
18.3 Projected Equation Methods

The direct methods of section 18.2 are perhaps the most straightforward way
of fitting an approximation architecture for policy evaluation based on simu-
lated samples. An alternative approach for policy evaluation, which is actually
preferred and referred to as indirect approximation method, is to try to solve a
projected form of Bellman’s equation J = TµJ on the subspace

S = span{φ1, . . . ,φm},

i.e., S = im Φ for finite-state spaces. With these methods, we aim to find a
weight vector rµ such that

Φrµ = ΠTµ(Φrµ), (18.19)

where Π is a linear projection on the subspace S. We view Φrµ as an ap-
proximation of Jµ. Note that (18.19) is linear in r, and we solve equations
in a smaller-dimensional space (dimension m) than when attacking Bellman’s
equation for Jµ directly (dimension n >> m). This approach is actually a
popular technique in numerical analysis5, but here it is coupled with stochastic
simulation ideas. In this section, we consider exclusively linear approximation
architectures J̃(x, r) = φ(x)T r, x ∈ X.

Since we assume that the policy µ to be evaluated is fixed, the state evolves
as a Markov chain. Let us consider a finite state space X = {1, . . . , n} with the
following assumptions

1. The Markov chain has steady-state probabilities ξ = [ξ1, . . . , ξn] that are
positive, i.e., for all i = 1, . . . , n

lim
N→∞

1
N

N∑

k=1

P (xk = j|x0 = i) = ξj , j = 1, . . . , n.

2. The matrix Φ as full column rank.

Assumption 1 is equivalent to assuming the the Markov chain is irreducible,
i.e., has a single communication class (hence recurrent, and there are no tran-
sient states). Assumption 2 is equivalent to the basis functions φi, i = 1, . . . , s
being linearly independent and imply that any vector J ∈ im Φ as a unique
decomposition J = Φr. We will also use the weighted Euclidian norm, defined
for w = [w1, . . . , wn]T , with wi > 0 for all i, by

‖J‖2,w =

(
n∑

i=1

wi(J(i))2
)1/2

=
√

JT WJ,

5see e.g. Galerkin methods for continuous operator problems such as differential equa-
tions.
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with W = diag(w). Let Πw be the orthogonal projection onto S with respect
to this norm. ΠwJ is then the unique vector Ĵ in S that minimizes ‖J − Ĵ‖2,v

over all vectors in S. Because of the full column rank assumption on Φ, we can
write uniquely Ĵ = ΦrJ where

rJ = arg min
r∈Rs

‖J − Φr‖2,v.

In fact, it is not hard to see in this case that we have rJ = (ΦT WΦ)−1ΦT WJ .
The first question we need to address is that of the existence of a fixed point

for the equation
Φr = ΠwTµ(Φr).

For the standard Bellman equation, this followed from the fact that Tµ is an
α-contraction for ‖ · ‖∞, see theorem 6.5.1. We would like to follow the same
idea here. However, because of the composition with the orthogonal projection
Πw, it becomes more convenient to work with the weigthed 2-norm. Note first
that Πw is nonexpansive for ‖ ·‖ 2,w, i.e.

‖ΠwJ −ΠwJ̄‖2,w ≤ ‖J − J̄‖2,v, ∀J, J̄ ∈ Rn. (18.20)

Exercise 18. Prove the property (18.20) (hint: Pythagorean theorem).

Hence if we can prove that that Tµ is contraction with respect to ‖ · ‖2,w,
then this is also true for the composition ΠwTµ. Unfortunately the contraction
property of Tµ does not hold in general for the (weighted) 2-norm. In fact, the
iteration

Φrk+1 = ΠwTµ(Φrk),
can even diverge. For an example, fix the discount factor α ∈ (0, 1) and take
an uncontrolled two-state Markov chain with transition matrix

P =
[
ε 1− ε
ε 1− ε

]
,

and stage costs c(1) = c(2) = 0. Hence the total cost is J∗ = [0, 0]T . Next,
take just one basis function φ1 = [1, 2]T . We have

TΦrk = αPφ1rk = αe
[
ε 1− ε

] [
1
2

]
rk = (α(2− ε)rk)e, e = [1, 1]T .

Next, consider the orthogonal projection with respect to the standard Eu-
clidean norm

rk+1 = arg min
r

{(r − (α(2− ε)rk))2 + (2r − (α(2− ε)rk))2} =
3
5
α(2− ε)rk.

Hence the sequence {rk}k diverges if ε is close to 0 and α close to 1.
However, an important case where Tµ turns out to be a contraction with

respect to ‖ ·‖ 2,w is when w = ξ, i.e., the weights are the chain’s steady-state
probabilities. In the example above, the steady-state chain spends only the
proportion ε of its time in state 1. It thus seems more sensible to weight the
two states differently in the cost criterion. The contraction property essentially
follows from the following lemma.
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Lemma 18.3.1. Let P be a n×n stochastic matrix with stationary distribution
ξ such that ξi > 0, i = 1, . . . , n. Then

‖PJ‖2,ξ ≤ ‖J‖2,ξ, ∀z ∈ Rn.

Proof.

‖PJ‖22,ξ =
n∑

i=1

ξi([PJ ]i)2 =
n∑

i=1

ξi(E[J(X1)|X0 = i])2

≤
n∑

i=1

ξiE[(J(X1))2|X0 = i] (Jensen’s inequality)

= Eξ[J(X1))2] = Eξ[J(X0))2] = ‖J‖2ξ (definition of ξ, stationary).

Hence we have immediately the following proposition.

Proposition 18.3.2. The mappings Tµ and ΠξTµ are α-contractions for the
norm ‖ · ‖2,ξ, where ξ is the stationary distribution of the Markov chain corre-
sponding to µ.

Proof. Since Πw is nonexpansive, it is sufficient to prove the result for Tµ.
Recall that TµJ = cµ + αPµJ . Hence for all J, J̄ ∈ Rn

‖TµJ − TµJ̄‖2,ξ = α‖Pµ(J − J̄)‖2,ξ ≤ α‖J − J̄‖2,ξ,

using lemma 18.3.1, and we are done.

Since ΠξTµ is an α-contraction for ‖ ·‖ 2,ξ and the space of functions X → R
with finite weighted 2-norm is complete (it is a Hilbert space), we conclude that
ΠξTµ has a unique fixed point Ĵµ ∈ im Φ. By our assumption on Φ having
full column rank, there is a unique rµ ∈ Rs such that Ĵµ = Φrµ. We would
like now to have an estimate of the error in approximating Jµ by Ĵµ. Note
that the best we can expect to achieve is the projection ΠξJµ of Jµ on S, that
is, the performance cannot be good if the choice of approximation architecture
is poor. In general, Ĵµ is not equal to the projection ΠξJµ, but we have the
following bound.

Proposition 18.3.3. Let Ĵµ be the unique fixed point of ΠξTµ. Then we have
the error bound

‖Jµ − Ĵµ‖2,ξ ≤
1√

1− α2
‖Jµ −ΠξJµ‖2,ξ.
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Proof. Write

‖Jµ − Ĵµ‖22,ξ = ‖Jµ −ΠξJµ‖22,ξ + ‖ΠξJµ − Ĵµ‖22,ξ (Pythagorean theorem)

= ‖Jµ −ΠξJµ‖22,ξ + ‖ΠξTµJµ −ΠξTµĴµ‖22,ξ (def. of Jµ and Ĵµ)

≤ ‖Jµ −ΠξJµ‖22,ξ + α2‖Jµ − Ĵµ‖22,ξ (ΠξTµ α-contraction).

Looking at the projected Bellman’s equation in matrix form for a finite
state space, writing Ξ = diag(ξ) and Ĵµ = Φrµ, we know that rµ also verifies

rµ = arg min
r∈Rs

‖Φr − (cµ + αPµĴµ)‖22,ξ. (18.21)

Note the somewhat subtle fact here that (18.21) is not

arg min
r∈Rs

‖Φr − (cµ + αPµΦr)‖22,ξ. (18.22)

In fact, (18.22) is the Bellman equation error approach mentioned earlier and
discussed in section 18.4. By setting the gradient of the expression in (18.21)
to 0 we see that rµ must satisfy the following linear system of equations

Crµ = d, with C := ΦT Ξ(I − αPµ)Φ, d := ΦT Ξcµ. (18.23)

Under assumption 2 this system has a unique solution rµ = C−1d and

Ĵµ = Φrµ = Φ(ΦT Ξ(I − αPµ)Φ)−1ΦT Ξcµ.

Compare to the original Bellman’s equation

Jµ = (I − αPµ)−1cµ,

which requires solving an n×n system of linear equations, whereas computing
rµ now involves a typically much smaller m ×m system. However, explicitly
computing C and d using their definitions in (18.23) still requires computing
inner products of size n, which can be impractical. Maybe more crucially, we
do not now the stationary distribution Ξ in general and computing it directly
is usually extremely difficult! Simulation is used to address both problems.

Before introducing simulation however, let us describe the analog of the
value iteration algorithm for the projected equation. We start with a vector r0

and compute the iterates

Φrk+1 = ΠξTµ(Φrk).

This can theoretically be accomplished by first computing Tµ(Φrk) (this is
not practical because this vector lives in an n-dimensional space) and then
projecting on S using Πξ (this is not practical since this requires the knowledge
of ξ), i.e.,

rk+1 ∈ arg min
r∈Rs

‖Φr − (cµ + αPµΦrk)‖22,ξ. (18.24)
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We call this theoretical algorithm projected value iteration (PVI). Its conver-
gence to Ĵµ follows from the fact that ΠξTµ is a contraction. Under assumption
2, the solution rk+1 is unique and satisfies

ΦT ΞΦrk+1 − ΦT Ξ(cµ + αPµΦrk) = 0

ΦT ΞΦrk+1 − d + Crk − ΦT ΞΦrk = 0

rk+1 = rk − (ΦT ΞΦ)−1(Crk − d). (18.25)

Note that rµ is the unique fixed point of (18.25). Now (18.25) can be seen as
an example of more general iterative algorithms to solve the system Cr = d,
of the form

rk+1 = rk − γkD−1
k (Crk − d), (18.26)

where γk is a positive stepsize and Dk is a positive definite symmetric matrix.
Fixing γk = γ and Dk = D for all k, the iterates (18.26) converge to the
solution of Cr = d is and only if the eigenvalues of I − γD−1C are strictly
within the unit circle. This turns out to be true for any D positive definite and
γ small enough, see [Ber07b, prop. 6.3.3].

Simulation Based Approximations

In practice we can form approximations of C and d using simulations, and then
use these approximations in r = C−1d, as well as in the PVI algorithm (18.25)
or (18.26). Treating the simulation variations as noise, we obtain stochastic
approximation algorithms for solving the equation f(r) := Cr − d = 0, where
we can only measure f(r) up to noise entering through the coefficients C and
d. Recall the definitions

C = ΦT Ξ(I − αPµ)Φ

d = ΦT Ξcµ.

Rewritten more explicitly, and recalling the definition of the feature vector
φ(x) = [φ1(x), . . . ,φm(x)]T (φT (x) is a row of Φ, so φ(x) is a column of ΦT ),
we have (below we write [Pµφ](i) =

∑n
j=1 pij(µ(i))φ(j), which is the expected
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feature vector of the next state given that the current state is i6)

C =
n∑

i=1

ξ(i)φ(i)(φ(i)− α[Pµφ](i))T

= Eξ

[
φ(x)

(
φ(x)− αE[φ(x1)|x0 = x, u0 = µ(x)]

)T ]
,

= Eµ
ξ

[
φ(x0)

(
φ(x0)− αφ(x1)

)T ]
,

d =
n∑

i=1

ξ(i)φ(i)cµ(i) = Eξ[φ(x)cµ(x)]

= Eξ

[
φ(x)E[c(x0, u0, x1)|x0 = x, u0 = µ(x)]

]

= Eµ
ξ

[
φ(x0)c(x0, µ(x0), x1)

]
.

Here Eµ
ξ [f(x0, x1)] is the expectation operator for the Markov chain (with the

policy fixed to µ) assuming that x0 is distributed according to ξ. Now consider
a simulated trajectory (x0, x1, . . .). When xk is generated, we can compute
its feature vector φ(xk) and when a transition (xk, xk+1) is generated we can
compute the transition cost c(xk, µ(xk), xk+1). After k +1 such transitions are
generated, consider the empirical versions of C and d above:

Ck =
1

k + 1

k∑

t=0

φ(xt)(φ(xt)− αφ(xt+1))T (18.27)

dk =
1

k + 1

k∑

t=0

φ(xt)c(xt, µ(xt), xt+1). (18.28)

The law of large numbers, which is assumed to hold for our Markov chain, says
that Ck → C and dk → d almost surely. Note also that we have the recursive
updates formulas for Ck and dk, k ≥ 1,

Ck = Ck−1 +
1

k + 1

[
φ(xk)(φ(xk)− αφ(xk+1))T − Ck−1

]

dk = dk−1 +
1

k + 1

[
φ(xk)c(xk, µ(xk), xk+1)− dk−1

]
.

These formulas allow us to update the value of Ck and dk after a transition
(xk, xk+1) is generated.

Least Squares Temporal Differences (LSTD)

This method uses the empirical (simulation-based) versions Ck and dk of C
and d to construct a simulation-based approximate solution

r̂k = C−1
k dk.

6Note that φ(i) is a vector of length m here, not a number.
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As we saw above, Ck and dk can be updated recursively (in fact, we update
C−1

k recursively using the matrix inversion lemma, see below for LSPE), but
this method is not a true recursive method since we do not use r̂k−1 to compute
r̂k. Using (18.27) and (18.28), we can also write the equation Ckrk = dk as

k∑

t=0

φ(xt)qk,t = 0,

where qk,t is the temporal difference associated with rk and the transition
(xt, xt+1)

qk,t = φ(xt)T rk − αφ(xt+1)T rk − c(xt, µ(xt), xt+1).

As usual with linear systems of equations, a difficulty arises in LSTD if
Ck and C are nearly singular, since then the solution is strongly sensitive to
changes in the problem data, rounding errors and in our case the simulation-
induced error

r̂k − r = C−1
k dk − C−1d

is greatly amplified. If the discount factor α is significantly smaller than 1,
this is not a problem when the number of samples is sufficiently large. But
standard LSTD can run into serious singularity issues for Ck as α becomes
close to 1 or for nondiscounted problems (e.g. stochastic shortest path or
average cost problems). The standard solution to this problem is to use some
form of regularized regression, which works even if the matrices are singular,
at the cost of introducing some bias in the estimate. That is, we choose rk by
solving the least squares problem

rk ∈ arg min
r
‖dk − Ckr‖22,Σ−1 + ‖r − r̄‖22,Γ−1 (18.29)

i.e., rk ∈ arg min
r

{
(dk − Ckr)T Σ−1(dk − Ckr) + (r − r̄)T Γ−1(r − r̄)

}
,

where r̄ is some a priori estimate of r∗ = C−1d, and Σ,Γ are some positive
definite symmetric matrices. Here r̄ may be chosen based on intuition about the
problem or may correspond to the cost Φr̄ of a similar policy (e.g., a preceding
policy in approximate policy iteration). The quadratic term ‖r − r̄‖22,Γ−1 is
known as a regularization term and biases the estimate r̂k towards the a priori
guess r̄. Typically we take Γ−1 = βI, with β > 0 chosen by trial-and-error.
A large β reduces the effect of near singularity of Ck and the sensitivity to
simulation errors, but may cause a large bias.

The explicit solution to (18.29) is

r̂k = (CT
k Σ−1Ck + Γ−1)−1(CT

k Σ−1dk + Γ−1r̄).

Writing the projected Bellman’s equation using simulation as d = Crk − ek,
with the simulation noise ek = (C − Ck)rk + dk − d, a suitable choice for Σ in
the regression is an estimate of the covariance of ek. Let

Wt = φ(xt)(φ(xt)− αφ(xt+1))T

vt = φ(xt)c(xt, µ(xt), xt+1).
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These quantities can be viewed as samples of Ck and dk, and we can view a
vector

yt = Wtr̃ − vt,

as a sample of the error ek, where r̃ is another guess (perhaps different from
r̄ above) of the solution. Note that yt has sample mean Ckr̃ − dk. We use its
sample covariance matrix in the regression

Σ =
1

k + 1

k∑

t=0

(yt − Ckr̃ + dk)(yt − Ckr̃ + dk)T

=
1

k + 1

k∑

t=0

((Wt − Ck)r̃ + (dk − vt))((Wt − Ck)r̃ + (dk − vt))T .

The error r̂k − rµ made using the regularized regression (18.29) can be
bounded in probability, following classical arguments developed for linear re-
gression (perhaps the most well-studied statistical method). The analysis is
based on the fact that for a large number of samples, the errors d − Crk are
asymptotically normal, see [Ber07b, prop. 6.3.4]. The bound involves a term
that decreases to 0 as more samples are used, and a second term due to the
bias error that cannot be made arbitrarily small (but which diminishes with
β). The choice of Σ to be close to the covariance matrix of d−Crk also comes
from this analysis of regression errors.

Least Squares Policy Evaluation (LSPE)

As an alternative to LSTD, we obtain a true iterative method by using the
approximations Ck and dk in the Projected Value Iteration recurrence (18.26),
to get

rk+1 = rk − γkD−1
k (Ckrk − dk), (18.30)

where Dk is a positive definite matrix, γk is a positive stepsize, and Ck, dk are
given by (18.27), (18.28). In terms of temporal differences, we have

rk+1 = rk −
γk

k + 1
D−1

k

k∑

t=0

φ(xt)qk,t (18.31)

Regarding the choice of γk and Dk, a first guideline is that if say γk = γ,
Dk → D, Ck → C and dk → d such that I−γD−1C has its eigenvalues strictly
within the unit circle, then we generally have rk → rµ = C−1d (recall the
convergence result mentioned for PVI). Also motivated by the first PVI equa-
tion (18.25), we could choose γk = 1 for all k and take Dk to be a simulation
based approximation of ΦT ΞΦ = Eξ[φ(x0)φ(x0)T ], possibly corrected to ensure
positive definiteness:

Dk =
1

k + 1
(βI +

k∑

t=0

φ(xt)φ(xt)T ), with β ≥ 0.
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With this choice of Dk, the method is known as the Least Squares Policy
Evaluation (LSPE) method. We have the recursion

Dk =
k

k + 1
Dk−1 +

1
k + 1

φ(xk)φ(xk)T (18.32)

= Dk−1 +
1

k + 1
(φ(xk)φ(xk)T −Dk−1).

Among possible variations, we could update Dk only periodically instead of
doing so after every new sample to save computations. On the other hand,
since we are interested in D−1

k , we can use the matrix inversion lemma

(A−BD−1C)−1 = A−1 −A−1B(D − CA−1B)−1CA−1

to get

D−1
k =

(
k

k + 1
Dk−1 +

1
k + 1

φ(xk)φ(xk)T

)−1

D−1
k =

k + 1
k

[
D−1

k−1 +
D−1

k−1φ(xk)φ(xk)T D−1
k−1

k + φ(xk)T D−1
k−1φ(xk)

]
.

Another possibility to simplify the matrix inversion is to use diagonal matrices
Dk, such as a diagonal approximation of ΦT ΞΦ, for example by discarding the
off-diagonal elements in (18.32).

Note that the choice of γ and D significantly affects the convergence rate
of the deterministic PVI algorithm. However, for the simulation based version
(18.30), the slower speed of simulation (i.e., the rate at which Ck → C and
dk → d) dominates the faster (linear) convergence rate of PVI. In consequence
the asymptotic rate of convergence of (18.30) does not depend on the choice of
γk and Dk, as long as I − γD−1C is a contraction. However, the short-term
convergence rate may be significantly affected.

TD(0) Method

This method is the TD based version of LSPE (18.31) where we only keep the
latest sample and take Dk = I

rk+1 = rk − γkφ(xk)qk,k. (18.33)

Note that we recover the case of TD(0) encountered earlier in (18.16). Writing
f(r) = Cr − d, we see that φ(xk)qk,k is a noisy sample of f(rk) which uses
just one sampled state xk instead of the average of the past samples used to
compute Ck and dk in LSPE. Hence TD(0) is essentially the simplest form of
a Robbins-Monro scheme for solving the equation f(r) = 0 (see section 15.1),
whereas LSPE uses averaging of the past samples. In general, the convergence
of TD(0) is much slower than that of LSPE, and it requires γk → 0 to deal
with the nondiminishing noise in the term φ(xk)qk,k. On the hand, it is easier
to compute.
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Optimistic Versions

Optimistic versions of LSTD and LSPE are discussed in [Ber07b, section 6.3.5].

LSTD(λ), LSPE(λ) and TD(λ)

Consider the operator

T (λ)
µ = (1− λ)

∞∑

l=0

λl T l+1
µ ,

for λ ∈ [0, 1). For λ = 0, this is just the usual operator T . Corresponding to
this operator is a weighted multistep Bellman equation

J = T (λ)
µ J = c(λ)

µ + αP (λ)
µ J,

with

P (λ)
µ = (1− λ)

∞∑

l=0

αlλlP l+1
µ , c(λ)

µ =
∞∑

l=0

αlλlP lcµ = (I − αλPµ)−1cµ.

Exercise 19. Verify the correctness of the expression of T (λ)
µ above. Note that

we have

T l+1
µ J = αl+1P l+1

µ J +
l∑

k=0

αkP k
µ cµ.

Note that the operators T l
µ and T (λ)

µ have the same fixed point Jµ. Hence
we can apply the preceding algorithms to T (λ)

µ in place of Tµ. The projected
equations become

C(λ)r(λ)
µ = d(λ),

where
C(λ) = ΦT Ξ(I − αP (λ))Φ, d(λ) = ΦT Ξc(λ)

µ .

The motivation for replacing T with T (λ) is that the modulus of contraction of
T (λ) is smaller, resulting in a tighter error bound. We have

Proposition 18.3.4. The mappings T (λ)
µ and ΠξT

(λ)
µ are contractions with

respect to ‖ ·‖ ξ, of modulus

αλ =
α(1− λ)
1− αλ

.

Hence we have the error bound

‖Jµ − Φr(λ)
µ ‖ξ ≤

1√
1− α2

λ

‖Jµ −ΠξJµ‖ξ, (18.34)

where Φr(λ)
µ is the fixed point of ΠξT

(λ)
µ .
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Proof. The proof follows from the result of lemma 18.3.1, since

‖P (λ)
µ z‖ξ ≤ (1− λ)

∞∑

l=0

αlλl‖P l+1
µ z‖ξ

≤ (1− λ)
∞∑

l=0

αlλl‖z‖ξ

=
1− λ

1− αλ
‖z‖ξ.

Note that αλ decreases and the error bound (18.34) becomes better as λ
increases, with αλ → 0 as λ → 1. However, as λ increases, it turns out
that the “simulation noise” becomes more pronounced. Another consequence
of proposition 18.3.4 and of the equivalence of norms in Rn is that for any set
of weights w, T (λ)

µ is a contraction for ‖ ·‖ 2,w provided λ is sufficiently close to
1. Coming back to the simulation algorithms, note that

C(λ) = Eξ

[
φ(x0)

(
φ(x0)− α(1− λ)

∞∑

l=0

αlλlφ(xl+1)
)T ]

= Eξ

[
φ(x0)

( ∞∑

t=0

(αλ)t(φ(xt)− αφ(xt+1)
)T ]

,

d(λ) = Eξ

[
φ(x0)

( ∞∑

l=0

(αλ)lc(xl, µ(xl), xl+1)
)]

.

Consider a simulation path x0, x1, . . .. When the transition (xk, xk+1) is ob-
served, the simulation approximations are then

C(λ)
k =

1
k + 1

k∑

t=0

φ(xt)
k∑

m=t

(αλ)m−t(φ(xm)− αφ(xm+1))T ,

d(λ)
k =

1
k + 1

k∑

t=0

φ(xt)
k∑

m=t

(αλ)m−tc(xm, µ(xm), xm+1).

If we replace Ck and dk by C(λ)
k and d(λ)

k , we obtain the so-called LSTD(λ) and
LSPE(λ) methods. Again one can streamline the computations by introducing
the vector

zm =
m∑

t=0

(αλ)m−tφ(xt),

which evolves as
zm+1 = αλzm + φ(xm+1).
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Interchanging the sums in the definitions of C(λ)
k and d(λ)

k , we have

C(λ)
k =

1
k + 1

k∑

t=0

φ(xt)
k∑

m=t

(αλ)m−t(φ(xm)− αφ(xm+1))T ,

=
1

k + 1

k∑

m=0

(
m∑

t=0

(αλ)m−tφ(xt)

)
(φ(xm)− αφ(xm+1))T

=
1

k + 1

k∑

m=0

zm(φ(xm)− αφ(xm+1))T ,

and similarly

d(λ)
k =

1
k + 1

k∑

m=0

zmc(xm, µ(xm), xm+1).

This allows us to easily update C(λ)
k , d(λ)

k recursively as well, and the rank-one

update of
(
C(λ)

k

)−1
can be done efficiently using the matrix inversion lemma.

Finally the iteration for LSPE(λ)

rk+1 = rk − γD−1
k (C(λ)

k rk − d(λ)
k ), Dk =

1
k + 1

k∑

t=0

φ(xt)φ(xt)T ,

can also be written

rk+1 = rk −
γ

k + 1
D−1

k

k∑

t=0

ztqk,t,

where qk,t is the usual temporal difference

qk,t = φ(xt)T rk − αφ(xt+1)T rk − c(xt, µ(xt), xt+1).

Just as with TD(0), we can view the algorithm TD(λ) as a truncated version
of LSPE(λ), which takes the form

rk+1 = rk − γkzkqk,k,

where γk is a stepsize parameter. This amounts to approximating C(λ) and
d(λ) by one sample instead of k + 1 samples.

Convergence of TD(0)

The TD(0) algorithm with a linear architecture has the simple form

rk+1 = rk + γkφ(xk)(c(xk, xk+1) + αφ(xk+1)T rk − φ(xk)T rk),
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where we use c(x, y) := c(x, µ(x), y) for notational simplicity. This is a type
of stochastic approximation algorithm, where the noise is a function of the
Markov chain {xt}t. We can rewrite it as

rk+1 = rk + γk

[
f̄(rk) +

(
f(rk, xk, xk+1)− f̄(rk)

)]
,

with

f(rk, xk, xx+1) = φ(xk)(c(xk, xk+1) + αφ(xk+1)T rk − φ(xk)T rk),

f̄(r) = Eξ[f(r, xk, xk+1)] =
∑

x,y

ξxPµ
xyf(r, x, y).

In particular in the second expression note that we have taken the average
with respect to the steady state distribution of the Markov chain. Although
this is slightly more general than the situation described in chapter 15 (mar-
tingale difference noise), you can imagine that under appropriate conditions,
in particular the same decreasing step-size conditions for γk, the iterates will
asymptotically track the ODE

ṙ = f̄(r). (18.35)

Now we can write

f̄(r) = ΦT Ξ(cµ + αPµΦr − Φr) = ΦT Ξ(TµΦ− Φ)r.

An equilibrium point of the ODE (18.35) satisfies

ΦT Ξ(I − αPµ)Φr = ΦT Ξcµ,

and under our assumption 2, this equation has a unique solution, which is rµ.
This equilibrium is globally asymptotically stable for the ODE (18.35). Indeed,
consider the Lyapunov function V (r) = 1

2‖r − rµ‖22. Its Lie derivative along
the vector field is

〈r − rµ, f̄(r)〉 = 〈r − rµ,ΦT Ξ(TµΦr − Φr)〉
= 〈Φ(r − rµ), TµΦr − Φr〉ξ
= 〈Φ(r − rµ),ΠξTµΦr − Φr〉ξ
= 〈Φ(r − rµ),ΠξTµΦr −ΠξTµΦrµ〉ξ − 〈Φ(r − rµ),Φr − Φrµ〉ξ
≤ −(1− α)‖Φr − Φrµ‖22,ξ

< 0.

In the third equality above, the introduction of Πξ is valid due to the fact
that the orthogonal components does not contribute to the scalar product. In
the fourth equality, we simply use the definition of the fixed point rµ. Note
the similarity with the convergence proof for the “fixed-point ode” of theorem
15.2.1.

183


