18.3 Projected Equation Methods

The direct methods of section 18.2 are perhaps the most straightforward way of fitting an approximation architecture for policy evaluation based on simulated samples. An alternative approach for policy evaluation, which is actually preferred and referred to as indirect approximation method, is to try to solve a projected form of Bellman's equation $J=T_{\mu} J$ on the subspace

$$
S=\operatorname{span}\left\{\phi_{1}, \ldots, \phi_{m}\right\}
$$

i.e., $S=\operatorname{im} \Phi$ for finite-state spaces. With these methods, we aim to find a weight vector r_{μ} such that

$$
\begin{equation*}
\Phi r_{\mu}=\Pi T_{\mu}\left(\Phi r_{\mu}\right) \tag{18.19}
\end{equation*}
$$

where Π is a linear projection on the subspace S. We view Φr_{μ} as an approximation of J_{μ}. Note that (18.19) is linear in r, and we solve equations in a smaller-dimensional space (dimension m) than when attacking Bellman's equation for J_{μ} directly (dimension $n \gg m$). This approach is actually a popular technique in numerical analysis ${ }^{5}$, but here it is coupled with stochastic simulation ideas. In this section, we consider exclusively linear approximation architectures $\tilde{J}(x, r)=\phi(x)^{T} r, x \in \mathrm{X}$.

Since we assume that the policy μ to be evaluated is fixed, the state evolves as a Markov chain. Let us consider a finite state space $\mathrm{X}=\{1, \ldots, n\}$ with the following assumptions

1. The Markov chain has steady-state probabilities $\xi=\left[\xi_{1}, \ldots, \xi_{n}\right]$ that are positive, i.e., for all $i=1, \ldots, n$

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{k=1}^{N} P\left(x_{k}=j \mid x_{0}=i\right)=\xi_{j}, j=1, \ldots, n
$$

2. The matrix Φ as full column rank.

Assumption 1 is equivalent to assuming the the Markov chain is irreducible, i.e., has a single communication class (hence recurrent, and there are no transient states). Assumption 2 is equivalent to the basis functions $\phi_{i}, i=1, \ldots, s$ being linearly independent and imply that any vector $J \in \operatorname{im} \Phi$ as a unique decomposition $J=\Phi r$. We will also use the weighted Euclidian norm, defined for $w=\left[w_{1}, \ldots, w_{n}\right]^{T}$, with $w_{i}>0$ for all i, by

$$
\|J\|_{2, w}=\left(\sum_{i=1}^{n} w_{i}(J(i))^{2}\right)^{1 / 2}=\sqrt{J^{T} W J}
$$

[^0]with $W=\operatorname{diag}(w)$. Let Π_{w} be the orthogonal projection onto S with respect to this norm. $\Pi_{w} J$ is then the unique vector \hat{J} in S that minimizes $\|J-\hat{J}\|_{2, v}$ over all vectors in S. Because of the full column rank assumption on Φ, we can write uniquely $\hat{J}=\Phi r_{J}$ where
$$
r_{J}=\arg \min _{r \in \mathbb{R}^{s}}\|J-\Phi r\|_{2, v}
$$

In fact, it is not hard to see in this case that we have $r_{J}=\left(\Phi^{T} W \Phi\right)^{-1} \Phi^{T} W J$.
The first question we need to address is that of the existence of a fixed point for the equation

$$
\Phi r=\Pi_{w} T_{\mu}(\Phi r)
$$

For the standard Bellman equation, this followed from the fact that T_{μ} is an α-contraction for $\|\cdot\|_{\infty}$, see theorem 6.5.1. We would like to follow the same idea here. However, because of the composition with the orthogonal projection Π_{w}, it becomes more convenient to work with the weigthed 2-norm. Note first that Π_{w} is nonexpansive for $\|\cdot\|_{2, w}$, i.e.

$$
\begin{equation*}
\left\|\Pi_{w} J-\Pi_{w} \bar{J}\right\|_{2, w} \leq\|J-\bar{J}\|_{2, v}, \forall J, \bar{J} \in \mathbb{R}^{n} \tag{18.20}
\end{equation*}
$$

Exercise 18. Prove the property (18.20) (hint: Pythagorean theorem).
Hence if we can prove that that T_{μ} is contraction with respect to $\|\cdot\|_{2, w}$, then this is also true for the composition $\Pi_{w} T_{\mu}$. Unfortunately the contraction property of T_{μ} does not hold in general for the (weighted) 2-norm. In fact, the iteration

$$
\Phi r_{k+1}=\Pi_{w} T_{\mu}\left(\Phi r_{k}\right)
$$

can even diverge. For an example, fix the discount factor $\alpha \in(0,1)$ and take an uncontrolled two-state Markov chain with transition matrix

$$
P=\left[\begin{array}{ll}
\epsilon & 1-\epsilon \\
\epsilon & 1-\epsilon
\end{array}\right],
$$

and stage costs $c(1)=c(2)=0$. Hence the total cost is $J^{*}=[0,0]^{T}$. Next, take just one basis function $\phi_{1}=[1,2]^{T}$. We have

$$
T \Phi r_{k}=\alpha P \phi_{1} r_{k}=\alpha e\left[\begin{array}{ll}
\epsilon & 1-\epsilon
\end{array}\right]\left[\begin{array}{l}
1 \\
2
\end{array}\right] r_{k}=\left(\alpha(2-\epsilon) r_{k}\right) e, \quad e=[1,1]^{T} .
$$

Next, consider the orthogonal projection with respect to the standard Euclidean norm

$$
r_{k+1}=\arg \min _{r}\left\{\left(r-\left(\alpha(2-\epsilon) r_{k}\right)\right)^{2}+\left(2 r-\left(\alpha(2-\epsilon) r_{k}\right)\right)^{2}\right\}=\frac{3}{5} \alpha(2-\epsilon) r_{k} .
$$

Hence the sequence $\left\{r_{k}\right\}_{k}$ diverges if ϵ is close to 0 and α close to 1 .
However, an important case where T_{μ} turns out to be a contraction with respect to $\|\cdot\|_{2, w}$ is when $w=\xi$, i.e., the weights are the chain's steady-state probabilities. In the example above, the steady-state chain spends only the proportion ϵ of its time in state 1. It thus seems more sensible to weight the two states differently in the cost criterion. The contraction property essentially follows from the following lemma.

Lemma 18.3.1. Let P be a $n \times n$ stochastic matrix with stationary distribution ξ such that $\xi_{i}>0, i=1, \ldots, n$. Then

$$
\|P J\|_{2, \xi} \leq\|J\|_{2, \xi}, \forall z \in \mathbb{R}^{n}
$$

Proof.

$$
\begin{aligned}
\|P J\|_{2, \xi}^{2} & =\sum_{i=1}^{n} \xi_{i}\left([P J]_{i}\right)^{2}=\sum_{i=1}^{n} \xi_{i}\left(E\left[J\left(X_{1}\right) \mid X_{0}=i\right]\right)^{2} \\
& \leq \sum_{i=1}^{n} \xi_{i} E\left[\left(J\left(X_{1}\right)\right)^{2} \mid X_{0}=i\right] \quad(\text { Jensen's inequality }) \\
& \left.\left.=E_{\xi}\left[J\left(X_{1}\right)\right)^{2}\right]=E_{\xi}\left[J\left(X_{0}\right)\right)^{2}\right]=\|J\|_{\xi}^{2} \quad \text { (definition of } \xi, \text { stationary) }
\end{aligned}
$$

Hence we have immediately the following proposition.
Proposition 18.3.2. The mappings T_{μ} and $\Pi_{\xi} T_{\mu}$ are α-contractions for the norm $\|\cdot\|_{2, \xi}$, where ξ is the stationary distribution of the Markov chain corresponding to μ.

Proof. Since Π_{w} is nonexpansive, it is sufficient to prove the result for T_{μ}. Recall that $T_{\mu} J=c_{\mu}+\alpha P_{\mu} J$. Hence for all $J, \bar{J} \in \mathbb{R}^{n}$

$$
\left\|T_{\mu} J-T_{\mu} \bar{J}\right\|_{2, \xi}=\alpha\left\|P_{\mu}(J-\bar{J})\right\|_{2, \xi} \leq \alpha\|J-\bar{J}\|_{2, \xi}
$$

using lemma 18.3.1, and we are done.
Since $\Pi_{\xi} T_{\mu}$ is an α-contraction for $\|\cdot\|_{2, \xi}$ and the space of functions $X \rightarrow \mathbb{R}$ with finite weighted 2 -norm is complete (it is a Hilbert space), we conclude that $\Pi_{\xi} T_{\mu}$ has a unique fixed point $\hat{J}_{\mu} \in \operatorname{im} \Phi$. By our assumption on Φ having full column rank, there is a unique $r_{\mu} \in \mathbb{R}^{s}$ such that $\hat{J}_{\mu}=\Phi r_{\mu}$. We would like now to have an estimate of the error in approximating J_{μ} by \hat{J}_{μ}. Note that the best we can expect to achieve is the projection $\Pi_{\xi} J_{\mu}$ of J_{μ} on S, that is, the performance cannot be good if the choice of approximation architecture is poor. In general, \hat{J}_{μ} is not equal to the projection $\Pi_{\xi} J_{\mu}$, but we have the following bound.

Proposition 18.3.3. Let \hat{J}_{μ} be the unique fixed point of $\Pi_{\xi} T_{\mu}$. Then we have the error bound

$$
\left\|J_{\mu}-\hat{J}_{\mu}\right\|_{2, \xi} \leq \frac{1}{\sqrt{1-\alpha^{2}}}\left\|J_{\mu}-\Pi_{\xi} J_{\mu}\right\|_{2, \xi}
$$

Proof. Write

$$
\begin{aligned}
\left\|J_{\mu}-\hat{J}_{\mu}\right\|_{2, \xi}^{2} & =\left\|J_{\mu}-\Pi_{\xi} J_{\mu}\right\|_{2, \xi}^{2}+\left\|\Pi_{\xi} J_{\mu}-\hat{J}_{\mu}\right\|_{2, \xi}^{2}(\text { Pythagorean theorem }) \\
& \left.=\left\|J_{\mu}-\Pi_{\xi} J_{\mu}\right\|_{2, \xi}^{2}+\left\|\Pi_{\xi} T_{\mu} J_{\mu}-\Pi_{\xi} T_{\mu} \hat{J}_{\mu}\right\|_{2, \xi}^{2} \text { (def. of } J_{\mu} \text { and } \hat{J}_{\mu}\right) \\
& \leq\left\|J_{\mu}-\Pi_{\xi} J_{\mu}\right\|_{2, \xi}^{2}+\alpha^{2}\left\|J_{\mu}-\hat{J}_{\mu}\right\|_{2, \xi}^{2}\left(\Pi_{\xi} T_{\mu} \alpha\right. \text {-contraction) }
\end{aligned}
$$

Looking at the projected Bellman's equation in matrix form for a finite state space, writing $\Xi=\operatorname{diag}(\xi)$ and $\hat{J}_{\mu}=\Phi r_{\mu}$, we know that r_{μ} also verifies

$$
\begin{equation*}
r_{\mu}=\arg \min _{r \in \mathbb{R}^{s}}\left\|\Phi r-\left(c_{\mu}+\alpha P_{\mu} \hat{J}_{\mu}\right)\right\|_{2, \xi}^{2} \tag{18.21}
\end{equation*}
$$

Note the somewhat subtle fact here that (18.21) is not

$$
\begin{equation*}
\arg \min _{r \in \mathbb{R}^{s}}\left\|\Phi r-\left(c_{\mu}+\alpha P_{\mu} \Phi r\right)\right\|_{2, \xi}^{2} \tag{18.22}
\end{equation*}
$$

In fact, (18.22) is the Bellman equation error approach mentioned earlier and discussed in section 18.4. By setting the gradient of the expression in (18.21) to 0 we see that r_{μ} must satisfy the following linear system of equations

$$
\begin{equation*}
C r_{\mu}=d, \quad \text { with } C:=\Phi^{T} \Xi\left(I-\alpha P_{\mu}\right) \Phi, d:=\Phi^{T} \Xi c_{\mu} \tag{18.23}
\end{equation*}
$$

Under assumption 2 this system has a unique solution $r_{\mu}=C^{-1} d$ and

$$
\hat{J}_{\mu}=\Phi r_{\mu}=\Phi\left(\Phi^{T} \Xi\left(I-\alpha P_{\mu}\right) \Phi\right)^{-1} \Phi^{T} \Xi c_{\mu}
$$

Compare to the original Bellman's equation

$$
J_{\mu}=\left(I-\alpha P_{\mu}\right)^{-1} c_{\mu}
$$

which requires solving an $n \times n$ system of linear equations, whereas computing r_{μ} now involves a typically much smaller $m \times m$ system. However, explicitly computing C and d using their definitions in (18.23) still requires computing inner products of size n, which can be impractical. Maybe more crucially, we do not now the stationary distribution Ξ in general and computing it directly is usually extremely difficult! Simulation is used to address both problems.

Before introducing simulation however, let us describe the analog of the value iteration algorithm for the projected equation. We start with a vector r_{0} and compute the iterates

$$
\Phi r_{k+1}=\Pi_{\xi} T_{\mu}\left(\Phi r_{k}\right)
$$

This can theoretically be accomplished by first computing $T_{\mu}\left(\Phi r_{k}\right)$ (this is not practical because this vector lives in an n-dimensional space) and then projecting on S using Π_{ξ} (this is not practical since this requires the knowledge of ξ), i.e.,

$$
\begin{equation*}
r_{k+1} \in \arg \min _{r \in \mathbb{R}^{s}}\left\|\Phi r-\left(c_{\mu}+\alpha P_{\mu} \Phi r_{k}\right)\right\|_{2, \xi}^{2} \tag{18.24}
\end{equation*}
$$

We call this theoretical algorithm projected value iteration (PVI). Its convergence to \hat{J}_{μ} follows from the fact that $\Pi_{\xi} T_{\mu}$ is a contraction. Under assumption 2 , the solution r_{k+1} is unique and satisfies

$$
\begin{align*}
& \Phi^{T} \Xi \Phi r_{k+1}-\Phi^{T} \Xi\left(c_{\mu}+\alpha P_{\mu} \Phi r_{k}\right)=0 \\
& \Phi^{T} \Xi \Phi r_{k+1}-d+C r_{k}-\Phi^{T} \Xi \Phi r_{k}=0 \\
& r_{k+1}=r_{k}-\left(\Phi^{T} \Xi \Phi\right)^{-1}\left(C r_{k}-d\right) . \tag{18.25}
\end{align*}
$$

Note that r_{μ} is the unique fixed point of (18.25). Now (18.25) can be seen as an example of more general iterative algorithms to solve the system $C r=d$, of the form

$$
\begin{equation*}
r_{k+1}=r_{k}-\gamma_{k} D_{k}^{-1}\left(C r_{k}-d\right) \tag{18.26}
\end{equation*}
$$

where γ_{k} is a positive stepsize and D_{k} is a positive definite symmetric matrix. Fixing $\gamma_{k}=\gamma$ and $D_{k}=D$ for all k, the iterates (18.26) converge to the solution of $C r=d$ is and only if the eigenvalues of $I-\gamma D^{-1} C$ are strictly within the unit circle. This turns out to be true for any D positive definite and γ small enough, see [Ber07b, prop. 6.3.3].

Simulation Based Approximations

In practice we can form approximations of C and d using simulations, and then use these approximations in $r=C^{-1} d$, as well as in the PVI algorithm (18.25) or (18.26). Treating the simulation variations as noise, we obtain stochastic approximation algorithms for solving the equation $f(r):=C r-d=0$, where we can only measure $f(r)$ up to noise entering through the coefficients C and d. Recall the definitions

$$
\begin{aligned}
C & =\Phi^{T} \Xi\left(I-\alpha P_{\mu}\right) \Phi \\
d & =\Phi^{T} \Xi c_{\mu} .
\end{aligned}
$$

Rewritten more explicitly, and recalling the definition of the feature vector $\phi(x)=\left[\phi_{1}(x), \ldots, \phi_{m}(x)\right]^{T}\left(\phi^{T}(x)\right.$ is a row of Φ, so $\phi(x)$ is a column of $\left.\Phi^{T}\right)$, we have (below we write $\left[P_{\mu} \phi\right](i)=\sum_{j=1}^{n} p_{i j}(\mu(i)) \phi(j)$, which is the expected
feature vector of the next state given that the current state is i^{6})

$$
\begin{aligned}
C & =\sum_{i=1}^{n} \xi(i) \phi(i)\left(\phi(i)-\alpha\left[P_{\mu} \phi\right](i)\right)^{T} \\
& =E_{\xi}\left[\phi(x)\left(\phi(x)-\alpha E\left[\phi\left(x_{1}\right) \mid x_{0}=x, u_{0}=\mu(x)\right]\right)^{T}\right] \\
& =E_{\xi}^{\mu}\left[\phi\left(x_{0}\right)\left(\phi\left(x_{0}\right)-\alpha \phi\left(x_{1}\right)\right)^{T}\right] \\
d & =\sum_{i=1}^{n} \xi(i) \phi(i) c_{\mu}(i)=E_{\xi}\left[\phi(x) c_{\mu}(x)\right] \\
& =E_{\xi}\left[\phi(x) E\left[c\left(x_{0}, u_{0}, x_{1}\right) \mid x_{0}=x, u_{0}=\mu(x)\right]\right] \\
& =E_{\xi}^{\mu}\left[\phi\left(x_{0}\right) c\left(x_{0}, \mu\left(x_{0}\right), x_{1}\right)\right]
\end{aligned}
$$

Here $E_{\xi}^{\mu}\left[f\left(x_{0}, x_{1}\right)\right]$ is the expectation operator for the Markov chain (with the policy fixed to μ) assuming that x_{0} is distributed according to ξ. Now consider a simulated trajectory $\left(x_{0}, x_{1}, \ldots\right)$. When x_{k} is generated, we can compute its feature vector $\phi\left(x_{k}\right)$ and when a transition $\left(x_{k}, x_{k+1}\right)$ is generated we can compute the transition cost $c\left(x_{k}, \mu\left(x_{k}\right), x_{k+1}\right)$. After $k+1$ such transitions are generated, consider the empirical versions of C and d above:

$$
\begin{align*}
C_{k} & =\frac{1}{k+1} \sum_{t=0}^{k} \phi\left(x_{t}\right)\left(\phi\left(x_{t}\right)-\alpha \phi\left(x_{t+1}\right)\right)^{T} \tag{18.27}\\
d_{k} & =\frac{1}{k+1} \sum_{t=0}^{k} \phi\left(x_{t}\right) c\left(x_{t}, \mu\left(x_{t}\right), x_{t+1}\right) \tag{18.28}
\end{align*}
$$

The law of large numbers, which is assumed to hold for our Markov chain, says that $C_{k} \rightarrow C$ and $d_{k} \rightarrow d$ almost surely. Note also that we have the recursive updates formulas for C_{k} and $d_{k}, k \geq 1$,

$$
\begin{aligned}
C_{k} & =C_{k-1}+\frac{1}{k+1}\left[\phi\left(x_{k}\right)\left(\phi\left(x_{k}\right)-\alpha \phi\left(x_{k+1}\right)\right)^{T}-C_{k-1}\right] \\
d_{k} & =d_{k-1}+\frac{1}{k+1}\left[\phi\left(x_{k}\right) c\left(x_{k}, \mu\left(x_{k}\right), x_{k+1}\right)-d_{k-1}\right]
\end{aligned}
$$

These formulas allow us to update the value of C_{k} and d_{k} after a transition $\left(x_{k}, x_{k+1}\right)$ is generated.

Least Squares Temporal Differences (LSTD)

This method uses the empirical (simulation-based) versions C_{k} and d_{k} of C and d to construct a simulation-based approximate solution

$$
\hat{r}_{k}=C_{k}^{-1} d_{k}
$$

[^1]As we saw above, C_{k} and d_{k} can be updated recursively (in fact, we update C_{k}^{-1} recursively using the matrix inversion lemma, see below for LSPE), but this method is not a true recursive method since we do not use \hat{r}_{k-1} to compute \hat{r}_{k}. Using (18.27) and (18.28), we can also write the equation $C_{k} r_{k}=d_{k}$ as

$$
\sum_{t=0}^{k} \phi\left(x_{t}\right) q_{k, t}=0
$$

where $q_{k, t}$ is the temporal difference associated with r_{k} and the transition $\left(x_{t}, x_{t+1}\right)$

$$
q_{k, t}=\phi\left(x_{t}\right)^{T} r_{k}-\alpha \phi\left(x_{t+1}\right)^{T} r_{k}-c\left(x_{t}, \mu\left(x_{t}\right), x_{t+1}\right)
$$

As usual with linear systems of equations, a difficulty arises in LSTD if C_{k} and C are nearly singular, since then the solution is strongly sensitive to changes in the problem data, rounding errors and in our case the simulationinduced error

$$
\hat{r}_{k}-r=C_{k}^{-1} d_{k}-C^{-1} d
$$

is greatly amplified. If the discount factor α is significantly smaller than 1 , this is not a problem when the number of samples is sufficiently large. But standard LSTD can run into serious singularity issues for C_{k} as α becomes close to 1 or for nondiscounted problems (e.g. stochastic shortest path or average cost problems). The standard solution to this problem is to use some form of regularized regression, which works even if the matrices are singular, at the cost of introducing some bias in the estimate. That is, we choose r_{k} by solving the least squares problem

$$
\begin{align*}
& r_{k} \in \arg \min _{r}\left\|d_{k}-C_{k} r\right\|_{2, \Sigma^{-1}}^{2}+\|r-\bar{r}\|_{2, \Gamma^{-1}}^{2} \tag{18.29}\\
\text { i.e., } & r_{k} \in \arg \min _{r}\left\{\left(d_{k}-C_{k} r\right)^{T} \Sigma^{-1}\left(d_{k}-C_{k} r\right)+(r-\bar{r})^{T} \Gamma^{-1}(r-\bar{r})\right\},
\end{align*}
$$

where \bar{r} is some a priori estimate of $r^{*}=C^{-1} d$, and Σ, Γ are some positive definite symmetric matrices. Here \bar{r} may be chosen based on intuition about the problem or may correspond to the cost $\Phi \bar{r}$ of a similar policy (e.g., a preceding policy in approximate policy iteration). The quadratic term $\|r-\bar{r}\|_{2, \Gamma^{-1}}^{2}$ is known as a regularization term and biases the estimate \hat{r}_{k} towards the a priori guess \bar{r}. Typically we take $\Gamma^{-1}=\beta I$, with $\beta>0$ chosen by trial-and-error. A large β reduces the effect of near singularity of C_{k} and the sensitivity to simulation errors, but may cause a large bias.

The explicit solution to (18.29) is

$$
\hat{r}_{k}=\left(C_{k}^{T} \Sigma^{-1} C_{k}+\Gamma^{-1}\right)^{-1}\left(C_{k}^{T} \Sigma^{-1} d_{k}+\Gamma^{-1} \bar{r}\right)
$$

Writing the projected Bellman's equation using simulation as $d=C r_{k}-e_{k}$, with the simulation noise $e_{k}=\left(C-C_{k}\right) r_{k}+d_{k}-d$, a suitable choice for Σ in the regression is an estimate of the covariance of e_{k}. Let

$$
\begin{aligned}
W_{t} & =\phi\left(x_{t}\right)\left(\phi\left(x_{t}\right)-\alpha \phi\left(x_{t+1}\right)\right)^{T} \\
v_{t} & =\phi\left(x_{t}\right) c\left(x_{t}, \mu\left(x_{t}\right), x_{t+1}\right) .
\end{aligned}
$$

These quantities can be viewed as samples of C_{k} and d_{k}, and we can view a vector

$$
y_{t}=W_{t} \tilde{r}-v_{t}
$$

as a sample of the error e_{k}, where \tilde{r} is another guess (perhaps different from \bar{r} above) of the solution. Note that y_{t} has sample mean $C_{k} \tilde{r}-d_{k}$. We use its sample covariance matrix in the regression

$$
\begin{aligned}
\Sigma & =\frac{1}{k+1} \sum_{t=0}^{k}\left(y_{t}-C_{k} \tilde{r}+d_{k}\right)\left(y_{t}-C_{k} \tilde{r}+d_{k}\right)^{T} \\
& =\frac{1}{k+1} \sum_{t=0}^{k}\left(\left(W_{t}-C_{k}\right) \tilde{r}+\left(d_{k}-v_{t}\right)\right)\left(\left(W_{t}-C_{k}\right) \tilde{r}+\left(d_{k}-v_{t}\right)\right)^{T}
\end{aligned}
$$

The error $\hat{r}_{k}-r_{\mu}$ made using the regularized regression (18.29) can be bounded in probability, following classical arguments developed for linear regression (perhaps the most well-studied statistical method). The analysis is based on the fact that for a large number of samples, the errors $d-C r_{k}$ are asymptotically normal, see [Ber07b, prop. 6.3.4]. The bound involves a term that decreases to 0 as more samples are used, and a second term due to the bias error that cannot be made arbitrarily small (but which diminishes with β). The choice of Σ to be close to the covariance matrix of $d-C r_{k}$ also comes from this analysis of regression errors.

Least Squares Policy Evaluation (LSPE)

As an alternative to LSTD, we obtain a true iterative method by using the approximations C_{k} and d_{k} in the Projected Value Iteration recurrence (18.26), to get

$$
\begin{equation*}
r_{k+1}=r_{k}-\gamma_{k} D_{k}^{-1}\left(C_{k} r_{k}-d_{k}\right) \tag{18.30}
\end{equation*}
$$

where D_{k} is a positive definite matrix, γ_{k} is a positive stepsize, and C_{k}, d_{k} are given by (18.27), (18.28). In terms of temporal differences, we have

$$
\begin{equation*}
r_{k+1}=r_{k}-\frac{\gamma_{k}}{k+1} D_{k}^{-1} \sum_{t=0}^{k} \phi\left(x_{t}\right) q_{k, t} \tag{18.31}
\end{equation*}
$$

Regarding the choice of γ_{k} and D_{k}, a first guideline is that if say $\gamma_{k}=\gamma$, $D_{k} \rightarrow D, C_{k} \rightarrow C$ and $d_{k} \rightarrow d$ such that $I-\gamma D^{-1} C$ has its eigenvalues strictly within the unit circle, then we generally have $r_{k} \rightarrow r_{\mu}=C^{-1} d$ (recall the convergence result mentioned for PVI). Also motivated by the first PVI equation (18.25), we could choose $\gamma_{k}=1$ for all k and take D_{k} to be a simulation based approximation of $\Phi^{T} \Xi \Phi=E_{\xi}\left[\phi\left(x_{0}\right) \phi\left(x_{0}\right)^{T}\right]$, possibly corrected to ensure positive definiteness:

$$
D_{k}=\frac{1}{k+1}\left(\beta I+\sum_{t=0}^{k} \phi\left(x_{t}\right) \phi\left(x_{t}\right)^{T}\right), \text { with } \beta \geq 0
$$

With this choice of D_{k}, the method is known as the Least Squares Policy Evaluation (LSPE) method. We have the recursion

$$
\begin{align*}
D_{k} & =\frac{k}{k+1} D_{k-1}+\frac{1}{k+1} \phi\left(x_{k}\right) \phi\left(x_{k}\right)^{T} \tag{18.32}\\
& =D_{k-1}+\frac{1}{k+1}\left(\phi\left(x_{k}\right) \phi\left(x_{k}\right)^{T}-D_{k-1}\right)
\end{align*}
$$

Among possible variations, we could update D_{k} only periodically instead of doing so after every new sample to save computations. On the other hand, since we are interested in D_{k}^{-1}, we can use the matrix inversion lemma

$$
\left(A-B D^{-1} C\right)^{-1}=A^{-1}-A^{-1} B\left(D-C A^{-1} B\right)^{-1} C A^{-1}
$$

to get

$$
\begin{aligned}
D_{k}^{-1} & =\left(\frac{k}{k+1} D_{k-1}+\frac{1}{k+1} \phi\left(x_{k}\right) \phi\left(x_{k}\right)^{T}\right)^{-1} \\
D_{k}^{-1} & =\frac{k+1}{k}\left[D_{k-1}^{-1}+\frac{D_{k-1}^{-1} \phi\left(x_{k}\right) \phi\left(x_{k}\right)^{T} D_{k-1}^{-1}}{k+\phi\left(x_{k}\right)^{T} D_{k-1}^{-1} \phi\left(x_{k}\right)}\right] .
\end{aligned}
$$

Another possibility to simplify the matrix inversion is to use diagonal matrices D_{k}, such as a diagonal approximation of $\Phi^{T} \Xi \Phi$, for example by discarding the off-diagonal elements in (18.32).

Note that the choice of γ and D significantly affects the convergence rate of the deterministic PVI algorithm. However, for the simulation based version (18.30), the slower speed of simulation (i.e., the rate at which $C_{k} \rightarrow C$ and $d_{k} \rightarrow d$) dominates the faster (linear) convergence rate of PVI. In consequence the asymptotic rate of convergence of (18.30) does not depend on the choice of γ_{k} and D_{k}, as long as $I-\gamma D^{-1} C$ is a contraction. However, the short-term convergence rate may be significantly affected.

TD(0) Method

This method is the TD based version of LSPE (18.31) where we only keep the latest sample and take $D_{k}=I$

$$
\begin{equation*}
r_{k+1}=r_{k}-\gamma_{k} \phi\left(x_{k}\right) q_{k, k} \tag{18.33}
\end{equation*}
$$

Note that we recover the case of $\mathrm{TD}(0)$ encountered earlier in (18.16). Writing $f(r)=C r-d$, we see that $\phi\left(x_{k}\right) q_{k, k}$ is a noisy sample of $f\left(r_{k}\right)$ which uses just one sampled state x_{k} instead of the average of the past samples used to compute C_{k} and d_{k} in LSPE. Hence $\mathrm{TD}(0)$ is essentially the simplest form of a Robbins-Monro scheme for solving the equation $f(r)=0$ (see section 15.1), whereas LSPE uses averaging of the past samples. In general, the convergence of $\operatorname{TD}(0)$ is much slower than that of LSPE, and it requires $\gamma_{k} \rightarrow 0$ to deal with the nondiminishing noise in the term $\phi\left(x_{k}\right) q_{k, k}$. On the hand, it is easier to compute.

Optimistic Versions

Optimistic versions of LSTD and LSPE are discussed in [Ber07b, section 6.3.5].

$\operatorname{LSTD}(\lambda), \operatorname{LSPE}(\lambda)$ and $\operatorname{TD}(\lambda)$

Consider the operator

$$
T_{\mu}^{(\lambda)}=(1-\lambda) \sum_{l=0}^{\infty} \lambda^{l} T_{\mu}^{l+1}
$$

for $\lambda \in[0,1)$. For $\lambda=0$, this is just the usual operator T. Corresponding to this operator is a weighted multistep Bellman equation

$$
J=T_{\mu}^{(\lambda)} J=c_{\mu}^{(\lambda)}+\alpha P_{\mu}^{(\lambda)} J
$$

with

$$
P_{\mu}^{(\lambda)}=(1-\lambda) \sum_{l=0}^{\infty} \alpha^{l} \lambda^{l} P_{\mu}^{l+1}, \quad c_{\mu}^{(\lambda)}=\sum_{l=0}^{\infty} \alpha^{l} \lambda^{l} P^{l} c_{\mu}=\left(I-\alpha \lambda P_{\mu}\right)^{-1} c_{\mu}
$$

Exercise 19. Verify the correctness of the expression of $T_{\mu}^{(\lambda)}$ above. Note that we have

$$
T_{\mu}^{l+1} J=\alpha^{l+1} P_{\mu}^{l+1} J+\sum_{k=0}^{l} \alpha^{k} P_{\mu}^{k} c_{\mu}
$$

Note that the operators T_{μ}^{l} and $T_{\mu}^{(\lambda)}$ have the same fixed point J_{μ}. Hence we can apply the preceding algorithms to $T_{\mu}^{(\lambda)}$ in place of T_{μ}. The projected equations become

$$
C^{(\lambda)} r_{\mu}^{(\lambda)}=d^{(\lambda)}
$$

where

$$
C^{(\lambda)}=\Phi^{T} \Xi\left(I-\alpha P^{(\lambda)}\right) \Phi, \quad d^{(\lambda)}=\Phi^{T} \Xi c_{\mu}^{(\lambda)}
$$

The motivation for replacing T with $T^{(\lambda)}$ is that the modulus of contraction of $T^{(\lambda)}$ is smaller, resulting in a tighter error bound. We have
Proposition 18.3.4. The mappings $T_{\mu}^{(\lambda)}$ and $\Pi_{\xi} T_{\mu}^{(\lambda)}$ are contractions with respect to $\|\cdot\|_{\xi}$, of modulus

$$
\alpha_{\lambda}=\frac{\alpha(1-\lambda)}{1-\alpha \lambda} .
$$

Hence we have the error bound

$$
\begin{equation*}
\left\|J_{\mu}-\Phi r_{\mu}^{(\lambda)}\right\|_{\xi} \leq \frac{1}{\sqrt{1-\alpha_{\lambda}^{2}}}\left\|J_{\mu}-\Pi_{\xi} J_{\mu}\right\|_{\xi} \tag{18.34}
\end{equation*}
$$

where $\Phi r_{\mu}^{(\lambda)}$ is the fixed point of $\Pi_{\xi} T_{\mu}^{(\lambda)}$.

Proof. The proof follows from the result of lemma 18.3.1, since

$$
\begin{aligned}
\left\|P_{\mu}^{(\lambda)} z\right\|_{\xi} & \leq(1-\lambda) \sum_{l=0}^{\infty} \alpha^{l} \lambda^{l}\left\|P_{\mu}^{l+1} z\right\|_{\xi} \\
& \leq(1-\lambda) \sum_{l=0}^{\infty} \alpha^{l} \lambda^{l}\|z\|_{\xi} \\
& =\frac{1-\lambda}{1-\alpha \lambda}\|z\|_{\xi}
\end{aligned}
$$

Note that α_{λ} decreases and the error bound (18.34) becomes better as λ increases, with $\alpha_{\lambda} \rightarrow 0$ as $\lambda \rightarrow 1$. However, as λ increases, it turns out that the "simulation noise" becomes more pronounced. Another consequence of proposition 18.3.4 and of the equivalence of norms in \mathbb{R}^{n} is that for any set of weights $w, T_{\mu}^{(\lambda)}$ is a contraction for $\|\cdot\|_{2, w}$ provided λ is sufficiently close to 1. Coming back to the simulation algorithms, note that

$$
\begin{aligned}
C^{(\lambda)} & =E_{\xi}\left[\phi\left(x_{0}\right)\left(\phi\left(x_{0}\right)-\alpha(1-\lambda) \sum_{l=0}^{\infty} \alpha^{l} \lambda^{l} \phi\left(x_{l+1}\right)\right)^{T}\right] \\
& =E_{\xi}\left[\phi\left(x_{0}\right)\left(\sum_{t=0}^{\infty}(\alpha \lambda)^{t}\left(\phi\left(x_{t}\right)-\alpha \phi\left(x_{t+1}\right)\right)^{T}\right]\right. \\
d^{(\lambda)} & =E_{\xi}\left[\phi\left(x_{0}\right)\left(\sum_{l=0}^{\infty}(\alpha \lambda)^{l} c\left(x_{l}, \mu\left(x_{l}\right), x_{l+1}\right)\right)\right]
\end{aligned}
$$

Consider a simulation path x_{0}, x_{1}, \ldots When the transition $\left(x_{k}, x_{k+1}\right)$ is observed, the simulation approximations are then

$$
\begin{aligned}
C_{k}^{(\lambda)} & =\frac{1}{k+1} \sum_{t=0}^{k} \phi\left(x_{t}\right) \sum_{m=t}^{k}(\alpha \lambda)^{m-t}\left(\phi\left(x_{m}\right)-\alpha \phi\left(x_{m+1}\right)\right)^{T} \\
d_{k}^{(\lambda)} & =\frac{1}{k+1} \sum_{t=0}^{k} \phi\left(x_{t}\right) \sum_{m=t}^{k}(\alpha \lambda)^{m-t} c\left(x_{m}, \mu\left(x_{m}\right), x_{m+1}\right)
\end{aligned}
$$

If we replace C_{k} and d_{k} by $C_{k}^{(\lambda)}$ and $d_{k}^{(\lambda)}$, we obtain the so-called $\operatorname{LSTD}(\lambda)$ and $\operatorname{LSPE}(\lambda)$ methods. Again one can streamline the computations by introducing the vector

$$
z_{m}=\sum_{t=0}^{m}(\alpha \lambda)^{m-t} \phi\left(x_{t}\right)
$$

which evolves as

$$
z_{m+1}=\alpha \lambda z_{m}+\phi\left(x_{m+1}\right)
$$

Interchanging the sums in the definitions of $C_{k}^{(\lambda)}$ and $d_{k}^{(\lambda)}$, we have

$$
\begin{aligned}
C_{k}^{(\lambda)} & =\frac{1}{k+1} \sum_{t=0}^{k} \phi\left(x_{t}\right) \sum_{m=t}^{k}(\alpha \lambda)^{m-t}\left(\phi\left(x_{m}\right)-\alpha \phi\left(x_{m+1}\right)\right)^{T} \\
& =\frac{1}{k+1} \sum_{m=0}^{k}\left(\sum_{t=0}^{m}(\alpha \lambda)^{m-t} \phi\left(x_{t}\right)\right)\left(\phi\left(x_{m}\right)-\alpha \phi\left(x_{m+1}\right)\right)^{T} \\
& =\frac{1}{k+1} \sum_{m=0}^{k} z_{m}\left(\phi\left(x_{m}\right)-\alpha \phi\left(x_{m+1}\right)\right)^{T}
\end{aligned}
$$

and similarly

$$
d_{k}^{(\lambda)}=\frac{1}{k+1} \sum_{m=0}^{k} z_{m} c\left(x_{m}, \mu\left(x_{m}\right), x_{m+1}\right)
$$

This allows us to easily update $C_{k}^{(\lambda)}, d_{k}^{(\lambda)}$ recursively as well, and the rank-one update of $\left(C_{k}^{(\lambda)}\right)^{-1}$ can be done efficiently using the matrix inversion lemma. Finally the iteration for $\operatorname{LSPE}(\lambda)$

$$
r_{k+1}=r_{k}-\gamma D_{k}^{-1}\left(C_{k}^{(\lambda)} r_{k}-d_{k}^{(\lambda)}\right), \quad D_{k}=\frac{1}{k+1} \sum_{t=0}^{k} \phi\left(x_{t}\right) \phi\left(x_{t}\right)^{T}
$$

can also be written

$$
r_{k+1}=r_{k}-\frac{\gamma}{k+1} D_{k}^{-1} \sum_{t=0}^{k} z_{t} q_{k, t}
$$

where $q_{k, t}$ is the usual temporal difference

$$
q_{k, t}=\phi\left(x_{t}\right)^{T} r_{k}-\alpha \phi\left(x_{t+1}\right)^{T} r_{k}-c\left(x_{t}, \mu\left(x_{t}\right), x_{t+1}\right) .
$$

Just as with $\operatorname{TD}(0)$, we can view the algorithm $\operatorname{TD}(\lambda)$ as a truncated version of $\operatorname{LSPE}(\lambda)$, which takes the form

$$
r_{k+1}=r_{k}-\gamma_{k} z_{k} q_{k, k}
$$

where γ_{k} is a stepsize parameter. This amounts to approximating $C^{(\lambda)}$ and $d^{(\lambda)}$ by one sample instead of $k+1$ samples.

Convergence of TD(0)

The $\operatorname{TD}(0)$ algorithm with a linear architecture has the simple form

$$
r_{k+1}=r_{k}+\gamma_{k} \phi\left(x_{k}\right)\left(c\left(x_{k}, x_{k+1}\right)+\alpha \phi\left(x_{k+1}\right)^{T} r_{k}-\phi\left(x_{k}\right)^{T} r_{k}\right)
$$

where we use $c(x, y):=c(x, \mu(x), y)$ for notational simplicity. This is a type of stochastic approximation algorithm, where the noise is a function of the Markov chain $\left\{x_{t}\right\}_{t}$. We can rewrite it as

$$
r_{k+1}=r_{k}+\gamma_{k}\left[\bar{f}\left(r_{k}\right)+\left(f\left(r_{k}, x_{k}, x_{k+1}\right)-\bar{f}\left(r_{k}\right)\right)\right]
$$

with

$$
\begin{aligned}
f\left(r_{k}, x_{k}, x_{x+1}\right) & =\phi\left(x_{k}\right)\left(c\left(x_{k}, x_{k+1}\right)+\alpha \phi\left(x_{k+1}\right)^{T} r_{k}-\phi\left(x_{k}\right)^{T} r_{k}\right), \\
\bar{f}(r) & =E_{\xi}\left[f\left(r, x_{k}, x_{k+1}\right)\right]=\sum_{x, y} \xi_{x} P_{x y}^{\mu} f(r, x, y)
\end{aligned}
$$

In particular in the second expression note that we have taken the average with respect to the steady state distribution of the Markov chain. Although this is slightly more general than the situation described in chapter 15 (martingale difference noise), you can imagine that under appropriate conditions, in particular the same decreasing step-size conditions for γ_{k}, the iterates will asymptotically track the ODE

$$
\begin{equation*}
\dot{r}=\bar{f}(r) \tag{18.35}
\end{equation*}
$$

Now we can write

$$
\bar{f}(r)=\Phi^{T} \Xi\left(c_{\mu}+\alpha P_{\mu} \Phi r-\Phi r\right)=\Phi^{T} \Xi\left(T_{\mu} \Phi-\Phi\right) r
$$

An equilibrium point of the ODE (18.35) satisfies

$$
\Phi^{T} \Xi\left(I-\alpha P_{\mu}\right) \Phi r=\Phi^{T} \Xi c_{\mu}
$$

and under our assumption 2 , this equation has a unique solution, which is r_{μ}. This equilibrium is globally asymptotically stable for the ODE (18.35). Indeed, consider the Lyapunov function $V(r)=\frac{1}{2}\left\|r-r_{\mu}\right\|_{2}^{2}$. Its Lie derivative along the vector field is

$$
\begin{aligned}
\left\langle r-r_{\mu}, \bar{f}(r)\right\rangle & =\left\langle r-r_{\mu}, \Phi^{T} \Xi\left(T_{\mu} \Phi r-\Phi r\right)\right\rangle \\
& =\left\langle\Phi\left(r-r_{\mu}\right), T_{\mu} \Phi r-\Phi r\right\rangle_{\xi} \\
& =\left\langle\Phi\left(r-r_{\mu}\right), \Pi_{\xi} T_{\mu} \Phi r-\Phi r\right\rangle_{\xi} \\
& =\left\langle\Phi\left(r-r_{\mu}\right), \Pi_{\xi} T_{\mu} \Phi r-\Pi_{\xi} T_{\mu} \Phi r_{\mu}\right\rangle_{\xi}-\left\langle\Phi\left(r-r_{\mu}\right), \Phi r-\Phi r_{\mu}\right\rangle_{\xi} \\
& \leq-(1-\alpha)\left\|\Phi r-\Phi r_{\mu}\right\|_{2, \xi}^{2} \\
& <0
\end{aligned}
$$

In the third equality above, the introduction of Π_{ξ} is valid due to the fact that the orthogonal components does not contribute to the scalar product. In the fourth equality, we simply use the definition of the fixed point r_{μ}. Note the similarity with the convergence proof for the "fixed-point ode" of theorem 15.2.1.

[^0]: ${ }^{5}$ see e.g. Galerkin methods for continuous operator problems such as differential equations.

[^1]: ${ }^{6}$ Note that $\phi(i)$ is a vector of length m here, not a number.

