it assumes that the state x(t) is constant over the
interval kT ≤ t < (k + 1)T . The derivation of (1.8) below is only given for
completeness and can be skipped. It serves to justify the choice of the discrete-
time covariance matrix (1.9), which is useful to pass from continuous-time to
discrete-time filters for example. But for all practical purposes, in this course
equation (1.8) can simply be taken as the definition of the discrete-time values
returned by a digital sensor.

Derivation of the measurement equation (1.8): with the definition of ỹ(k) above,
and approximating x(t) by the constant x(k) over the interval kT ≤ t < (k + 1)T , we see
that

ṽ(k) =
1

T

Z (k+1)T

kT
Rv(τ)dτ. (1.10)

Now by definition the Gaussian white noise v(t) is the formal derivative of a Brownian
motion Bt, with mean zero and covariance V . In stochastic calculus, equation (1.10) would
be written

ṽ(k) =
1

T

Z (k+1)T

kT
RdBτ .

The property E[ṽ(k))] = 0 is then a standard property of the stochastic integral, and the
discrete-time covariance matrix is

E[ṽ(j)ṽ(k)T ] = δjk
1

T 2
RE

24 Z (k+1)T

kT
dBτ

! Z (k+1)T

kT
dBτ

!T35RT
= δjk

R

T 2

 Z (k+1)T

kT
V dτ

!
RT

= δjk
RV RT

T
.

Here the first line (introduction of δjk) follows from basic properties of the Brownian motion
(the independence property of the increments and their zero-mean distribution), and the
second equality is called the Itô isometry, see e.g. [Oks07].

Objective to Optimize

So far we have discussed the dynamical systems of interest in this course, as
described in discrete-time by the state space equations (1.1) and (1.2). The
specification of a problem involves choosing an appropriate state, describing
the available measurements, the process and measurement disturbances, and
determining what the available controls or decisions are and how they influence
the dynamics of the system and the measurements. Control theory studies
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methods for choosing the control policy π in order for the system to achieve
a certain behavior. In optimal control we specify this behavior by using an
objective function, which depends on the trajectory followed by the system,
and which the controller attempts to optimize.

We consider cost functions that are additive over time. For a problem with
finite horizon N and perfect information, this means that we can write the cost
function as

J0(x0, π) = E

[
cN (xN ) +

N−1∑
k=0

ck(xk, µk(xk), wk)

]
,

where the expectation is with respect to the joint distribution of the random
variables involved and π = {µ1, . . . , µN−1} is a control policy. Here the cost
incurred at period 0 ≤ k ≤ N − 1 is written ck(xk, uk, wk) and is often called
the immediate cost or the stage cost (at stage k). At the last period, we incur
a cost cN (xN ) which is called the terminal cost. The quantity JN (x0, π) is the
expected total cost for the problem when the system starts in state x0 and the
policy π is used. If we had an initial probability distribution ν for x0, we could
consider the average cost J0(π) =

∫
J0(x0, π) dν(x0). An optimal policy π∗ is

one that minimizes the total expected cost

J∗0 (x0) := J0(x0, π
∗) = min

π∈Π
J0(x0, π), (1.11)

where Π is the set of admissible policies4. We call J∗(x0) the optimal cost
function or optimal value function. Note that the optimal policy π∗ is a priori
associated with a fixed initial state x0. However, by using dynamic program-
ming we will typically be able to find a policy π∗ that is simultaneously optimal
for all initial states.
Remark. We could have considered maximization instead of minimization in
(1.11). Then instead of costs we talk about rewards, and we wish to maximize
the total expected reward over the horizon. You can simply change min to
max, with trivial changes in the theory.

1.2 The Dynamic Programming Algorithm

The dynamic programming idea is based on a very intuitive idea, the principle
of optimality (the name was coined by Richard Bellman). This principle simply
says the following intuitive fact. Assume that π∗ = {µ∗0, µ∗1, . . . , µ∗N−1} is an
optimal policy for the problem (1.11). Assume that using this policy π∗, we
reach the state xi at time i with positive probability. Then it must be that the
truncated policy {µ∗i , . . . , µ∗N−1} is optimal for the subproblem

min
πi={µi,...,µN−1}

Ji(xi, πi) = min
πi

E

{
cN (xN ) +

N−1∑
k=i

ck(xk, µk(xk), wk)

}
,

4to be more precise, in general the “min” in equation (1.11) should be an “inf” without
further hypothesis on the control space. Cases where the minimum is not attained will not
arise for most of this course, and we will come back to this point only when necessary.
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that is, the optimization problem starting from state xi at time i and run-
ning for the remaining time until period N (this is sometimes called “the tail
subproblem”, and it has an horizon equal to N − i). Otherwise, if there were
a stricly better policy {µ̂i, . . . , µ̂N−1}, then we could do better than π∗ by
following the policy {µ∗0, . . . , µ∗i−1, µ̂i, . . . , µ̂N−1}, a contradiction.

The dynamic programming (DP) algorithm is based on this idea. It com-
putes (1.11) by proceedings backwards in time, solving successively all the tail
subproblems or increasing horizon length. Namely, the tail subproblem start-
ing at period N and consisting in computing J0(xN ) is trivial to solve since it
does not involve any choice of control:

J∗N (xN ) = cN (xN ). (1.12)

Now suppose that we have solved the tail subproblem which run from period
k+1 until period N and computed the optimal value function J∗k+1(xk+1). We
can then compute the optimal function J∗k (xk) for the tail subproblem with
one more period by solving the one-step optimization problem:

J∗k (xk) = min
uk∈Uk(xk)

Ewk

[
gk(xk, uk, wk) + J∗k+1(fk(xk, uk, wk))

∣∣∣xk, uk], (1.13)

where the expectation is taken with respect to the probability distribution of
wk conditioned on the values xk and uk. Hence we can compute the optimal
value function J∗0 (x0) for the original problem by proceeding recursively and
backwards in time, using the algorithm (1.12), (1.13). Moreover, we obtain
the optimal policy as well. In state xk at time k, by letting µ∗k(xk) = u∗k,
where u∗k minimizes the right-hand side of (1.13), we have that the policy
π∗ = {µ∗0, . . . , µ∗N−1} is optimal.

Remark. Note that before proceeding to compute J∗k (xk) by (1.13), we need
to compute J∗k+1(xk+1) for all possible values of xk+1. That is, at step k of
the algorithm, we need to compute the “cost-to-go” function J∗k on the whole
state-space for the tail subproblem.

(Informal) Proof of the Validity of the DP algorithm

The DP algorithm is based on the intuitive principle of optimality, yet its valid-
ity requires a formal proof (actually for deterministic problems, the necessity
of a proof is discutable). Such a proof can be made more or less technical
depending on the assumptions made on the disturbance and control spaces, in
particular the existence of a minimizing control in (1.13), but does not provide
much additional insight. We encourage the reader to look at the introductory
discussion of these mathematical issues in [Ber07, p.23 and p.42]. There is
one slightly difficult point arising for stochastic problems which we emphasize
below. Overall, it turns out that the DP algorithm works as expected in any
reasonable setting for finite-horizon problems, which we assume for now, see
[BS78].
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For any policy π = {µ0, . . . , µN−1}, define the truncated policy πi =
{µi, . . . , µN−1}. For i = 0, 1, . . . , N − 1, let J∗i (xi) be the optimal cost-to-
go for the N − i stage problem that starts at xi at time i and ends at time
N :

J∗i (xi) = min
πi

E

[
cN (xN ) +

N−1∑
k=i

ck(xk, µk(xk), wk)

]
.

For i = N , define J∗N (xN ) = cN (xN ). We want to show by backward induc-
tion that the functions J∗i are equal to the functions Ji generated by the DP
algorithm, so that the validity of the algorithm is proved when we take i = 0.

Clearly J∗N ≡ JN ≡ cN . Now assume that J∗i+1 ≡ Ji+1 for some index i+1,
we want to show that J∗i ≡ Ji. We have

J∗i (xi) = min
(µi,πi+1)

E

[
cN (xN ) + ci(xi, µi(xi), wi) +

N−1∑
k=i+1

ck(xk, µk(xk), wk)

]

= min
µi

Ewi

[
ci(xi, µi(xi), wi)

+ min
πi+1

E

[
cN (xN ) +

N−1∑
k=i+1

ck(xk, µk(xk), wk)

]]
.

This step of separating the minimization problem is trivial for deterministic
problems, but requires justification for stochastic problems, since in general
the min and E operations do not commute. This step turns out to be correct,
a fact we will admit, and justify intuitively using the principle of optimality:
“the tail portion of an optimal policy is optimal for the tail subproblem”. See
[Ber07, section 1.5].

Exercise 2. Give an example of random varialbe X such that E[min(X, 0)] 6=
min(E[X], 0). Is there a inequality relationship between these two quantities
that is always valid?

After this step, the proof is easy:

J∗i (xi) = min
µi

E
[
ci(xi, µi(xi), wi) + J∗i+1(fi(xi, µi(xi), wi))

]
= min

µi

E
[
ci(xi, µi(xi), wi) + Ji+1(fi(xi, µi(xi), wi))

]
= min
ui∈Ui(xi)

E
[
ci(xi, ui, wi) + Ji+1(fi(xi, ui, wi))

]
= Ji(xi).

The first equality follows by definition, the second is the induction hypothesis,
the third is a trivial statement.
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1.3 Example: Inventory Control [Ber07, p.28]

To illustrate the application of the DP algorithm, we consider a simple opti-
mal inventory control problem. We will revisit this problem in a more general
setting later in the course. A shop has a stock xk of a certain item available
at the beginning of the kth period. It can reorder a quantity uk (immediately
delivered) of stock at the beginning of each period, in order to meet a stochastic
demand wk that is realized during that period, and which follows a given prob-
ability distribution. The excess demand is lost. Hence the system dynamics
follow the equation

xk+1 = max(0, xk + uk − wk).

Assume that uk and wk are nonnegative integers, and that we have a constraint
that at most two units of stock can be stored:

xk + uk ≤ 2,∀k.

At each period, we incur a cost of 1 per unit of stock ordered, and a quadratic
cost (xk+uk−wk)2 which represents a shortage or holding cost for (xk+uk−wk)
negative and positive respectively. Hence the cost per period is

ck(xk, uk, wk) = uk + (xk + uk − wk)2.

We assume that the terminal cost cN (xN ) is zero.
Let us take a planning horizon N = 3, and compute the optimal value func-

tion J∗3 (x0). Assume that the demand at each period is i.i.d. with probability
distribution

p(wk = 0) = 0.1, p(wk = 1) = 0.7, p(wk = 2) = 0.2.

To start the DP algorithm, we have

J3(x3) = 0,

since the terminal cost is 0. Then for k = 0, 1, 2, the algorithm takes the form

Jk(xk) = min
0 ≤ uk ≤ xk − 2
uk = 0, 1, 2

Ewk

{
uk + (xk + uu − wk)2 + Jk+1(xk+1)

}
.

Hence the next step is to compute J1(x2) for each possible value of the state
x2. For example

J∗2 (x2 = 0) = min
u2=0,1,2

Ew2

{
u2 + (u2 − w2)2

}
= min
u2=0,1,2

[u2 + 0.1(u2)2 + 0.7(u2 − 1)2 + 0.2(u2 − 2)2].

The right hand side evaluates to 1.5 for u2 = 0, 1.3 for u2 = 1 and 3.1 for
u2 = 2. Hence J∗2 (0) = 1.3 and the optimal control at the beginning of period

13



2 if the stock is x2 = 0 is to order one unit of additional stock: µ∗2(0) = 1.
Similarly we can compute

J∗2 (1) = 0.3, µ∗2(1) = 0, J∗2 (2) = 1.1, µ∗2(2) = 0.

At this point, the function x2 → J∗2 (x2) is completely known, and we can
proceed to compute the function x1 → J∗1 (x1) and the optimal controls x1 →
µ∗1(x1). We get

J∗1 (0) = 2.5, µ∗1(0) = 1, J∗1 (1) = 1.5, µ∗1(1) = 0, J∗1 (2) = 1.68, µ∗1(2) = 0.

The last step is then to compute x0 → J∗3 (x0) and the controls x0 → µ∗3(x0).
We get

J∗0 (0) = 3.7, µ∗0(0) = 1, J∗0 (1) = 2.7, µ∗0(1) = 0, J∗0 (2) = 2.818, µ∗0(2) = 0.

Thus if the initial stock if x0, we see that by following the optimal policy we
can achieve an expected cost of 3.7. The optimal policy always orders one unit
if the current stock is zero, and nothing otherwise.

Exercise 3. Do the computations of the previous example in details, following
the DP algorithm.

1.4 Practice Problems

Problem 1.4.1. Do all the exercises found in the chapter.
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