
Chapter 18

Fitting Cost Approximation
Architectures

1The dynamic programming methods discussed in the first part of the course
and in chapter 14 require an explicit model of the stage costs and transition
probabilities of the system. Many systems of interest however are too compli-
cated to make the development of such a mathematical model an attractive
or even feasible approach (think of a complex robot, a financial market, a
large communication network, a transportation network, etc.). It is often the
case however that we can simulate these systems, or observe their response
to controls in real-time. One can of course try to construct and estimate the
model parameters using the simulator, and then apply the classical DP tech-
niques, but this is not the only possible approach. For example, the Q-learning
method discussed in chapter 16 never builds an explicit model of the system
and does not include such a preliminary estimation phase. In this chapter we
discuss methods that use simulation to estimate the cost of a given fixed policy,
without explicitly estimating the transition probabilities, and deal with the
problem of large and complex state spaces by using an approximation archi-
tecture. These methods can be used to compare different policies, or to search
for an optimal policy in the context of an approximate policy iteration scheme.

18.1 Simulation-Based Approximate Policy Iteration

Recall that the approximate policy iteration method (see section 7.2) follows
the PI scheme, but uses an approximation of the cost of the current policy µ
in the policy improvement step instead of the exact cost (and potentially an
approximate policy improvement step as well). Each policy improvement step
corresponds to the computation of a one-step lookahead policy, or approximate
rollout policy, as described in section 14.2. There we already mentioned that
the cost approximation could be obtained from an approximation architecture
using a simulator. A simulation-based implementation of the approximate

1This version: November 8 2009

153



policy iteration algorithm follows the cycle below, starting from some initial
policy µ:

• Use a simulator and a cost approximation algorithm to obtain an approx-
imation J̃(·; r) of the cost of Jµ.

• A decision generator uses the values of J̃(·; r) to generate a new policy
µ̄ according to an (possibly approximate) policy improvement step

µ̄(x) ∈ arg min
u∈U(x)

{c(x, u) + Ew[J̃(f(x, u, w); r)|x]},∀x ∈ X. (18.1)

Then repeat, replacing µ by µ̄ in the first step.

The two steps above are combined in the sense that given a current ap-
proximation J̃(·; r) of the cost of µ, µ̄ is simultaneously generated according
to (18.1) and driving the simulator to estimate the next approximation J̃(·; r̄)
of Jµ̄. At some point, we are satisfied with the approximation, and we replace
J̃(·; r) by J̃(·; r̄) in (18.1).

Optimistic Policy Iteration

In optimistic versions of (approximate) policy iteration, we replace the value
function J̃(·; r) by J̃(·; r̄) much sooner, even if that means an innacurate approx-
imation of Jµ̄. That is, we don’t wait until convergence of policy evaluation.
Such algorithms, used often in practice especially in the artificial intelligence
literature, are not very well understood and their behavior can be complex.
See [BT96].

Approximate Policy Iteration using Q-Factors

We can work with the Q-factors instead of the value function. Assuming that
we have an approximation of the Q-factors Qµ(i, u) of the current policy

Q̃(x, u; r) ≈ Qµ(x, u) = c(x, µ(x)) + Ew[Jµ(f(x, µ(x), w)|x],

we compute the next policy according to the policy improvement step

µ̄(x) ∈ arg min
u∈U(x)

Q̃(x, u; r).

Any method used to construct the cost function approximations J̃(x; r) for a
policy µ can be used to compute the Q-factor approximations Q̃(x, u; r) for
Qµ. Just apply the method to the Markov chain with states the pairs of
state-actions (x, u) and transition probabilities from (x, u) to (x′, u′) equal to
pxx′(u) if u′ = µ(x), and 0 otherwise.

154



State Exploration Issues

A difficulty with simulation-based policy evaluation is that we need to generate
cost samples using a policy µ, under which certain states might be unlikely to
occur (think for example of a deterministic problem!). With few cost samples
generated for these states, the cost estimation is then typically highly inac-
curate in the corresponding part of the state space. This can in turn cause
serious errors in the calculation of the improved policy µ̄. In order to guaran-
tee adequate coverage of the state space, we can restart the simulation from a
rich enough set of initial states, or occasionally deviate from the policy µ and
introduce extra randomly selected controls. An issue with the introduction of
these random actions is that applying directly the methods below then estimate
the cost of a different policy. See [Ber07b, section 6.3.7] on how to correct this
problem.

18.2 Direct Approximation Methods for Policy
Evaluation

2In order to able to implement the simulation based PI scheme of section
18.1, or more simply a one-step lookahead policy, the only missing element
at this point is a cost approximation algorithm, which adjusts the parameters
(weights) of the approximation architecture J(·; r) to obtain a good estimate
of the cost Jµ of the policy µ currently used. We will mostly discuss linear
approximation architectures as first encountered in section 14.2 i.e.,

J(x; r) = 〈r, φ(x)〉 =
m∑

k=1

rkφk(x),

or for finite-state problems

J = Φr, with Φ =
[
φ1

∣∣∣ . . .
∣∣∣φm

]
.

Hence a state x is characterized by a restricted set of m numbers φi(x), i =
1 . . . , m, called features. The function φ : X → Rm maps the state space into a
finite dimensional space. For a finite state space of size n, we typically take m
much smaller than n and hope (or know by other means) that a small number
of these functions φi will indeed be enough to approximate Jµ reasonably well.
Remark. There are other potentially interesting approximation architectures,
such as neural networks (NN), described for example in [BT96, Sut98], which
were particularly popular at the time when approximate DP and reinforcement
learning encountered their first successes (see e.g. the backgammon player of
Tesauro developped in the early 1990’s, which played at the level of the best
human players). The issue with nonlinear approximation architecture is that

2According to [Ber07a], there methods are “less popular” than the ones presented in
section 18.3. I suppose this means that their performance is not as good somehow.

155



the optimization of the weights becomes in general more difficult and can get
stuck in local minima. Moreover, there seems to be no clear theoretical advan-
tage of using them instead of linear architectures (note that the functions φi are
already supposed to capture the nonlinearities of Jµ). The goal of developing
architectures that perform well for all problems is most likely to be impossi-
ble to achieve. A particular architecture will perform well on some problems,
and not as well in other problems with completely different characteristics. I
think that it is more interesting to find good approximation architectures for
restricted classes of problems, e.g. queueing network problems, or chess games,
or Tetris, etc. I repeat that the point is not to have a sequence of functions
that will converge to the policy cost as m → ∞ (you can pretty much always
do this, e.g. by taking an orthonormal basis if your function Jµ leaves in a
nice Hilbert space), it is to encode Jµ in as few coefficients ri as possible for
better performance with limited computational and memory capabilities. We
encounter the same problem for example in many signal processing or statistic
applications. For example, it was found that it is more efficient to use wavelet
bases to encode images instead of Fourier bases. However, if you know that
your signal is a sinusoid, there is no reason to use wavelets... The point is that
it is probably necessary to have a good insight into your particular applica-
tion in order to develop an efficient approximation architecture (think of say
computer chess players).

The most straightforward way to find an approximation Jr := J(·; r) that
best matches Jµ, referred as the direct approximation method, is to solve

min
r

f(r) := ‖Jµ − Jr‖, (18.2)

where ‖ ·‖ is some norm, or for finite-state problems

min
r
‖Jµ − Φr‖. (18.3)

If ‖ ·‖ is a weighted Euclidean norm, i.e.

‖x‖2,W =
√

xT Wx, W + 0,

then (18.3) is a least-square problem. Of course, the problem here is that Jµ

is not available. It can only be estimated through simulations, which provide
only noisy samples of the true function. Now recall that although a close form
exist for the standard least-square approximation,

x∗ ∈ arg min
x
‖y −Ax‖2,W ⇐⇒ x∗ ∈ arg min

x

1
2
(y −Ax)T W (y −Ax)

⇐⇒ (AT WA)x∗ = AT Wy,

⇐⇒ x∗ = (AT WA)−1AT Wy (if A has indep. cols.),

in practice you might want instead to solve large scale problems directly using
a modern (quadratic) optimization solver3. Here we are in this set-up except

3other norms can then be considered for which a closed form solution does not exist, such
as !1

156



that y is composed of noisy measurements (of some of the cost entries Jµ(i)), as
in the classical linear regression problem in statistics. In our applications, more
simulation samples become progressively available, and simulation noise enters
the computation of the gradient of f in (18.2). Hence the optimization over
the parameter r typically leads to some form of stochastic gradient descent, see
section 15.2.

So let us suppose that we wish to solve problem (18.3) for a finite state
problem and a given policy µ (µ would be the policy µ̄ of section 18.1). Recall
that for a finite-state space X = {1, . . . , n}, Jµ is a vector [Jµ(1), . . . , Jµ(n)]T
of size n, and we cannot expect to obtain values of Jµ for all of these states in
practice. Instead, we evaluate Jµ(i) for a few representative states i ∈ X̃, for
example using simulations. If the dynamics of the system are subject to noise,
we cannot obtain the value Jµ(i) exactly, which is by definition the expected
value of the cost of µ starting from state i. Instead we can obtain using repeated
simulations several noisy versions of Jµ(i), denoted gs(i), s = 1, . . . ,K(i), if
K(i) simulations are performed starting from state i. Then we solve the least-
squares problem

min
r

∑

i∈X̃

K(i)∑

s=1

[J(i; r)− gs(i)]2 = min
r
‖J̃r − g‖2 (18.4)

Here J̃r is just the vector with coordinate J̃(i; r) repeated K(i) times, for i ∈ X̃.
We can solve (18.4) using gradient descent type methods.

Let us start in state i0 at time k = 0, and consider a portion i0, i1, . . . , iN
with N transitions of a simulated trajectory using the stationary policy µ, also
called a batch. Note that some states might be repeated in that simulation.
Then we can view each of the tail costs

gk(ik) =
N−1∑

t=k

αt−kc(it, µ(it), it+1), k = 0, . . . , N − 1, (18.5)

as a cost sample, one per state i0, . . . , iN−1 along the trajectory, which can be
used as gs(ik) in (18.4). Although the quality of these cost estimates decreases
as we approach N , this technique allows us to extract more information out of
each trajectory simulation, compared to throwing away the tail costs (18.5) for
k ≥ 1.

Next we want to use a gradient descent method to minimize (18.4). Recall
that such a method to find a minimum

min
r

F (r),

in the standard set-up where F is deterministic is an iterative method which
updates r following

rl+1 = rl − γl∇F (rl),

where γk is a sequence of positive, usually decreasing, step-sizes. Then rk

converges to a critical point of F , and to a global minimum if F is convex. You

157



can also replace the gradient ∇F by a subgradient if F is nonsmooth. So let
us follow this method in order to minimize

min
r

N−1∑

k=0

1
2

(
J̃(ik; r)− gk(ik)

)2
. (18.6)

That is, the representative states X̃ are chosen to be the successive states along
the simulated trajectory. This leads us to the iterations

rl+1 := rl − γl

N−1∑

k=0

∇rJ̃(ik; rl)
(
J̃(ik; rl)− gk(ik)

)
, (18.7)

where ∇r denotes the gradient with respect to r. The update (18.7) is per-
formed after simulating the whole portion (i0, . . . , iN ) of the trajectory and
recording the tail costs gk(ik). This method is called a batch gradient method.
Note that we need to be able to evaluate the gradient of r 0→ J̃(x; r), which is
particularly simple for linear approximation architectures, see below.

Now in the standard gradient method, after processing this batch, the up-
date (18.7) would be repeated using the same batch until convergence of r is
obtained and we get a solution to (18.6). In that case however, it would be nec-
essary to use a large value of N in order to obtain sufficiently many cost samples
for a large number of representative states. However, increasing N makes the
computation of the update (18.7) computationally more difficult. Hence in a
more general method, we can keep N relatively small and use different batches
after one or more iterations (18.7), in order to increase the set of states consid-
ered (i.e. sufficiently “explore” the state space). The length N of the different
batches may also vary, and the batches may overlap. Overall, the least-square
optimization provides better approximations for the states that arise more fre-
quently in the batches used. Under some reasonable assumptions, we typically
expect convergence of rk to a minimum (local if the architecture used is not
linear and the resulting optimization problem non-convex). For this, the step
size is often required to be gradually reduced, and a popular choice is to take
γl proportional to 1/l while processing the lth batch, although some experi-
mentation with different step sizes is usually necessary. In any case, the rate
of convergence is often very slow and depends on the choice of r0, the number
of states, the dynamics of the underlying Markov chain, simulation errors, the
stepsize choice, etc.

A variant of the gradient method, called incremental, is suitable for use
with very long batches, including the possibility of a single very long simulated
trajectory, viewed as a single batch. In general, this method is more flexible
and has a somewhat better performance than the batch method, so it can
be adopted by default. It does not wait for N transitions to happen before
updating r according to (18.7), but performs an update after each transition.

158



Rewrite (18.7), by interchanging the sums in the second term, as

rl+1

= rl − γl

N−1X

k=0

∇rJ̃(ik; rl)

 
J̃(ik; rl)−

N−1X

t=k

αt−kc(it, µ(it), it+1)

!
(18.8)

= rl −
N−1X

k=0

γl∇rJ̃(ik; rl) J̃(ik; rl) + γl

N−1X

k=0

N−1X

t=k

αt−k∇rJ̃(ik; rl) c(it, µ(it), it+1)

= rl −
N−1X

k=0

γl∇rJ̃(ik; rl) J̃(ik; rl) + γl

N−1X

t=0

 
tX

k=0

αt−k∇rJ̃(ik; rl)

!
c(it, µ(it), it+1)

= rl −
N−1X

t=0

γl

 
∇rJ̃(it; rl) J̃(it; rl)−

 
tX

k=0

αt−k∇rJ̃(ik; rl)

!
c(it, µ(it), it+1)

!
.

(18.9)

Now the incremental gradient algorithm is based on the last expression, but
changes r during the processing of a batch. Namely, after each transition
(ik, ik+1):

1. We evaluate the gradient ∇rJ̃(ik; rk) at the current value of rk of r.

2. We update r as in (18.10)

rk+1 = rk − γk

 
∇rJ̃(ik; rk) J̃(ik; rk)−

 
kX

t=0

αk−t∇rJ̃(it; rk)

!
c(ik, µ(ik), ik+1)

!
.

(18.10)
Hence after N iteration the only difference between (18.10) and (18.9) is that r
was continuously updated during the processing of the batch in the incremental
version. Note that the gradients in (18.10) are computed at the most recent
value of r whereas in the batch method (18.9) they are evaluated at the value
of r fixed at the beginning of the batch. Note also that in the sum (18.10),
it might make more sense to use ∇rJ̃(it; rt) instead of ∇rJ̃(it; rk) in order to
avoid recalculating the gradients and obtain a recursive algorithm. We had the
same issue when discussing Q-learning, and this will be done in the next para-
graph. Here however I’m following the apparent convention in [Ber07a, p.337].
Finally, from the form of the update (18.10) it is clear that the batch length
N is irrelevant and in particular the updates can be performed along a single
long trajectory. A state ik is essentially weighted in the least squares method
proportionally to the frequency of its occurrence in the simulations, reflecting
the larger confidence in the cost value estimate for this state. However, as the
trajectory grows, the computation of the sum in (18.10) becomes difficult.

159



Implementation Using Temporal Differences

We can rewrite the batch and incremental gradient updates in a cleaner way
using the temporal differences (TD), defined as

ql,k = J̃(ik; rl)− αJ̃(ik+1; rl)− c(ik, µ(ik), ik+1), k = 0, . . . , N − 2,
(18.11)

ql,N−1 = J̃(iN−1; rl)− c(iN−1, µ(iN−1), iN ). (18.12)

Next remark that the expression in parenthesis in (18.8) can be rewritten

ql,k + αql,k+1 + . . . + αN−1−kql,N−1 =
N−1∑

t=k

αt−kql,t.

Hence we can rewrite (18.8), again using a simple interchange of sums

rl+1 = rl − γl

N−1∑

t=0

ql,t

(
t∑

k=0

αt−k∇rJ̃(ik; rl)

)
.

Now this batch iteration, instead of being performed once at the end of the
batch, can be performed in steps with r0

l+1 = rl and after observing the tran-
sition (it, it+1) computing

rt+1
l+1 := rt

l − γlql,t

(
t∑

k=0

αt−k∇rJ̃(ik; rl)

)
. (18.13)

Letting

zl,t =
t∑

k=0

αt−k∇rJ̃(ik; rl)

the expression in parenthesis in (18.13) can be updated as

zl,t+1 = αzl,t +∇rJ̃(it + 1; rl).

We then recover rl+1 = rN
l+1 after N iterations.

Note that in (18.13) the temporal differences ql,t and the gradients are
evaluated at r = rl. If instead we evaluate them at a more recent value of r,
to get the iterations

rk+1 = rk − γkqk,k

(
k∑

t=0

αk−t∇rJ̃(it; rt)

)
, (18.14)

we obtain a type of incremental gradient method4. Here qk,k is evaluated at
rk. Note that in addition to updating r, we can also modify the stepsize γk at

4this does not seem to be exactly equivalent to (18.10), even if the convention ∇rJ̃(it; rt)
is used there as described in the previous paragraph. Here the terms in successive TDs do
not quite cancel, because we get terms of the form αJ(ik+1; rk) and αJ(ik+1; rk+1) with
different values of r.

160



each transition. The algorithm (18.14), starting from some vector r0, is called
TD(1). A variant is TD(λ), which uses a parameter λ ∈ [0, 1] in the iteration

rk+1 = rk − γkqk

(
k∑

t=0

(αλ)k−t∇rJ̃(it; rt)

)
, (18.15)

where the only modification with respect to TD(1) consists in replacing α by
αλ. For λ = 0, we obtain TD(0), which has the simple form

rk+1 = rk − γkqk,k∇rJ̃(ik; rk). (18.16)

The main advantage of using λ < 1 is that the sum (18.15) generally has
smaller variance than for λ = 1, hence it improves the convergence properties
of the method. However, we loose the property of convergence to the optimum
parameter r∗ and the quality of approximation deteriorates as λ is reduced
towards 0.

In fact the only case for which there exists a convergence analysis for λ < 1
is for the important case of a linear approximation architecture

J̃(i; r) = φ(i)T r, i = 1, . . . , n.

Then ∇rJ̃(it; rt) = φ(it), and the TD(λ) algorithm becomes

rk+1 = rk − γkqk,k

(
k∑

t=0

(αλ)k−tφ(it)

)
, (18.17)

with the temporal differences given by

qk,k = φ(ik)T rk − αφ(ik+1)T rk − c(ik, µ(ik), ik+1).

Again, a more convenient recursion is obtained if we introduce the vector

zk =
k∑

t=0

(αλ)k−t∇rJ̃(it; rt) =
k∑

t=0

(αλ)k−tφ(it),

which evolves according to

zk = αλzk−1 +∇rJ̃(ik; rk) = αλzk−1 + φ(ik).

Then TD(λ) takes the simple form

rk+1 = rk − γkzkqk,k. (18.18)

Finally we can combine the TD methods with optimistic variants of policy
iteration. There we replace µ by the approximate rollout policy µ after only a
few simulation samples have been processed. In the extreme case, we change

161



the policy after each transition. That is, after transition (ik, ik+1), set the
parameter r to

rk+1 = rk − γkqk,k

k∑

t=0

(αλ)k−t∇rJ̃(it; rt),

and generate the next transition (ik+1, ik+2) by simulation using the control

µ̄(ik+1) ∈ arg min
u∈U(ik+1)

n∑

j=1

pik+1j(u)(c(ik+1, u, j) + αJ̃(j; rk+1).

162


