
Chapter 16

Q-Learning

1Q-learning is a cornerstone of the field of reinforcement learning. It simply
consists in replacing the Q-factor updates in Q-value iteration, which require
computations of expectations, by a simulation based approximation. It can be
viewed as a stochastic approximation algorithm, from which the convergence
to the optimal Q-factors follows, under certain assumptions regarding sufficient
state-action pairs exploration. We obtain a method that is completely model
free, that is, it does not require the knowledge of the transition probabilities of
the underlying Markov chain, only the capability of simulating these transitions
or of executing them on a physical system. The method does not really scale
however to large state and control spaces, and must be combined or replaced
by methods using approximation architectures in complex problems, which we
will cover in more details in chapter 17.

16.1 Review of Q-factor Based DP

Recall the definition of the optimal Q-factors

Q∗(x, u) = E[c(x0, u0, x1) + αJ∗(x1)|x0 = x, u0 = u]

and of the operator F used in Q-value iteration (see section 7.1)

(FQ)(x, u) = E[c(x0, u0, x1) + α min
u′∈U(x1)

Q(x1, u
′)|x0 = x, u0 = u]

For finite state spaces, we have

Q∗(i, u) =
n∑

j=1

pij(u)(c(i, u, j) + αJ∗(j)),

(FQ)(i, u) =
n∑

j=1

pij(u)
(

c(i, u, j) + α min
u′∈U(j)

Q(j, u′)
)

.

1This version: November 3rd 2009.
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The analog of Bellman’s equation in terms of the Q-factors is then Q∗ = FQ∗,
i.e., for finite state spaces,

Q∗(i, u) =
n∑

j=1

pij(u)
(

c(i, u, j) + α min
u′∈U(j)

Q∗(j, u′)
)

,

and the Q-value iteration Qk+1 = FQk converges to Q∗. In fact the theory
for Q-factors is a special case of the standard theory if we take as new state
the state-action pairs (i, u). It is easy to see that the operator F is again an
α-contraction.

The Q-learning update rule is a simulation-based approximation of the ex-
pectation in the expression of FQ. We can use it for example in the asyn-
chronous Q-value iteration of section 7.1. Recall that this algorithm works
as follows. An infinite sequence of state-action pairs {(xk, uk)} is generated,
such that each pair appears infinitely often. Then if the pair (xk, uk) was just
generated, asynchronous Q-VI updates the Q-factor Q(xk, uk) and leaves the
other Q-factors unchanged

Qk+1(x, u) =

{
(FQk)(xk, uk), if (x, u) = (xk, uk),
Qk(x, u), if (i, u) != (xk, uk).

(16.1)

When the Q-factor have converged to the optimal ones, we get an optimal
stationary policy as

µ∗(x) ∈ arg min
u∈U(x)

Q∗(x, u).

The update of the Q-factors however requires the computation of an expected
value, which can be too difficult for very large state-spaces or impossible if the
transition probabilities are not explicitly given (or previously estimated) but
only provided indirectly by a simulator. Note also that the computation of
the expectation requires a minimization over u′ ∈ U(xk+1) for each possible
value of xk+1. We now replace the update (16.1) by the following Q-learning
update rule. If (xk, uk) was just generated, we generate xk+1 according to
the probabilities pxky(uk) (e.g., via a simulator) and the Q-factor Q(xk, uk) is
updated as

Qk+1(x, u) =






(1− γk)Qk(x, u) + γk

(
c(x, u, xk+1)

+α minu′∈U(xk+1) Qk(xk+1, u′)
)
, if (x, u) = (xk, uk),

Qk(x, u), if (x, u) != (xk, uk),
(16.2)

where γk is a positive stepsize, which should be diminishing to 0 at an appro-
priate rate. An equivalent way of writing the update in (16.2) is

Qk+1(x, u) =Qk(x, u) + γk 1{Xk = x, Uk = u}
(
c(x, u,Xk+1)

+ α min
u′∈U(Xk+1)

Qk(Xk+1, u
′)−Qk(x, u)

)
. (16.3)
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If the term 1{Xk = x, Uk = u} is omitted, we are using the Q-learning update
rule in the standard Q-value iteration, which uses the same matrix Qk for
all the computations of Qk+1. In any case, we can see that the Q-learning
algorithm is a type of stochastic approximation algorithm which aims at solving
the fixed point equation FQ−Q = 0, by recursively adjusting the parameters
{Q(x, u)}x,u, see chapter 15.

To review the usual averaging intuition this scheme, first replace the expec-
tation operator

E
[
c(xk, uk, xk+1) + α min

u′∈U(xk+1)
Qk(xk+1, u

′)
∣∣∣xk = x, uk = u

]

in asynchronous Q-VI by the sample mean

1
nk

∑

t∈Tk

c(xt, ut, xt+1) + α min
u′∈U(xt+1)

Qk(xt+1, u
′),

where nk is the number of times the current state control pair (xk, uk) has
appeared up to and including time k, and Tk are the actual iterations at which
this pair has been generated

Tk = {t|(xt, ut) = (xk, uk), 0 ≤ t ≤ k}.

The issue is that the computation of the sample mean might be too hard. The
first term

1
nk

∑

t∈Tk

c(xt, ut, xt+1)

can be recursively updated, but the second term

1
nk

∑

t∈Tk

min
u′∈U(tt+1)

Qk(xt+1, u
′)

must be completely recomputed at each iteration using the current vector Qk.
On the other hand, this term can be recursively updated if we replace it by

1
nk

∑

t∈Tk

min
u′∈U(xt+1)

Qt(xt+1, u
′).

This gives the Q-learning algorithm with γk = 1/nk using the standard manip-
ulation to obtain recursive updates.

The Q-learning update is also often used in the optimistic policy iteration
scheme using Q-factors as in section 7.2. The drawbacks of Q-learning are that
the number of Q-factors (i.e., the number of state-control pairs) may be exces-
sive, and the convergence too slow. The large size of the state-control space
can be handled using state aggregation or linear approximation architectures
for the Q-factors, see [Ber07b, sections 6.4.2-6.4.4].
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16.2 Convergence Analysis of Value Iteration with
Q-Learning

We now consider the convergence of Q-Value Iteration, for a finite state and
control space, using the Q-learning update rule to replace the expectation in
Qk+1 = FQk. The convergence analysis can be modified to work for the
asynchronous scheme (16.2) without too much difficulty, see e.g. [Bor08]. At
stage k of the algorithm, for the update of the Q-factor of the pair (x, u), we
simulate a variable Xk+1(x, u) with probability distribution px·(u). Then we
view the iterations

Qk+1(x, u) = Qk(x, u) + γk

(
c(x, u,Xk+1(x, u))

+ α min
u′

Qk(Xk+1(x, u), u′)−Qk(x, u)
)

as a stochastic approximation, where the iterates are the n × |U| matrices
Qk, k ≥ 0. So we have

Qk+1 = Qk + γk(f(Qk) + Dk+1),

where f(Qk) is a matrix with components

[f(Qk)]x,u = (FQk)(x, u)−Qk(x, u)

and Dk+1 is a (martingale difference) matrix with components

[Dk+1]x,u = α



min
u′

Qk(Xk+1(x, u), u′)−
n∑

j=1

pxj(u) min
u′

Qk(j, u′)



 .

Assume that the stepsizes satisfy
∞∑

k=0

γk =∞,
∞∑

k=0

γ2
k <∞.

Then by inspection the corresponding ODE is

Q̇(t) = (FQ)(t)−Q(t),

which is of the type studied in section 15.2 for F a contraction, see corollary
15.2.2. Since this ODE has a unique globally stable fixed point, the convergence
results of chapter 15 guarantee that the Q-factors converge to the optimal ones
(Q∗ is the unique fixed point of F ), if we can show that the stability assumption
4 of section 15.3 holds.

Proof of Stability of the Stochastic Approximation

The bottleneck for the application of the ODE method, in this case and in
general for a priori unbounded state spaces, is to prove the stability property
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4. There are a few general techniques available for this purpose, for example
the stochastic Lyapunov function approach [KY03]. Here we follow instead an
approach due to Borkar and Meyn, inspired by stability analysis techniques
using fluid models in queueing networks [BM00, Bor08].

Suppose that the iterates xn in (15.10) are scaled by their initial value

x̃n =
xn

r
, with r := max(|x0|, 1).

Then the rescaled iterates follow the stochastic approximation

x̃n+1 = x̃n + γn

[
f(rx̃n)

r
+

Dn+1

r

]
, n ≥ 0.

Define fr(x) = f(rx)/r. The interpolated process for the scaled iterates then
is expected to follow the solutions of the ODE

ẋ(t) = fr(x(t)).

For stability, we are interested in the situation where the initial condition
is large, i.e. r → ∞. Suppose that the (pointwise) limit f∞ = limr→∞ fr

exists. Then for large initial conditions the rescaled process should follow
approximately the solutions of the ODE

ẋ(t) = f∞(x(t)). (16.4)

We have the following theorem

Theorem 16.2.1. Assume that assumptions 1-3 of section 15.3 are satisfied,
and that the limit f∞ exists. Moreover, assume the origin in Rd is an asymp-
totically stable equilibrium for the ODE (16.4). Then for any initial condition
x0 ∈ Rd we have

sup
n
‖xn‖ <∞, a.s.

Remark. The function f∞ satisfies f∞(ax) = af∞(x) for a > 0 so the origin
in Rd satisfies f∞(0) = 0, and moreover the origin is the only possible isolated
equilibrium of (16.4). We can also show that if the origin is an asymptotically
stable equilibrium, it is in fact globally exponentially asymptotically stable.

For the Q-learning algorithm, we have f∞(Q) = F∞Q−Q with

[F∞Q]x,u = α
n∑

j=1

pxj(u) min
u′inU(j)

Q(j, u′),

which is also an α-contraction for ‖ ·‖ ∞, with the origin as fixed point and
hence as globally asymptotically stable equilibrium of the corresponding ODE
(16.4). Hence from the theorem we conclude that the Q-learning algorithm
is stable and it converges to the optimal Q-factors by the discussion in the
previous subsection.
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