
ELE6953E : Cyber-Physical Systems and

the Internet of Things

Lecture 9 : Cloud Computing for the Internet of Things

Jérôme Le Ny

Department of Electrical Engineering, Polytechnique Montreal

 IIC, founded in 2014 by AT&T, Intel, IBM, Cisco, GE

 ~260 member companies in 2016

 Focus: Application of “Internet of Things” (IoT) technologies to

industries.

 What does that mean?

INDUSTRIAL INTERNET CONSORTIUM

http://www.iiconsortium.org/

POSITION ON THE HYPE CYCLE

 “Data Analytics” for the Internet of Things

 Next generation SCADA systems / Industrial IoT (IIoT)

 Back-ends for the Internet of Things: cluster computing for

model-based signal processing (“streaming analytics”)

 Overview of some relevant frameworks and technologies for

networking, big data storage and processing in “the cloud”

 Commercial or not

 Homework: use a small subset of these tools, for a small

problem in estimation & fault detection

 Focus: data processing on the cloud server side (software

back-end), only give a few pointers for the data acquisition

aspects (hardware front-end, connectivity)

 “Edge computing” is in some sense covered in earlier part of the

course. Software solutions still in early stages (ex: Apache Edgent)

TOPICS

https://en.wikipedia.org/wiki/Edge_computing
http://edgent.apache.org/

 We’ll touch only superficially on computer systems engineering and
programming aspects

 No time to go into the details of distributed computing systems

 No time to teach to teach you parallel programming frameworks in
any reasonable depth

 Pick up the minimum you need for the assignment, explore further later
on your own if you are interested

 N.B.: Various computing frameworks come with APIs in a limited number
of programming languages (Scala, Java, Python, Matlab…)

 Goal is just to give you the flavor of some existing technologies that
can be leveraged for automation

 Technologies in this space change very quickly! Will be hard to keep
up with the “bleeding edge” for a while

 Landscape of existing tools is messy, competition between service
providers is fierce, and choices can be driven by hype

 Lots of ways to delve deeper into the actual software technologies
mentioned here (MOOCs, INF8480, blogs, etc.). Follow-up classes will
go back to the fundamentals of data processing (algorithms)

LIMITS OF THIS COURSE

1. Intro to Cloud Computing

 What is it? How is it relevant to the design of large-scale monitoring

and control systems?

2. Cloud Computing Services for Data Acquisition and Analysis

 Fourth generation SCADA systems (Supervisory Control and Data

Acquisition) : Industrial Internet of Things (IIoT) and Cloud

Computing

3. Storage for Big Data (databases, distributed file systems)

4. Analyzing big data

 Cluster computing (ex: Apache Spark)

OUTLINE

1. Intro to Cloud Computing

 Deliver computing, storage, software, etc. as services over the

internet (or any other network)

 Ex: Amazon AWS, Gmail, Google Docs, Netflix, …

 For an overview of key “cloud” concepts: [Armbrust et al., 2010]

 A key motivating challenge is scale. Systems that should handle

 Huge numbers of user requests, coming from anywhere on Earth

 Huge amounts of data to store and process (Google in 2008: 20

petabytes / day)

 Requires massive distributed computing infrastructure (data

centers), enabling “big data” analysis

“CLOUD” CONCEPTS

 Cloud computing providers and

simplifying programming models

allow many other companies,

institutions, governments, etc. to work

with big/distributed data as well

https://cacm.acm.org/magazines/2010/4/81493-a-view-of-cloud-computing/fulltext

“Cloud computing is a model for enabling convenient, on-

demand network access to a shared pool of configurable

computing resources (e.g., networks, servers, storage,

applications, and services) that can be rapidly provisioned

and released with minimal management effort or

service provider interaction.”

 Most of the related concepts are “old” (~1960s), but

commercial growth started in the early 2000s, with explosion of

web services

NIST DEFINITION

 Traditional IT model: company manages its own IT infrastructure, on-
premises, even if not primarily an IT company

 Issues: lack of flexibility, not necessarily cost optimal

 Large fixed cost for hardware investment, slow/expensive to scale up,
hard to scale down capacity when not needed any more, cannot handle
time-varying loads efficiently, etc.

 Need large IT team for maintenance, expertise, even if not core business

 On the other hand, some large IT companies (Amazon, Google, IBM,
Microsoft, etc.) have large data centers, millions of servers, and deep
IT expertise  willing to provide “utility computing” for a fee

 Other companies / institutions can then quickly access just the
necessary hardware, middleware and software, based on needs

 Elasticity of on-demand resources for different workloads: customer can
use 1000 servers for one hour for the price of 1 server for 1000 hours

 Power grid / computing analogy: build large power plants, transport
power to customer, who is metered and pays just for energy consumed
(less efficient for everyone to build his/her own power plant)

 Applies also to distributed monitoring and control systems  IoT
(industrial or not), cloud-based SCADA

CLOUD COMPUTING ECONOMICS

 Large internet companies realized their existing data center
infrastructures could be used to provide cloud services

 Builds on their investment, they are also selling expertise in
services and IT that they have developed first for their own
operations

 Pioneer: Amazon Web Services (AWS) launched in 2002, S3
(Simple Cloud Storage Service) and EC2 (Elastic Cloud Compute)
in 2006

 2008: Google App Engine, 2009: Windows Azure Beta

ECONOMIES OF SCALE

Technology Cost in medium DC
(~1,000 servers)

Cost in large DC
(~50,000 servers)

Ratio

Network $95 per Mbit/sec/month $13 per
Mbit/sec/month

7.1

Storage $2.20 per GByte/month $0.40 per GByte/month 5.7

Administration ~140 servers/admin >1,000 servers/admin 7.1

Source: James Hamilton's Keynote, LADIS 2008

CLUSTERS

Server Cluster Data centerPC

Many nodes/blades
(often identical)

Network switch
(connects nodes with
each other and
with other racks)

Storage device(s)

Rack

[©Z. Ives & A. Haeberlen, UPenn]

 Infrastructure as a Service (IaaS)

 Provide access to raw computing resources (computing nodes / virtual
machines, hard or virtual disks for storage, …)

 Ex: AWS EC2, EBS (Elastic Block Store)

 Platform as a Service (PaaS)

 Provide access to middleware, higher abstraction level than IaaS, less
configuration needed (and possible), takes care of cluster management,
automatic resizing, etc.

 Application developer builds on top of these services, without worrying
about low-level infrastructure (too much)

 Ex: provide a database management system, on top of infrastructure. AWS
RDS (Relational Database Service)

 Software as a Service (SaaS)

 Provide entire application

 Ex: Gmail, Google docs, Salesforce.com

 The main companies (Amazon, IBM, Microsoft, Google, etc.) are
service providers in all categories

 These services can be provided by public clouds (widely available
commercial services), community clouds (ex: Compute Canada
Cloud), private clouds (accessible by one organization)

MAIN TYPES OF CLOUD SERVICES

https://aws.amazon.com/ec2/?sc_channel=PS&sc_campaign=acquisition_CA&sc_publisher=google&sc_medium=ec2_b&sc_content=ec2_e&sc_detail=amazon ec2&sc_category=ec2&sc_segment=176353761543&sc_matchtype=e&sc_country=CA&s_kwcid=AL!4422!3!176353761543!e!!g!!amazon ec2&ef_id=WnLI5gAAAOpgfRUG:20180315205918:s
https://aws.amazon.com/ebs/?sc_channel=PS&sc_campaign=acquisition_CA&sc_publisher=google&sc_medium=ebs_b&sc_content=block_storage_e&sc_detail=amazon ebs&sc_category=ebs&sc_segment=145408336283&sc_matchtype=e&sc_country=CA&s_kwcid=AL!4422!3!145408336283!e!!g!!amazon ebs&ef_id=WnLI5gAAAOpgfRUG:20180315205417:s
https://aws.amazon.com/rds/?sc_channel=PS&sc_campaign=acquisition_CA&sc_publisher=google&sc_medium=rds_b&sc_content=rds_e&sc_detail=amazon rds&sc_category=rds&sc_segment=186405288420&sc_matchtype=e&sc_country=CA&s_kwcid=AL!4422!3!186405288420!e!!g!!amazon rds&ef_id=WnLI5gAAAOpgfRUG:20180315210021:s
https://www.computecanada.ca/research-portal/national-services/compute-canada-cloud/

EXAMPLES OF SERVICES

Amazon EC2 (IaaS) IBM Cloud PaaS

https://aws.amazon.com/ec2/pricing/on-demand/
https://www.ibm.com/cloud/

 Web and application hosting

 Backup, storage

 E-commerce

 High-performance computing

 Many other…

Can be problematic when

 Data is sensitive (ex: medical, financial), contains IP

 Need (auditable) compliance to laws and regulations related to data
storage, data transfer, etc.

 Need guaranteed availability (What if the cloud is down? Can I run a
safety-critical application in the cloud?)

 Need predictable computing / comm. performance, hard real-time

 Large data transfer / data storage for short term usage (cost)

 Need to install specific licensed software

 …

EXAMPLES OF APPLICATIONS

AND SOME LIMITATIONS

 A physical machine can be “divided” into
multiple virtual machines (VM)

 Each VM associated with one or several
physical CPUs, some amount of RAM, disk
space, etc.

 Each VM is isolated from the others, can be
provided to customer

 A Virtual machine monitor (VMM)/hypervisor
translates requests from VMs for virtual
resources to physical resources

CORE TECHNOLOGY: VIRTUALIZATION

 VMs can be easily migrated to a different physical machine if

needed (for maintenance, geographical redeployment, etc.),

with no impact for customer

 VMs can time-share physical resources, in effect giving more

virtual resources to sell for the provider (but challenge for

VM isolation / performance prediction, e.g., if a customer

changes its workload suddenly)

Host hardware

Host OS

VMM

Guest
OS

Guest
OS

Guest
OS

App

App

App App

VM1 VM2 VM3

 Clusters and data centers provide access to potentially very large

numbers of computing nodes are storage devices

 Networking is complex (ex: many protocols) and imperfect: delays,

packet loss, etc.

 Faults become very common when dealing with large numbers of

(commodity) devices. How to deal with faulty machines (crash, slow,

etc.), disk failures & data corruption, variable memory latency, etc.?

 Parallelizing programs can be hard, algo. dependent, not always possible

 Distributed computing is difficult (Ex: Dining Philosophers Problem),

especially in the presence of faults, which can be random, caused by

manipulation, byzantine/anything (Ex: Byzantine General’s Problem)

 Fortunately, some system and software abstractions hide many of

these complexities to application developers (up to a point)

 Frameworks for fault-tolerant data replication, distributed computing,

networking, etc.

 Still, important to be aware of underlying issues

SOME FUNDAMENTAL CHALLENGES

IN DISTRIBUTED SYSTEMS / CLOUD COMPUTING

https://en.wikipedia.org/wiki/Dining_philosophers_problem
https://en.wikipedia.org/wiki/Byzantine_fault_tolerance#Byzantine_Generals'_Problem

 For CPS, cloud computing services offer a natural solution to

 Collect data from large numbers of distributed sensors

 Process that data at scale, in a “virtual centralized server”

 Store historical sensor data

 Run batch or streaming computing jobs on that data: e.g., for fault /

anomaly detection.

 Optimize process objectives, close high-level feedback loops in real-

time. With caveats:

 Not for fast real-time, nor hard real-time, due to internet network time-

varying delays

 Cost of communication bandwidth to data centers, of running servers in

the cloud, advantage of centralized view must be weighted against

possibility of running some computations locally in low-cost but still very

capable embedded systems (“edge computing”)

  Main cloud computing providers often provide services

targeted at “IoT” applications

CLOUD COMPUTING AND CPS

2. Cloud Computing Services for Data

Acquisition and Analysis

 SCADA: System to obtain real-time data from geographically

distributed sites, to monitor a control process / automated system

 Interface with local controllers (Programmable Logic Controllers

(PLCs), Remote Terminal Units (RTUs))

 Human-machine interfaces (HMIs) on the monitoring side

 Industries: oil & gas, water and wastewater treatment, power,

chemical, pharmaceutical, automotive, electronics, etc.

 Expensive systems, vendor lock-in. Vendors: ABB, Emerson

Electric, Honeywell International, Schneider Electric, Siemens,

GE, etc.

 How do new “cloud” technologies change things?

 Cloud computing platforms widely available, economically viable

 Easily deployable and accessible IoT services (commercial and

open-source)

 Democratization of cluster computing / big data analytics

 But: reliability, safety, real-time performance, security, privacy issues

SCADA SYSTEM EVOLUTION

https://en.wikipedia.org/wiki/Programmable_logic_controller
https://en.wikipedia.org/wiki/Remote_terminal_unit

TYPICAL ARCHITECTURE OF INDUSTRIAL

DISTRIBUTED CONTROL SYSTEMS

[Wikipedia]

PLCs,
RTUs

SCADA HMIs,
alarms,

…

https://en.wikipedia.org/wiki/SCADA#The_SCADA_concept_in_control_operations

A LARGE SCALE SCADA SYSTEM:

THE POWER GRID

[ISO New England]

[Northeast blackout, 2003]

 Many different technologies and protocols developed over time to
connect to industrial devices from different vendors. Ex:

 Industrial Ethernet (IE) can be used to connect PLCs to supervisory
layer. One protocol for IE is PROFINET

 Modbus (1979: a serial protocol originally for Schneider Electric
PLCs. Now a standard to connect PLCs/RTUs with supervisory layer,
for example over IE (general trend from serial comms to IP nets)

 Profibus (1989), a type of fieldbus, industrial computer protocol
generally to connect PLCs to lower level sensors, actuators, etc. Used
by Siemens. Should not be confused with PROFINET…

 Wireless: WirelessHART, ISA100.11a, WIA-PA, ZigBee, Wi-Fi, etc.

 Networks for Industrial Control Systems (ICS) are different from
traditional IT networks, and have somewhat different QoS reqs.

 Equipment can be old, harsh / non controlled environment

 Delivering data on time most of the time (availability) can be more
important than delivering always correct data but with a delay
(integrity)

NETWORKING FOR INDUSTRIAL DCS

https://en.wikipedia.org/wiki/Industrial_Ethernet
https://en.wikipedia.org/wiki/PROFINET
https://en.wikipedia.org/wiki/Modbus
https://en.wikipedia.org/wiki/Profibus
https://en.wikipedia.org/wiki/Fieldbus
https://en.wikipedia.org/wiki/WirelessHART
https://en.wikipedia.org/wiki/ISA100.11a

 OPC (Open Platform Communications) UA (Unified Architecture)

 Standard developed by the OPC foundation, first version in 1996

 Initially standardized interface to connect HMI/SCADA to PLC

specific protocols  goal is to support device interoperability

 OPC UA specification released in 2008, goal remains platform/vendor

independent information sharing between devices for industrial

applications, with advanced functionalities (device discovery,

security, etc.).

 Client-server and publish-subscribe communication models

 DDS

 More recent standard developed by the Object Management Group

(OMG), “Data-Centric Publish Subscribe” (DCPS) model

 Middleware simplifying network programming (declarative

programming), creates a decentralized data space

 Various QoS parameters, adresses (hard?) real-time distributed sys.

 OPC-UA vs. DDS: article, discussion

DATA SHARING STANDARDIZATION

EFFORTS FOR DCS

https://en.wikipedia.org/wiki/OPC_Unified_Architecture
https://opcfoundation.org/about/opc-technologies/opc-ua/
https://en.wikipedia.org/wiki/Client%E2%80%93server_model
https://en.wikipedia.org/wiki/Publish%E2%80%93subscribe_pattern
https://en.wikipedia.org/wiki/Data_Distribution_Service
https://www.omg.org/
https://www.rtinsights.com/dds-opc-ua-industrial-iot-standards/
https://stackoverflow.com/questions/36301904/differences-between-opc-and-dds

 Growing demand for cloud-based SCADA

 CC should provide scalable, flexible (elastic) way to set-up
infrastructure to collect, store, monitor, process sensor data

 In a sense, some existing systems with SCADA servers in a remote
(safer) location already constitute private clouds

 Extends to very large-scale systems: smart buildings, smart
communities, smart cities and infrastructure

 Public, private of hybrid cloud?

 Ex: Private cloud at process level, public cloud at corporate level

 Risks: security, reliability, performance

 Read this Manufacturing Automation Article, Nov. 2017. Regarding
IIoT: “a common architecture has emerged - one in which field
sensors are connected to gateways that move the data to a public
Cloud where it is analyzed and individuals or software packages
may access it with standard APIs”

CLOUD-BASED SCADA

https://www.automationmag.com/technology/networks/7757-how-cloud-and-fog-computing-will-advance-scada-systems

STANDARD IOT SERVICES

 Typically more benign
applications than ICS

 Provide libraries for
connecting devices (ex:
Amazon FreeRTOS)

 Device Management
 Often offers connection via

MQTT protocol
 Lightweight pub/sub

protocol (with message
broker)

 Targets low bandwidth
data links, intermittent
connection

 Authentication, crypto
 Easy connection with PaaS

back-end services
 List of IoT Platforms

https://aws.amazon.com/freertos/
https://www.postscapes.com/internet-of-things-platforms/

EXAMPLE

MATHWORKS + THINGSPEAK

OPC toolbox

https://thingspeak.com/
https://thingspeak.com/
https://www.mathworks.com/solutions/internet-of-things.html?s_tid=hp_solutions_iot
https://www.mathworks.com/solutions/internet-of-things.html?s_tid=hp_solutions_iot
https://www.mathworks.com/products/opc.html

Where to process your data?

 Features of local processing (“edge” computing, “fog” computing)

 Lower costs for data tx to cloud,

 Less power consumption for communications (esp. if wireless connection)

 Lower latency

 High computation or storage requirements need to be provisioned

 Potentially not feasible (embedded devices)

 Potentially expensive

 Not flexible (ex: requirement changes)

 Redundancy, fault-tolerance, etc., difficult and expensive

 Features of cloud-based processing

 Can have a more global view of the system (beyond local network)

 Access to large computing infrastructure

 Access to large data storage (historical databases, etc.)

 Fault-tolerant computing and storage provided as a service

 But: high communication requirements (high bandwidth, low latency) can be
expensive or impossible to satisfy at the performance level required

 In general, a good architecture needs a combination of local computing (ex:
for low latency feedback control) and cloud computing (ex: for anomaly
detection, long-term performance analysis, data logging for future audit, etc.)

ARCHITECTURE ISSUES

Example: analyze car traffic patterns on a road network

 Edge computing: attach a small single board computer (SBC, ex:

raspberry pi) to each camera for real-time computer vision algorithm

detecting cars

 Only transmit from SBC car detection events with time stamps, or the

number of cars detected in a time window, etc., to the cloud for

further analysis of traffic patterns

 Cloud computing: cloud can collect counts from many sensors and

provide a global estimate of the traffic on the road network, distribute

results to client computers

 Alt.: would you transmit raw video directly to the cloud? [Pricing]

EXAMPLE: TRAFFIC ESTIMATION

FROM VIDEO ANALYSIS

https://aws.amazon.com/kinesis/video-streams/
https://aws.amazon.com/kinesis/video-streams/pricing/

3. Storing and Managing Big Data

 Databases collect information for efficient retrieval (a basic form

could be just a file system…)

 Nowadays, many applications require storing large volume of data

on multiple (many) nodes in a network, often with replication for

fault-tolerance: distributed data store

 Makes data management much more difficult. Want

 Consistency: Every read receives the most recent write or an error

=> shared view of data by all clients, despite concurrent updates

 Availability: Every request receives a (non-error) response (without

guarantee to obtain the most recent write), even if there are faults

 Partition tolerance: system works even when the network partitions

(global connectivity between nodes is lost)

DISTRIBUTED DATA STORES

Server A

Server B

Link can break

Alice

[©Z. Ives & A.
Haeberlen, UPenn]

 CAP Theorem [Brewer conjecture, proved by Gilbert and Lynch]:
we can have at most two of the previous properties simultaneously

 Ex: Generally, a distributed system must tolerate partitions. Then we
need to choose between consistency and availability

 Consequence: different data management systems make different
trade-offs, appropriate for different data models and applications.
Relational DBMS, key-value store, document store, graph DBMS, etc.

 If choose consistency. Ex: return time-out if partition makes data
unavailable, no new write req. during partition, etc.

 If choose availability. During network partition, different
relaxations of consistency:

 Weak consistency: updated value not guaranteed to be returned
immediately, only after some conditions are met (inconsistency
window)

 Eventual consistency: weak consistency, such that if no new updates
are made to the object, eventually all accesses will return the last
updated value

 Accepting write req. during partitions, state can be inconsistent

CAP THEOREM AND CONSEQUENCES

https://db-engines.com/en/ranking

CAP THEOREM AND TYPES OF DATABASES

[Nathan Hurst]

http://blog.nahurst.com/visual-guide-to-nosql-systems

 Relational databases: traditional way of storing data against which

we want to run queries (= ask questions) efficiently

 Relational model of data: store data into one or more tables

 Each column has a name and a data type (text, number, date, …).

RDBMS schema

 Rows of tuples or records

 SQL (Structured Query Language): language for storing,

manipulating and retrieving data in databases

 Declarative programming model

 Ex: SELECT CustomerName, City FROM Customers

 SQL also usable for Relational Data Stream MS (RDSMS). Ex: IBM

System S (commercial: IBM Streams)

 Traditional RDBMS choose consistency over availability

 ACID guarantees (Atomicity, Consistency, Isolation, Durability)

 Hard to scale to distributed systems, relatively high storage cost

RELATIONAL DATABASE

MANAGEMENT SYSTEMS (RDBMS)

https://en.wikipedia.org/wiki/Relational_database
https://en.wikipedia.org/wiki/Relational_model
https://en.wikipedia.org/wiki/Database_schema
https://researcher.watson.ibm.com/researcher/view_group.php?id=2531
https://www.ibm.com/cloud/streaming-analytics
https://en.wikipedia.org/wiki/ACID

 Many more recent distributed database management systems for

big data and real-time apps choose availability over consistency

 BASE guarantees (Basically Available, Scalable, Eventually consistent)

 Ex: Shopping cart

 Generally NoSQL databases, store data by means other than

relational model (key-value, wide column, graph, document, …)

 May still support an SQL-like query language

 Simpler to design than RDBMS, cheaper storage

 Ex :

 Key-value stores: (dictionaries) key uniquely identify a record. Supports

get, put, delete

 Ex: Redis, Amazon SimpleDB

 Document stores: subclass of key-value stores. “document” is DB specific

 Amazon DynamoDB, Apache CouchDB / IBM Cloudant

 Many others

DBMS WITH RELAXED CONSISTENCY

https://en.wikipedia.org/wiki/Eventual_consistency
https://en.wikipedia.org/wiki/NoSQL
https://en.wikipedia.org/wiki/Key-value_database
https://en.wikipedia.org/wiki/Document-oriented_database
http://couchdb.apache.org/
https://db-engines.com/en/ranking

 File system: manage data as file hierarchy

 Ex: Hadoop Distributed File System (HDFS)

 Block-level storage (ex: Amazon EBS): blocks of data

 “Virtual hard disk”, can be attached to various computing instances

 Object Storage: manage data as objects (ex: Amazon S3)

 Can store very heterogeneous, unstructured data, including for

example audio, images, video

 Fault tolerance

 Scalable

 Similar to key-value store

OTHER TYPES OF STORAGE

https://aws.amazon.com/ebs/
https://en.wikipedia.org/wiki/Object_storage
https://aws.amazon.com/s3/?sc_channel=PS&sc_campaign=acquisition_CA&sc_publisher=google&sc_medium=s3_b&sc_content=s3_e&sc_detail=amazon s3&sc_category=s3&sc_segment=192067015656&sc_matchtype=e&sc_country=CA&s_kwcid=AL!4422!3!192067015656!e!!g!!amazon s3&ef_id=WnLI5gAAAOpgfRUG:20180316060043:s

 Sensor data is mostly time series data

 Main issue is cost of storage ($/GB/month depends on storage solution)

 Ex: ~3$/GB/month for SQL DB, ~1$/GB/month for NoSQL DB, a few cents/GB/month
for Object Storage

SUMMARY

©Romeo Kienzler, IBM

4. Processing Big Data: Parallel
Computing on Clusters and Data

Centers

 Cluster consists of potentially many nodes, which need to

coordinate to compute over massive data, itself stored in a

distributed filesystem or database

 A general cluster computing organization: 1 driver node,

organizing computations with many worker nodes

 At a lower level, there is also a cluster manager for job scheduling,

resource management, etc.

 Traditional parallel programming frameworks for high

performance scientific computing such as OpenMP or MPI have

not been used much for “data science”

 Programming level is too low (ex: specify every exchange of data)

 Does not include fault-tolerance (rebalancing workload when a node

becomes slow of fails, etc.), but this is critical when computing

infrastructure scales up

 See this opinion article

PARALLEL PROGRAMMING AT SCALE

https://www.dursi.ca/post/hpc-is-dying-and-mpi-is-killing-it.html

 Collection of open-source software modules to store (HDFS) and

process (Hadoop MapReduce) big data

From the Hadoop page

 “The Apache Hadoop project develops open-source software for

reliable, scalable, distributed computing”

http://hadoop.apache.org/

 4 main modules

Hadoop Common: The common utilities that support the other Hadoop modules.

Hadoop Distributed File System (HDFS): A distributed file system that provides

high-throughput access to application data.

Hadoop YARN: A framework for job scheduling and cluster resource management.

Hadoop MapReduce: A YARN-based system for parallel processing of large data sets.

APACHE HADOOP

http://hadoop.apache.org/

 Programming model for parallel distrib. computing on clusters

 Originally a Google technology, open-source implementation in

Hadoop

 Constrains the structure of programs to parallelize them:

 Operate on (key, value) pairs

 Map step: worker nodes apply a function on their local data elements

 Shuffle step: data redistrib. among workers based on associated keys

 Reduce step: summary operation by the workers (ex: summing)

MAPREDUCE PROGRAMMING MODEL

 MapReduce model very powerful for certain types of jobs but

constraining, restrictive, low-level / difficult to use

 Not well adapted to iterative/repeated queries common in

machine learning, revisiting dataset multiple times

 In particular, requires rewriting data on disks multiple times, slow

 Hadoop MapReduce (HMR) essentially attached to the rest of the

Hadoop Ecosystem

 Apache Spark is a more recent very popular framework

facilitating cluster computing

 Generally much faster than HMR for big data processing (using

in-memory computing) & more convenient to use

HADOOP MAPREDUCE VS. SPARK

 Spark Core + several

libraries targeting different

types of applications

https://spark.apache.org/

 Very actively developed open source engine for parallel data

processing on (large-scale) computer clusters

 Project started at UC Berkeley in 2009 at the AMPLab

 Initial paper in 2010 by Matei Zaharia et al.

 Goal was to overcome issues with MapReduce, e.g., for machine

learning

 For the end user: API based on functional programming to express

multistep applications

 Under the hood: Engine to perform computations efficiently, in-

memory data sharing

 Implemented in Scala, runs on Java Virtual Machines (JVM)

APACHE SPARK

https://amplab.cs.berkeley.edu/
https://dl.acm.org/citation.cfm?id=1863103.1863113

LANGUAGE BINDINGS FOR SPARK

©Romeo Kienzler, IBM

 Can also switch seamlessly between several different data

storage solutions, use different cluster managers, …

 Basic data type: Resilient Distributed Dataset (RDDs)

 Immutable partitioned fault-tolerant collection of records

(Java/Scala/Python objects), which can be operated on in parallel

 Distribute data in nodes’ memory (lazily, if action performed)

 Since Spark 2.0, user should use Structured Data Types wrapping

RDDs when possible rather than RDDs directly, for better

optimization of workloads. But everything still compiled to RDDs

 DataFrames: maintains a schema on top of RDD, support SQL queries

 DataSets: typed DataFrames, only in Scala & Java

 Structured Streaming

SPARK DATA TYPES

[Chambers and Zaharia, 2018]

 Mathematical foundation of FP: lambda calculus, expresses

computations as application of functions

 Data is immutable, functions applied to create new data

 Example of FP languages: Haskell, OCaml, Lisp, Scheme…

 Python supports some basic FP constructs (lambda functions)

 Scala supports FP but is multi-paradigm (imperative, OO)

 FP has many advantages for parallel computations (ex: can send

the function to each worker node and apply it on data there)

 Example:

FUNCTIONAL PROGRAMMING PARADIGM

FOR PARALLEL PROGRAMMING

https://en.wikipedia.org/wiki/Lambda_calculus

 Spark app: driver process (assigns work) + executor processes

(carry work, report back)

 Developing applications in Spark uses the following paradigm

 Define Transformations: instruct how to modify data, but do not

actually perform comp. (“evaluate lazily”)

 Perform Actions: evaluate eagerly, actually manipulate data in a

distributed fashion

 Ex: map transformation defines a function to apply to each

element of a dataset, collect action brings dataset back in the

memory of the driver node

 Will crash driver node if too big to fit in its memory!

SPARK APPLICATIONS

TRANSFORMATIONS VS. ACTIONS

 Matlab Tall Arrays (data type)

 Columnar data that does not necessarily fit in memory

 Support data parallelism storage (HDFS)

 Parallel computing with parallel computing toolbox

 Can use Matlab compiler to execute applications on Spark

 Link

USING MATLAB FOR BIG DATA PROCESSING

https://www.mathworks.com/help/matlab/tall-arrays.html
https://www.mathworks.com/help/compiler/spark-applications.html
https://www.mathworks.com/discovery/matlab-hadoop-and-spark.html
https://www.mathworks.com/discovery/matlab-hadoop-and-spark.html

 Cloud computing provides new technologies useful for

distributed automation

 Demand for cloud based SCADA + IoT solutions available from

many vendors: convergence?

 Various frameworks, services (commercial or not) simplify the

management of computing clusters, distributed data stores,

parallel fault-tolerant programming on clusters, etc.

 Architecture (local distributed vs. cloud computing) should still

be made carefully. Consider

 Network reliability, latency

 Cost of data transfer

 Cost of computing nodes, renting vs. buying, maintenance, etc.

 IP and data sensitivity issues (security, privacy, secrecy), compliance

 Etc.

CONCLUSIONS - RECAP

 We’ll use IBM Bluemix (Watson IoT Platform, Data Science

Experience, etc.) for HW Assignment 4

 No fundamental reason, IBM not involved in this course beyond

providing standard academic credits (not course specific)

 Bluemix more focused on PaaS compared to Amazon:

services/software perhaps easier to set-up for beginner

 AWS provides IaaS and PaaS services, has more or less equivalent

services to those used in assignment

 For a new application, would have to decide platform and service

level based on your team: experience with platforms, personnel

dedicated to infrastructure set-up and maintenance, etc.

HOMEWORK ASSIGNMENT AND

CHOICE OF CLOUD PROVIDER

