
Chapter 8

Stochastic Shortest Path Problems

1In this chapter, we study a stochastic version of the shortest path problem
of chapter 2, where only probabilities of transitions along different arcs can be
controlled, and the objective is to minimize the expected length of the path.
We discuss Bellman’s equation, value and policy iteration, for the case of a
finite state space. Technical difficulties arise because the DP operator is not
necessarily a contraction as in the discounted cost problems of chapter 6.

8.1 Problem Formulation

The stochastic shortest path problem of this chapter is an infinite horizon
problem where

1. There is no discounting, i.e., α = 1 in the notation of chapter 6.

2. There is a special absorbing state, denoted t, representing the “destina-
tion”: ptt(u) = 1,∀u.

3. The state space X = {1, . . . , n, t} and the control constraint sets U(i) are
finite.

4. The destination state is cost-free: c(t, u) = 0,∀u.

Clearly the cost of any policy starting from t is 0, hence we can omit t from the
notation and define the vectors J, cµ ∈ Rn and Pµ ∈ Rn×n as in section 7.1.
The difference however is that Pµ is substochastic instead of being stochastic.
That is

n∑

j=1

pij(u) = 1− pit(u) ≤ 1,

1This version: November 22 2009.
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Figure 8.1: Transition diagrams and costs for two policies in a stochastic short-
est path problem. The costs are written next to the arrows.

with strict inequality if pit(u) > 0. The operators T, Tµ are defined as in
chapter 6 with α = 1, i.e.,

TµJ = cµ + PµJ

TJ(i) = min
u∈U(i)




c(i, u) +
n∑

j=1

pij(u)J(j)




 .

Bellman’s Equation Need Not Hold for SSP

In general, even under the assumptions above, the DP operator for SSP is not a
contraction. Without additional assumptions, the theory developed in chapter
6 for discounted cost problems runs into difficulties. Consider a problem with
state space {1, 2, t} and two policies with transition probabilities and costs as
given on Fig. 8.1. The equation J = TJ can be written

J(1) = min{−1, J(2)}
J(2) = J(1),

and is satisfied for any J of the form J(1) = J(2) = δ with δ ≤ −1. The policy
µ is clearly optimal with cost vector J(1) = J(2) = −1. The difficulty arises
because the policy µ′ starting from 1 or 2 never reaches the final state yet has
a finite (zero) cost.

8.2 DP Theory

In view of the example of section 8.1, consider the following definition

Definition 8.2.1. A stationary policy µ is said to be proper if, when using
this policy, there is a positive probability that the destination will be reached
after at most n stages, regardless of the initial state. That is

ρµ = max
i=1,...,n

Pµ(xn %= t|x0 = i) < 1. (8.1)
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A stationary policy that is not proper is said to be improper.

It is not hard to see that µ is a proper policy if and only if in the transi-
tion graph of the corresponding Markov chain, each state is connected to the
destination by some path. We make the following assumptions.

Assumption 8.2.1. There exists at least one proper policy.

Assumption 8.2.2. For every improper policy µ, the corresponding cost Jµ(i)
is infinite for at least one state i. That is, some component of

∑N−1
k=0 P k

µ cµ

diverges as N →∞.

In the case of a deterministic shortest path problem, assumption 8.2.1 is
satisfied if and only if every node is connected to the destination by some path,
and assumption 8.2.2 is satisfied if and only if each cycle that does not contain
the destination has positive length. Assumption 8.2.2 is satisfied for example
if c(i, u) is positive for all i %= t and u ∈ U(i). Another important case where
the assumptions are verified is when all policies are proper.

Note that if a policy is proper, then almost surely the destination must be
reached after a finite number of steps. This is because a consequence of 8.1 is
that

Pµ(x2n %= t|x0 = i) = Pµ(x2n %= t|xn %= t, x0 = i)Pµ(xn %= t|x0 = i)

≤ ρ2
µ,

and more generally

Pµ(xk %= t|x0 = i) ≤ ρ%k/n&
µ , i = 1, . . . , n. (8.2)

We can then invoke the Borel-Cantelli lemma to conclude. Moreover under a
proper policy the cost is finite, since

|Jµ(i)| ≤ lim
N→∞

N−1∑

k=0

ρ%k/n&
µ max

j=1,...,n
|c(j, µ(j))| < ∞. (8.3)

Under assumptions 8.2.1 and 8.2.2, the dynamic programming theory is similar
to the one for the discounted cost problems of chapter 6. Note that here the
constant ρµ in a sense plays the role of the discount factor, see (8.3). Note in
particular that (8.2) implies that for all J , we have

lim
k→∞

P k
µ J = 0.

Proposition 8.2.1. 1. For a proper policy µ, the associated cost vector sat-
isfies limk→∞ T k

µ J = Jµ, for every vector J , and Jµ is the unique solution
of the equation Jµ = TµJµ. Moreover, a policy µ such that J ≥ TµJ is
satisfied for some vector J is proper.
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2. The optimal cost vector is the unique solution of Bellman’s equation J∗ =
TJ∗, and we have limk→∞ T kJ = J∗ for every vector J . A stationary
policy µ is optimal if and only if TµJ∗ = TJ∗.

Proof. We have

T k
µ J = P k

µ J +
k−1∑

m=0

Pm
µ cµ,

and so

lim
k→∞

T k
µ J = lim

k→∞

k−1∑

m=0

Pm
µ cµ = Jµ,

by (8.2) (the fact that the limit exists is also a consequence of (8.2)). Then
taking the limit as k →∞ in

T k+1
µ J = cµ + PµT k

µ J

we obtain Jµ = TµJµ. Finally for uniqueness, suppose J = TµJ , then J = T k
µ J

for all k and letting k →∞ we get J = Jµ. Now consider a policy µ for which
J ≥ TµJ for some vector J . Then for all k

J ≥ T k
µ J = P k

µ J +
k−1∑

m=0

Pm
µ cµ,

so no component of the sum can diverge and so µ is not improper (hence
proper) by our assumption 8.2.2.

Next consider the second statement. Note first that because the control sets
are finite, for any vector J we can find a policy µ such that TJ = TµJ . Suppose
Bellman’s equation has two solutions J and J ′, with corresponding policies µ
and µ′ such that J = TµJ and J ′ = Tµ′J ′. Then by the first statement µ and
µ′ must be proper, and so J = Jµ and J ′ = Jµ′ . Then J = T kJ ≤ T k

µ′J for all
k so J ≤ Jµ′ = J ′. Similarly J ′ ≤ J so T has at most one fixed point.

Now we show the existence of a fixed point for T . By assumption 8.2.1
there is at least one proper policy µ0, with cost Jµ0 . We use this policy to start
policy iteration. Assume that at stage k we have a proper policies µ0, . . . , µk

such that
Jµ0 ≥ TJµ0 ≥ Jµ1 ≥ . . . ≥ Jµk−1 ≥ TJµk−1 ≥ Jµk . (8.4)

Then we choose µk+1 such that

TJµk = Tµk+1Jµk .

Hence Tµk+1Jµk ≤ TµkJµk = Jµk so µk+1 is proper by the first statement. Also
by monotonicity of Tµk+1 we have

Jµk+1 = lim
k→∞

T k
µk+1

Jµk ≤ Tµk+1Jµk = TJµk ≤ Jµk ,
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which completes the induction. Since the set of proper policies is finite, some
policy µ must be repeated within the sequence {µk}. By the inequalities (8.4)
we get Jµ = TJµ for this policy.

We still have to show that the unique fixed point Jµ of T just constructed is
the optimal cost vector J∗, and that T kJ → Jµ = J∗ for all J . We start with
the second assertion. Let δ > 0, e = [1, . . . , 1]T and Ĵ be the vector satisfying

Ĵ = TµĴ + δe.

There is a unique such vector Ĵ , which is the cost of the proper policy µ with
the cost cµ replaced by cµ + δe. This interpretation also implies Jµ ≤ Ĵ and so

Jµ = TJµ ≤ T Ĵ ≤ TµĴ = Ĵ − δe ≤ Ĵ .

Using the monotonicity of T , we have then

Jµ = T kJµ ≤ T kĴ ≤ T k−1Ĵ ≤ Ĵ , k ≥ 1.

Hence the sequence T kĴ converges to some vector J̃ . We can see that the
mapping T is continuous, so

T J̃ = T ( lim
k→∞

T kĴ) = lim
k→∞

T k+1Ĵ = J̃ .

By the uniqueness of the fixed point of T , we conclude J̃ = Jµ. Now take any
vector J . Recalling the interpretation of Ĵ above, we can always find δ > 0
such that J ≤ Ĵ and in fact such that the following stronger condition holds

Jµ − δe ≤ J ≤ Ĵ . (8.5)

We already know limk→∞ T kĴ = Jµ. Moreover, since Pµ′e ≤ e for any policy
µ′, we have T (J ′ − δe) ≥ TJ ′ − δe for any vector J ′. Thus

Jµ − δe = TJµ − δe ≤ T (Jµ − δe) ≤ TJµ = Jµ.

Hence T k(Jµ−δe) is monotonically increasing and bounded above, so as before
we conclude that limk→∞ T k(Jµ− δe) = Jµ. Finally by monotonicity of T and
(8.5) we obtain limk→∞ T kJ = Jµ. We can now show that Jµ = J∗. Consider
a policy π = {µ0, µ1, . . .}, and let J0 be the zero vector. Then

Tµ0Tµ1 . . . Tµk−1J0 ≥ T kJ0,

and taking the lim sup on both sides we obtain Jπ ≥ Jµ, hence Jµ = J∗.
Finally if µ is optimal, then Jµ = J∗ and by our assumptions µ must be

proper. Hence
TµJ∗ = TµJµ = Jµ = J∗ = TJ∗.

Conversely if TJ∗ = TµJ∗, since we also have J∗ = TJ∗ it follows from the
first statement that µ is proper. By unicity of the fixed point of Tµ we get
Jµ = J∗ so µ is optimal.
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8.3 Value and Policy Iteration

Value Iteration

The convergence of the value iteration algorithm is shown in proposition 8.2.1.
Moreover, there are error bounds similar to the ones discussed in section 7.1 for
discounted cost problems, and the Gauss-Seidel value iteration method works
and typically converges faster than the ordinary value iteration method.

Moreover, there are certain SSP problems for which we have better conver-
gence results. Note for example that for deterministic shortest path problems,
value iteration terminates in a finite number of step. More generally, let us
assume that the transition graph corresponding to some optimal policy µ∗ is
acyclic. This requires in particular that there are no positive self-transitions
pii(µ∗(i)) > 0 for i %= t. This last property can always be achieved however, as
follows. Define a new SSP problem with transition probabilities

p̃ij(u) =

{
0 if j = i,

pij(u)
1−pii(u) if j %= i,

for i = 1, . . . , n and costs g̃(i, u) = g(i, u)/(1 − pii(u)), i = 1, . . . , n. This new
SSP is equivalent to the original one in the sense that it has the same optimal
costs and policies. Moreover it satisfies the assumption p̃ii(µ∗(i)) = 0.

Under the preceding acyclicity assumption, the value iteration method
yields J∗ after at most n iterations when started from the vector J such that
J(i) = ∞ for all i = 1, . . . , n. Hence such a vector could be a good choice to
start VI in any case, even if the acyclicity property is not clear. Indeed consider
the sets of states

S0 = {t},

Sk+1 =
{

i
∣∣∣ pij(µ∗(i)) = 0, for all j /∈ ∪k

m=0Sm

}
, k = 0, 1, . . .

Hence Sk+1 is the set of states which from which we go to ∪k
m=0Sm at the next

step with probability 1. A consequence of the acyclicity assumption is that the
sets are non empty until we reach k̄ such that ∪k̄

m=0Sm = {1, . . . , n, t}. Indeed
suppose Sk = ∅ for k < k̄, and take i /∈ S := ∪k−1

m=0Sm. Then there is an
edge starting from i that does not enter S. Follow this edge to reach a new
state i1 /∈ S, and repeat, until you come back to i, contradiction (note that
because an optimal policy is proper, the path constructed cannot end at some
state different from t). Then we show by induction that the value iteration
method starting with the vector J = ∞ above yields T kJ(i) = J∗(i) for all
i ∈ ∪k

m=0Sm, i %= t. This is vacuously true for k = 0. Then we have by the
monotonicity of T that J∗ ≤ T k+1J , and for all i ∈ ∪k+1

m=0Sm

T k+1J(i) ≤ c(i, µ∗(i)) +
∑

j∈∪k
m=0Sm

pij(µ∗(i))J∗(j)

= J∗(i).
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This completes the induction. Hence in this case value iteration gives the
optimal costs for all states after k̄ iterations.

Policy Iteration

Policy iteration and approximate policy iteration work similarly to the dis-
counted cost case.
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