
Chapter 11

Linear Programming Methods

1In this chapter we consider the linear programming approach to dynamic pro-
gramming. First, Bellman’s equation can be reformulated as a linear program
whose solution is the optimal value function, offering a computational alterna-
tive to the value and policy iteration methods. Next, the dual of this linear
program gives a new point of view on the optimal control problem, where
one solves a dynamic optimization problem by optimizing over the vectors of
“state-action frequencies”, which correspond to Markov randomized stationary
policies. This formulation is particularly useful in treating multi-objective or
constrained dynamic programming problems, as well as Markov games. LP
methods are also useful for sensitivity analysis. Finally, they can be combined
with approximation methods as discussed in chapter 20.

11.1 Linear Programming Formulations

We consider in this chapter finite Markov decision processes, i.e., problems with
a finite number of states and controls. We discuss first consider discounted cost
problems as in chapter 6. Denote the state space X = {1, . . . , n}. We then
know that starting with a cost vector J ∈ Rn, we have limk→∞ T kJ = J∗,
where J∗ is the optimal value function, see theorem 6.5.1. Suppose J ≤ TJ .
Then by the monotonicity of the dynamic programming operator T , we get

J ≤ TJ ≤ T 2J ≤ . . . ≤ lim
k→∞

T kJ = J∗ = TJ∗.

Hence J ≤ TJ ⇒ J ≤ J∗, and so J∗ is the largest vector that satisfies the
constraint J ≤ TJ . Moreover, the nonlinear constraints

J(i) ≤ min
u∈U(i)




c(i, u) + α
n∑

j=1

pij(u)J(j)




 , i = 1, . . . , n,

1This version: November 16 2009.
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can be rewritten as a system of linear inequalities on the variables J(i), i =
1, . . . , n

J(i) ≤ c(i, u) + α
n∑

j=1

pij(u)J(j), i = 1, . . . , n, u ∈ U(i).

Let the α ∈ (0, 1). From the preceding discussion we see immediately that the
vector J∗ is the solution of any linear program of the form

maximize (1− α)
n∑

i=1

νiJi (11.1)

subject to Ji ≤ c(i, u) + α
n∑

j=1

pij(u)J(j), i = 1, . . . , n, u ∈ U(i),

where ν = [ν1, . . . , νn]T is a set of positive weights νi > 0, i = 1, . . . , n, and the
decision variables are Ji, i = 1, . . . , n. The normalization factor (1− α) can be
omitted but it is convenient for our purpose. Note that if in addition we choose
ν to belong to the interior of the probability simplex

ν ∈ ∆n−1 = {x ∈ Rn : xi > 0,
n∑

i=1

xi = 1},

then νi can be interpreted as a probability of starting in state i ∈ X, and
νT J∗ =

∑n
i=1 νiJ∗(i) is the optimal expected cost for the optimal control

problem when the initial state is probabilistically distributed with distribution
ν. If we wanted to compute J∗(i) for a subset of states X̃ ⊂ X, we could take
some of the coefficients νi equal to 0 for i /∈ X̃, but it is not clear why one
would want to do this, since the computational complexity of the problem is
not reduced. The linear program (11.1) has n variables and up to

∑n
i=1 |U(i)|

constraints, which makes the method impractical for large state and control
spaces, even when some large scale linear programming techniques are used.
In this case, the linear program (11.1) can be combined with approximation
architectures, see chapter 20.

Dual Linear Program

The dual program of (11.1) is perhaps more interesting for applications. It can
be written

min
∑

x∈X

∑

u∈U(x)

c(x, u)ρ(x, u) (11.2)

s.t.
∑

u∈U(x)

ρ(x, u)−
∑

x′∈X

∑

u∈U(x′)

α px′x(u)ρ(x′, u) = (1− α)νx, ∀x ∈ X

(11.3)
ρ(x, u) ≥ 0, ∀x ∈ X, u ∈ U(x).
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It is sometimes stated that this dual program is computationally preferable be-
cause it has only |X| constraints (not counting the nonnegativity constraints)
[Put94, p.224], but since now we have more variables than in (11.1), this state-
ment does not seem very clear.

Remark. For the initial distribution, in the following we use the notation νx

and ν(x) interchangeably. Also, an equivalent way of writing (11.3) is
∑

x′∈X

∑

u∈U(x′)

(δx(x′)− α px′x(u))ρ(x′, u) = (1− α)ν(x).

If we sum these constraints over x, we see that
∑

x′∈X

∑

u∈U(x′)

ρ(x′, u) = 1, (11.4)

and so the set of feasible solutions is a polytope (i.e., bounded polyhedron).

11.2 State-Action Frequencies

The quantities {ρ(x, a)}x,a, if they satisfy the constraints (11.3), can be inter-
preted as a state-action frequencies, i.e., ρ(x, a) is the proportion of time for
which the system is in state x and action u is taken, under a certain stationary
policy. In fact, randomized Markov2 stationary policies are in correspondence
with the feasible solutions of (11.2). Note that the quantity

ρ(x) :=
∑

u∈U(x)

ρ(x, u)

appearing in the LP (11.2) has then the interpretation of state frequencies.
Note that by (11.4) we see that {ρ(x)}x forms a probability distribution over
X, i.e.,

∑
x∈X ρ(x) = 1. Similarly {ρ(x, u)}x,u is a probability measure on the

space of state-action pairs by (11.4).
Consider a Markov policy π, not necessarily stationary, and possibly ran-

domized. Together with the initial distribution ν, this defines a probability
measure Pπ

ν on the sample paths the state-action pairs. We define the state-
action frequencies corresponding to ν and π as

ρπ
ν (x, u) := (1− α)

∑

x′∈X

ν(x′)
∞∑

k=0

αk Pπ(Xk = x, Uk = u|X0 = x′) (11.5)

= (1− α)
∞∑

k=0

αk Pπ
ν (Xk = x, Uk = u).

2A Markov policy is just a policy that depends only on the current state. We haven’t
encountered any other policy in this course, nor the need for them. Here we are adding the
possibility of randomizing controls.
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Clearly ρπ
ν forms a probability measure on the space of state-action pairs. It

turns out that there is always a stationary policy µ which achieves the same
vector of state-action frequencies. To see this, consider the stationary random-
ized policy µ defined by

µ(u|x) =
ρπ

ν (x, u)
ρπ

ν (x)
,

whenever the denominator is non-zero. When it is zero, chose µ(·|x) arbitrarily.
Here µ(u|x) represents the probability of choosing control u ∈ U(x) when the
state is x. We have

ρπ
ν (x) = (1− α)ν(x) + (1− α)α

∞∑

k=0

αkPπ
ν (Xk+1 = x)

= (1− α)
{

ν(x)

+ α
∞∑

k=0

αk
∑

x′∈X

∑

u∈U(x′)

P(Xk+1 = x|Xk = x′, Uk = u)Pπ
ν (Xk = x′, Uk = u)

}

= (1− α)ν(x) +
∑

x′∈X

∑

u∈U(x′)

αpx′x(u)ρπ
ν (x′, u) (11.6)

= (1− α)ν(x) + α
∑

x′∈X

ρπ
ν (x′)

∑

u∈U(x′)

px′x(u)µ(u|x′)

= (1− α)ν(x) + α
∑

x′∈X

ρπ
ν (x′)Pµ(x′, x).

In matrix notation, this can be written

(ρπ
ν )T = (1− α)νT (I − αPµ)−1 = (1− α)νT

( ∞∑

k=0

αkP k
µ

)
.

In other words,

ρπ
ν (x) = (1− α)

∞∑

k=0

αkPµ
ν (Xk = x) = ρµ

ν (x). (11.7)

Moreover, by definition of µ(u|x), we have

ρµ
ν (x, u) = (1− α)

∞∑

k=0

αkPµ
ν (Xk = x)µ(u|x).

Using the relation (11.7), we get

ρµ
ν (x, u) = (1− α)

∞∑

k=0

αkPµ
ν (Xk = x)

ρπ
ν (x, u)
ρµ

ν (x)
= ρπ

ν (x, u).

Note that the constraints (11.6) satisfied by the state-action frequencies (of
any Markov policy) are exactly the constraints (11.3) of the linear program.
We have the following theorem.
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Theorem 11.2.1. 1. For each Markov stationary randomized policy µ and
positive initial distribution ν, {ρµ

ν (x, u)}x,u is a feasible solution to the
linear program (11.2).

2. Suppose {ρ(x, u)}x,u is a feasible solution to the problem (11.2). Then,
for each x ∈ X, we have

∑
u∈U(x) ρ(x, u) > 0. Define the Markov ran-

domized stationary policy µ by

µ(u|x) =
ρ(x, u)∑

u′∈U(x) ρ(x, u′)
=

ρ(x, u)
ρ(x)

. (11.8)

Then for this policy µ, we can define the state-action frequencies ρµ
ν by

(11.5), and we have ρµ
ν (x, u) = ρ(x, u) for all x ∈ X and u ∈ U(x).

Proof. The first statement was proved above, see (11.6). Consider now the
statement 2. The positivity of ρ(x) follows from that of ν(x) and the non-
negativity of ρ(x, u) in (11.3). Then note that ρ(x, a) satisfies the constraint
(11.6) and so we have immediately ρ(x, u) = ρµ

ν (x, u) for all x, u by following
the steps above.

Recall now that our objective is to optimize a function of the form

Jπ(ν) := (1− α)
∑

x∈X

ν(x)Jπ(x) = Eπ
ν

[ ∞∑

k=0

αk(1− α)c(Xk, Uk)
]
, (11.9)

where Eπ
ν is the expectation operator over paths of the Markov chain obtained

once the policy π and the initial distribution ν are fixed. Here we generalize
our earlier notation, with Jπ(ν) being the cost of the policy π when the initial
state is distributed according to ν. We can rewrite this objective as

Jπ(ν) = Eπ
ν

[ ∞∑

k=0

∑

x∈X

∑

u∈U(x)

αk(1− α)c(x, u)1{Xk = x, Uk = u}
]
,

=
∑

x∈X

∑

u∈U(x)

c(x, u)ρπ
ν (x, u),

where the interchange of summation and expectation is allowed by the domi-
nated convergence theorem. This last expression is exactly the objective of the
linear program (11.2). By theorem 11.2.1, assuming ν is positive for simplicity,
there is a bijection between Markov stationary randomized policies and feasible
solutions of the LP (11.2) (which maps a stationary policy to its state-action
frequencies, and in the reverse direction, defines a stationary policy by (11.8))3.
Recall that a basic feasible solution of an LP is a solution that cannot be ex-
pressed as a nontrivial convex combination of any other feasible solutions of the

3ν(x) > 0 guarantees ρ(x) > 0. If ρ(x) = 0, we have a choice in the definition of the
stationary policy for the states that are almost surely never visited, see the beginning of this
section.
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LP. It corresponds to extreme points of the feasible region. A key property of
basic feasible solutions is that when an LP with m rows has a bounded optimal
solution, then any basic feasible solution has at most m positive components.
The next proposition establishes a one-to-one correspondence between station-
ary deterministic policies and extreme points (basic feasible solutions) of the
LP (11.2). Since we know that the optimal solution of (11.2) is attained at one
of these extreme points, this gives us a proof that to find optimal policies, it
is sufficient to consider deterministic policies. Moreover, the discussion at the
beginning of this section tells us that non-stationary policies do not provide
better solutions. Finally, the LP geometry shows that in certain cases, it is pos-
sible that several deterministic policies are optimal, in which case randomizing
between these policies gives a convex set of optimal randomized policies.

Proposition 11.2.2. Let ρ be a basic feasible solution to the LP (11.2). Then
µ defined by (11.8) is deterministic. Conversely, the state-action frequency
vector of a Markov deterministic policy is a basic feasible solution to the LP
(11.2).

Proof. We know that for all x,
∑

u∈U(x) ρ(x, u) > 0. Moreover, the LP (11.2)
has |X| rows. Hence in a basic feasible solution, we must have ρ(x, u) > 0 for
exactly one u, and we conclude that µ defined by (11.8) is deterministic.

For the converse, assume ρµ
ν is feasible but not basic. Then there are two

distinct basic feasible solutions ρ1 and ρ2 and 0 ≤ θ ≤ 1 such that ρµ
ν =

(1 − θ)ρ1 + θρ2. Because ρ1 and ρ2 are distinct, there is some x ∈ X such
that ρ1(x, u1) > 0 and ρ1(x, u2) > 0 for u1 (= u2. But then ρµ

ν (x, u1) > 0 and
ρµ

ν (x, u2) > 0, so µ must be randomized.

We summarize the results in the following theorem.

Theorem 11.2.3. • There exists a bounded optimal basic feasible solution
ρ∗ to the LP (11.2).

• If ρ∗ is an optimal solution to (11.2), then µ∗ defined by (11.8) is an
optimal policy.

• If ρ∗ is an optimal basic solution to (11.2), then µ∗ defined by (11.8) is
an optimal deterministic policy.

• If µ is an optimal policy, then ρµ
ν is an optimal solution for (11.2).

• If µ is an optimal deterministic policy, then ρµ
ν is an optimal basic solu-

tion for (11.2).

• For any positive vector ν, the LP (11.2) has the same optimal basis
(columns of the constraint matrix that determine the basic feasible so-
lution). Hence the optimal policy does not depend on ν.
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Note that if ρ∗ and J∗ are optimal solutions of the LPs (11.2) and (11.1),
we have (strong duality holds)

J∗(ν) = (1− α)
∑

x∈X

ν(x)J∗(x) =
∑

x∈X

∑

u∈U(x)

ρ∗(x, u)c(x, u).

Remark. Solving the LP (11.2) by the simplex method with block pivoting is
equivalent to policy iteration.

11.3 Constrained Dynamic Programming

In view of (11.9), it is easy to add constraints to the model. Let (x, u) )→ d(x, u)
be another cost function, and suppose we wish to solve the initial optimal
control problem for c(x, u) with the additional constraint that the expected
total discounted cost for d does not exceed some constant D

Eπ
ν

[ ∞∑

k=0

αkd(Xk, Uk)
]
≤ D.

This constraints can be rewritten
∑

x∈X

∑

u∈U(x)

ρµ
ν (x, a)d(x, a) ≤ D,

and can be directly added to the LP (11.2). This cuts the polytope correspond-
ing to the feasible region of the unconstrained DP problem, and in general,
optimal policies must then include some randomization, with more randomiza-
tion necessary as we add more constraints, see the proof of proposition 11.2.2.
To deal with such constraints in the more standard dynamic programming
formulation, we would have to introduce Lagrange multipliers.

11.4 Markov Games

For a future version.
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