
ELE6953E : Cyber-Physical Systems and

the Internet of Things

Lecture 9 : Cloud Computing for the Internet of Things

Jérôme Le Ny

Department of Electrical Engineering, Polytechnique Montreal

 IIC, founded in 2014 by AT&T, Intel, IBM, Cisco, GE

 ~260 member companies in 2016

 Focus: Application of “Internet of Things” (IoT) technologies to

industries.

 What does that mean?

INDUSTRIAL INTERNET CONSORTIUM

http://www.iiconsortium.org/

POSITION ON THE HYPE CYCLE

 “Data Analytics” for the Internet of Things

 Next generation SCADA systems / Industrial IoT (IIoT)

 Back-ends for the Internet of Things: cluster computing for

model-based signal processing (“streaming analytics”)

 Overview of some relevant frameworks and technologies for

networking, big data storage and processing in “the cloud”

 Commercial or not

 Homework: use a small subset of these tools, for a small

problem in estimation & fault detection

 Focus: data processing on the cloud server side (software

back-end), only give a few pointers for the data acquisition

aspects (hardware front-end, connectivity)

 “Edge computing” is in some sense covered in earlier part of the

course. Software solutions still in early stages (ex: Apache Edgent)

TOPICS

https://en.wikipedia.org/wiki/Edge_computing
http://edgent.apache.org/

 We’ll touch only superficially on computer systems engineering and
programming aspects

 No time to go into the details of distributed computing systems

 No time to teach to teach you parallel programming frameworks in
any reasonable depth

 Pick up the minimum you need for the assignment, explore further later
on your own if you are interested

 N.B.: Various computing frameworks come with APIs in a limited number
of programming languages (Scala, Java, Python, Matlab…)

 Goal is just to give you the flavor of some existing technologies that
can be leveraged for automation

 Technologies in this space change very quickly! Will be hard to keep
up with the “bleeding edge” for a while

 Landscape of existing tools is messy, competition between service
providers is fierce, and choices can be driven by hype

 Lots of ways to delve deeper into the actual software technologies
mentioned here (MOOCs, INF8480, blogs, etc.). Follow-up classes will
go back to the fundamentals of data processing (algorithms)

LIMITS OF THIS COURSE

1. Intro to Cloud Computing

 What is it? How is it relevant to the design of large-scale monitoring

and control systems?

2. Cloud Computing Services for Data Acquisition and Analysis

 Fourth generation SCADA systems (Supervisory Control and Data

Acquisition) : Industrial Internet of Things (IIoT) and Cloud

Computing

3. Storage for Big Data (databases, distributed file systems)

4. Analyzing big data

 Cluster computing (ex: Apache Spark)

OUTLINE

1. Intro to Cloud Computing

 Deliver computing, storage, software, etc. as services over the

internet (or any other network)

 Ex: Amazon AWS, Gmail, Google Docs, Netflix, …

 For an overview of key “cloud” concepts: [Armbrust et al., 2010]

 A key motivating challenge is scale. Systems that should handle

 Huge numbers of user requests, coming from anywhere on Earth

 Huge amounts of data to store and process (Google in 2008: 20

petabytes / day)

 Requires massive distributed computing infrastructure (data

centers), enabling “big data” analysis

“CLOUD” CONCEPTS

 Cloud computing providers and

simplifying programming models

allow many other companies,

institutions, governments, etc. to work

with big/distributed data as well

https://cacm.acm.org/magazines/2010/4/81493-a-view-of-cloud-computing/fulltext

“Cloud computing is a model for enabling convenient, on-

demand network access to a shared pool of configurable

computing resources (e.g., networks, servers, storage,

applications, and services) that can be rapidly provisioned

and released with minimal management effort or

service provider interaction.”

 Most of the related concepts are “old” (~1960s), but

commercial growth started in the early 2000s, with explosion of

web services

NIST DEFINITION

 Traditional IT model: company manages its own IT infrastructure, on-
premises, even if not primarily an IT company

 Issues: lack of flexibility, not necessarily cost optimal

 Large fixed cost for hardware investment, slow/expensive to scale up,
hard to scale down capacity when not needed any more, cannot handle
time-varying loads efficiently, etc.

 Need large IT team for maintenance, expertise, even if not core business

 On the other hand, some large IT companies (Amazon, Google, IBM,
Microsoft, etc.) have large data centers, millions of servers, and deep
IT expertise willing to provide “utility computing” for a fee

 Other companies / institutions can then quickly access just the
necessary hardware, middleware and software, based on needs

 Elasticity of on-demand resources for different workloads: customer can
use 1000 servers for one hour for the price of 1 server for 1000 hours

 Power grid / computing analogy: build large power plants, transport
power to customer, who is metered and pays just for energy consumed
(less efficient for everyone to build his/her own power plant)

 Applies also to distributed monitoring and control systems IoT
(industrial or not), cloud-based SCADA

CLOUD COMPUTING ECONOMICS

 Large internet companies realized their existing data center
infrastructures could be used to provide cloud services

 Builds on their investment, they are also selling expertise in
services and IT that they have developed first for their own
operations

 Pioneer: Amazon Web Services (AWS) launched in 2002, S3
(Simple Cloud Storage Service) and EC2 (Elastic Cloud Compute)
in 2006

 2008: Google App Engine, 2009: Windows Azure Beta

ECONOMIES OF SCALE

Technology Cost in medium DC
(~1,000 servers)

Cost in large DC
(~50,000 servers)

Ratio

Network $95 per Mbit/sec/month $13 per
Mbit/sec/month

7.1

Storage $2.20 per GByte/month $0.40 per GByte/month 5.7

Administration ~140 servers/admin >1,000 servers/admin 7.1

Source: James Hamilton's Keynote, LADIS 2008

CLUSTERS

Server Cluster Data centerPC

Many nodes/blades
(often identical)

Network switch
(connects nodes with
each other and
with other racks)

Storage device(s)

Rack

[©Z. Ives & A. Haeberlen, UPenn]

 Infrastructure as a Service (IaaS)

 Provide access to raw computing resources (computing nodes / virtual
machines, hard or virtual disks for storage, …)

 Ex: AWS EC2, EBS (Elastic Block Store)

 Platform as a Service (PaaS)

 Provide access to middleware, higher abstraction level than IaaS, less
configuration needed (and possible), takes care of cluster management,
automatic resizing, etc.

 Application developer builds on top of these services, without worrying
about low-level infrastructure (too much)

 Ex: provide a database management system, on top of infrastructure. AWS
RDS (Relational Database Service)

 Software as a Service (SaaS)

 Provide entire application

 Ex: Gmail, Google docs, Salesforce.com

 The main companies (Amazon, IBM, Microsoft, Google, etc.) are
service providers in all categories

 These services can be provided by public clouds (widely available
commercial services), community clouds (ex: Compute Canada
Cloud), private clouds (accessible by one organization)

MAIN TYPES OF CLOUD SERVICES

https://aws.amazon.com/ec2/?sc_channel=PS&sc_campaign=acquisition_CA&sc_publisher=google&sc_medium=ec2_b&sc_content=ec2_e&sc_detail=amazon ec2&sc_category=ec2&sc_segment=176353761543&sc_matchtype=e&sc_country=CA&s_kwcid=AL!4422!3!176353761543!e!!g!!amazon ec2&ef_id=WnLI5gAAAOpgfRUG:20180315205918:s
https://aws.amazon.com/ebs/?sc_channel=PS&sc_campaign=acquisition_CA&sc_publisher=google&sc_medium=ebs_b&sc_content=block_storage_e&sc_detail=amazon ebs&sc_category=ebs&sc_segment=145408336283&sc_matchtype=e&sc_country=CA&s_kwcid=AL!4422!3!145408336283!e!!g!!amazon ebs&ef_id=WnLI5gAAAOpgfRUG:20180315205417:s
https://aws.amazon.com/rds/?sc_channel=PS&sc_campaign=acquisition_CA&sc_publisher=google&sc_medium=rds_b&sc_content=rds_e&sc_detail=amazon rds&sc_category=rds&sc_segment=186405288420&sc_matchtype=e&sc_country=CA&s_kwcid=AL!4422!3!186405288420!e!!g!!amazon rds&ef_id=WnLI5gAAAOpgfRUG:20180315210021:s
https://www.computecanada.ca/research-portal/national-services/compute-canada-cloud/

EXAMPLES OF SERVICES

Amazon EC2 (IaaS) IBM Cloud PaaS

https://aws.amazon.com/ec2/pricing/on-demand/
https://www.ibm.com/cloud/

 Web and application hosting

 Backup, storage

 E-commerce

 High-performance computing

 Many other…

Can be problematic when

 Data is sensitive (ex: medical, financial), contains IP

 Need (auditable) compliance to laws and regulations related to data
storage, data transfer, etc.

 Need guaranteed availability (What if the cloud is down? Can I run a
safety-critical application in the cloud?)

 Need predictable computing / comm. performance, hard real-time

 Large data transfer / data storage for short term usage (cost)

 Need to install specific licensed software

 …

EXAMPLES OF APPLICATIONS

AND SOME LIMITATIONS

 A physical machine can be “divided” into
multiple virtual machines (VM)

 Each VM associated with one or several
physical CPUs, some amount of RAM, disk
space, etc.

 Each VM is isolated from the others, can be
provided to customer

 A Virtual machine monitor (VMM)/hypervisor
translates requests from VMs for virtual
resources to physical resources

CORE TECHNOLOGY: VIRTUALIZATION

 VMs can be easily migrated to a different physical machine if

needed (for maintenance, geographical redeployment, etc.),

with no impact for customer

 VMs can time-share physical resources, in effect giving more

virtual resources to sell for the provider (but challenge for

VM isolation / performance prediction, e.g., if a customer

changes its workload suddenly)

Host hardware

Host OS

VMM

Guest
OS

Guest
OS

Guest
OS

App

App

App App

VM1 VM2 VM3

 Clusters and data centers provide access to potentially very large

numbers of computing nodes are storage devices

 Networking is complex (ex: many protocols) and imperfect: delays,

packet loss, etc.

 Faults become very common when dealing with large numbers of

(commodity) devices. How to deal with faulty machines (crash, slow,

etc.), disk failures & data corruption, variable memory latency, etc.?

 Parallelizing programs can be hard, algo. dependent, not always possible

 Distributed computing is difficult (Ex: Dining Philosophers Problem),

especially in the presence of faults, which can be random, caused by

manipulation, byzantine/anything (Ex: Byzantine General’s Problem)

 Fortunately, some system and software abstractions hide many of

these complexities to application developers (up to a point)

 Frameworks for fault-tolerant data replication, distributed computing,

networking, etc.

 Still, important to be aware of underlying issues

SOME FUNDAMENTAL CHALLENGES

IN DISTRIBUTED SYSTEMS / CLOUD COMPUTING

https://en.wikipedia.org/wiki/Dining_philosophers_problem
https://en.wikipedia.org/wiki/Byzantine_fault_tolerance#Byzantine_Generals'_Problem

 For CPS, cloud computing services offer a natural solution to

 Collect data from large numbers of distributed sensors

 Process that data at scale, in a “virtual centralized server”

 Store historical sensor data

 Run batch or streaming computing jobs on that data: e.g., for fault /

anomaly detection.

 Optimize process objectives, close high-level feedback loops in real-

time. With caveats:

 Not for fast real-time, nor hard real-time, due to internet network time-

varying delays

 Cost of communication bandwidth to data centers, of running servers in

the cloud, advantage of centralized view must be weighted against

possibility of running some computations locally in low-cost but still very

capable embedded systems (“edge computing”)

 Main cloud computing providers often provide services

targeted at “IoT” applications

CLOUD COMPUTING AND CPS

2. Cloud Computing Services for Data

Acquisition and Analysis

 SCADA: System to obtain real-time data from geographically

distributed sites, to monitor a control process / automated system

 Interface with local controllers (Programmable Logic Controllers

(PLCs), Remote Terminal Units (RTUs))

 Human-machine interfaces (HMIs) on the monitoring side

 Industries: oil & gas, water and wastewater treatment, power,

chemical, pharmaceutical, automotive, electronics, etc.

 Expensive systems, vendor lock-in. Vendors: ABB, Emerson

Electric, Honeywell International, Schneider Electric, Siemens,

GE, etc.

 How do new “cloud” technologies change things?

 Cloud computing platforms widely available, economically viable

 Easily deployable and accessible IoT services (commercial and

open-source)

 Democratization of cluster computing / big data analytics

 But: reliability, safety, real-time performance, security, privacy issues

SCADA SYSTEM EVOLUTION

https://en.wikipedia.org/wiki/Programmable_logic_controller
https://en.wikipedia.org/wiki/Remote_terminal_unit

TYPICAL ARCHITECTURE OF INDUSTRIAL

DISTRIBUTED CONTROL SYSTEMS

[Wikipedia]

PLCs,
RTUs

SCADA HMIs,
alarms,

…

https://en.wikipedia.org/wiki/SCADA#The_SCADA_concept_in_control_operations

A LARGE SCALE SCADA SYSTEM:

THE POWER GRID

[ISO New England]

[Northeast blackout, 2003]

 Many different technologies and protocols developed over time to
connect to industrial devices from different vendors. Ex:

 Industrial Ethernet (IE) can be used to connect PLCs to supervisory
layer. One protocol for IE is PROFINET

 Modbus (1979: a serial protocol originally for Schneider Electric
PLCs. Now a standard to connect PLCs/RTUs with supervisory layer,
for example over IE (general trend from serial comms to IP nets)

 Profibus (1989), a type of fieldbus, industrial computer protocol
generally to connect PLCs to lower level sensors, actuators, etc. Used
by Siemens. Should not be confused with PROFINET…

 Wireless: WirelessHART, ISA100.11a, WIA-PA, ZigBee, Wi-Fi, etc.

 Networks for Industrial Control Systems (ICS) are different from
traditional IT networks, and have somewhat different QoS reqs.

 Equipment can be old, harsh / non controlled environment

 Delivering data on time most of the time (availability) can be more
important than delivering always correct data but with a delay
(integrity)

NETWORKING FOR INDUSTRIAL DCS

https://en.wikipedia.org/wiki/Industrial_Ethernet
https://en.wikipedia.org/wiki/PROFINET
https://en.wikipedia.org/wiki/Modbus
https://en.wikipedia.org/wiki/Profibus
https://en.wikipedia.org/wiki/Fieldbus
https://en.wikipedia.org/wiki/WirelessHART
https://en.wikipedia.org/wiki/ISA100.11a

 OPC (Open Platform Communications) UA (Unified Architecture)

 Standard developed by the OPC foundation, first version in 1996

 Initially standardized interface to connect HMI/SCADA to PLC

specific protocols goal is to support device interoperability

 OPC UA specification released in 2008, goal remains platform/vendor

independent information sharing between devices for industrial

applications, with advanced functionalities (device discovery,

security, etc.).

 Client-server and publish-subscribe communication models

 DDS

 More recent standard developed by the Object Management Group

(OMG), “Data-Centric Publish Subscribe” (DCPS) model

 Middleware simplifying network programming (declarative

programming), creates a decentralized data space

 Various QoS parameters, adresses (hard?) real-time distributed sys.

 OPC-UA vs. DDS: article, discussion

DATA SHARING STANDARDIZATION

EFFORTS FOR DCS

https://en.wikipedia.org/wiki/OPC_Unified_Architecture
https://opcfoundation.org/about/opc-technologies/opc-ua/
https://en.wikipedia.org/wiki/Client%E2%80%93server_model
https://en.wikipedia.org/wiki/Publish%E2%80%93subscribe_pattern
https://en.wikipedia.org/wiki/Data_Distribution_Service
https://www.omg.org/
https://www.rtinsights.com/dds-opc-ua-industrial-iot-standards/
https://stackoverflow.com/questions/36301904/differences-between-opc-and-dds

 Growing demand for cloud-based SCADA

 CC should provide scalable, flexible (elastic) way to set-up
infrastructure to collect, store, monitor, process sensor data

 In a sense, some existing systems with SCADA servers in a remote
(safer) location already constitute private clouds

 Extends to very large-scale systems: smart buildings, smart
communities, smart cities and infrastructure

 Public, private of hybrid cloud?

 Ex: Private cloud at process level, public cloud at corporate level

 Risks: security, reliability, performance

 Read this Manufacturing Automation Article, Nov. 2017. Regarding
IIoT: “a common architecture has emerged - one in which field
sensors are connected to gateways that move the data to a public
Cloud where it is analyzed and individuals or software packages
may access it with standard APIs”

CLOUD-BASED SCADA

https://www.automationmag.com/technology/networks/7757-how-cloud-and-fog-computing-will-advance-scada-systems

STANDARD IOT SERVICES

 Typically more benign
applications than ICS

 Provide libraries for
connecting devices (ex:
Amazon FreeRTOS)

 Device Management
 Often offers connection via

MQTT protocol
 Lightweight pub/sub

protocol (with message
broker)

 Targets low bandwidth
data links, intermittent
connection

 Authentication, crypto
 Easy connection with PaaS

back-end services
 List of IoT Platforms

https://aws.amazon.com/freertos/
https://www.postscapes.com/internet-of-things-platforms/

EXAMPLE

MATHWORKS + THINGSPEAK

OPC toolbox

https://thingspeak.com/
https://thingspeak.com/
https://www.mathworks.com/solutions/internet-of-things.html?s_tid=hp_solutions_iot
https://www.mathworks.com/solutions/internet-of-things.html?s_tid=hp_solutions_iot
https://www.mathworks.com/products/opc.html

Where to process your data?

 Features of local processing (“edge” computing, “fog” computing)

 Lower costs for data tx to cloud,

 Less power consumption for communications (esp. if wireless connection)

 Lower latency

 High computation or storage requirements need to be provisioned

 Potentially not feasible (embedded devices)

 Potentially expensive

 Not flexible (ex: requirement changes)

 Redundancy, fault-tolerance, etc., difficult and expensive

 Features of cloud-based processing

 Can have a more global view of the system (beyond local network)

 Access to large computing infrastructure

 Access to large data storage (historical databases, etc.)

 Fault-tolerant computing and storage provided as a service

 But: high communication requirements (high bandwidth, low latency) can be
expensive or impossible to satisfy at the performance level required

 In general, a good architecture needs a combination of local computing (ex:
for low latency feedback control) and cloud computing (ex: for anomaly
detection, long-term performance analysis, data logging for future audit, etc.)

ARCHITECTURE ISSUES

Example: analyze car traffic patterns on a road network

 Edge computing: attach a small single board computer (SBC, ex:

raspberry pi) to each camera for real-time computer vision algorithm

detecting cars

 Only transmit from SBC car detection events with time stamps, or the

number of cars detected in a time window, etc., to the cloud for

further analysis of traffic patterns

 Cloud computing: cloud can collect counts from many sensors and

provide a global estimate of the traffic on the road network, distribute

results to client computers

 Alt.: would you transmit raw video directly to the cloud? [Pricing]

EXAMPLE: TRAFFIC ESTIMATION

FROM VIDEO ANALYSIS

https://aws.amazon.com/kinesis/video-streams/
https://aws.amazon.com/kinesis/video-streams/pricing/

3. Storing and Managing Big Data

 Databases collect information for efficient retrieval (a basic form

could be just a file system…)

 Nowadays, many applications require storing large volume of data

on multiple (many) nodes in a network, often with replication for

fault-tolerance: distributed data store

 Makes data management much more difficult. Want

 Consistency: Every read receives the most recent write or an error

=> shared view of data by all clients, despite concurrent updates

 Availability: Every request receives a (non-error) response (without

guarantee to obtain the most recent write), even if there are faults

 Partition tolerance: system works even when the network partitions

(global connectivity between nodes is lost)

DISTRIBUTED DATA STORES

Server A

Server B

Link can break

Alice

[©Z. Ives & A.
Haeberlen, UPenn]

 CAP Theorem [Brewer conjecture, proved by Gilbert and Lynch]:
we can have at most two of the previous properties simultaneously

 Ex: Generally, a distributed system must tolerate partitions. Then we
need to choose between consistency and availability

 Consequence: different data management systems make different
trade-offs, appropriate for different data models and applications.
Relational DBMS, key-value store, document store, graph DBMS, etc.

 If choose consistency. Ex: return time-out if partition makes data
unavailable, no new write req. during partition, etc.

 If choose availability. During network partition, different
relaxations of consistency:

 Weak consistency: updated value not guaranteed to be returned
immediately, only after some conditions are met (inconsistency
window)

 Eventual consistency: weak consistency, such that if no new updates
are made to the object, eventually all accesses will return the last
updated value

 Accepting write req. during partitions, state can be inconsistent

CAP THEOREM AND CONSEQUENCES

https://db-engines.com/en/ranking

CAP THEOREM AND TYPES OF DATABASES

[Nathan Hurst]

http://blog.nahurst.com/visual-guide-to-nosql-systems

 Relational databases: traditional way of storing data against which

we want to run queries (= ask questions) efficiently

 Relational model of data: store data into one or more tables

 Each column has a name and a data type (text, number, date, …).

RDBMS schema

 Rows of tuples or records

 SQL (Structured Query Language): language for storing,

manipulating and retrieving data in databases

 Declarative programming model

 Ex: SELECT CustomerName, City FROM Customers

 SQL also usable for Relational Data Stream MS (RDSMS). Ex: IBM

System S (commercial: IBM Streams)

 Traditional RDBMS choose consistency over availability

 ACID guarantees (Atomicity, Consistency, Isolation, Durability)

 Hard to scale to distributed systems, relatively high storage cost

RELATIONAL DATABASE

MANAGEMENT SYSTEMS (RDBMS)

https://en.wikipedia.org/wiki/Relational_database
https://en.wikipedia.org/wiki/Relational_model
https://en.wikipedia.org/wiki/Database_schema
https://researcher.watson.ibm.com/researcher/view_group.php?id=2531
https://www.ibm.com/cloud/streaming-analytics
https://en.wikipedia.org/wiki/ACID

 Many more recent distributed database management systems for

big data and real-time apps choose availability over consistency

 BASE guarantees (Basically Available, Scalable, Eventually consistent)

 Ex: Shopping cart

 Generally NoSQL databases, store data by means other than

relational model (key-value, wide column, graph, document, …)

 May still support an SQL-like query language

 Simpler to design than RDBMS, cheaper storage

 Ex :

 Key-value stores: (dictionaries) key uniquely identify a record. Supports

get, put, delete

 Ex: Redis, Amazon SimpleDB

 Document stores: subclass of key-value stores. “document” is DB specific

 Amazon DynamoDB, Apache CouchDB / IBM Cloudant

 Many others

DBMS WITH RELAXED CONSISTENCY

https://en.wikipedia.org/wiki/Eventual_consistency
https://en.wikipedia.org/wiki/NoSQL
https://en.wikipedia.org/wiki/Key-value_database
https://en.wikipedia.org/wiki/Document-oriented_database
http://couchdb.apache.org/
https://db-engines.com/en/ranking

 File system: manage data as file hierarchy

 Ex: Hadoop Distributed File System (HDFS)

 Block-level storage (ex: Amazon EBS): blocks of data

 “Virtual hard disk”, can be attached to various computing instances

 Object Storage: manage data as objects (ex: Amazon S3)

 Can store very heterogeneous, unstructured data, including for

example audio, images, video

 Fault tolerance

 Scalable

 Similar to key-value store

OTHER TYPES OF STORAGE

https://aws.amazon.com/ebs/
https://en.wikipedia.org/wiki/Object_storage
https://aws.amazon.com/s3/?sc_channel=PS&sc_campaign=acquisition_CA&sc_publisher=google&sc_medium=s3_b&sc_content=s3_e&sc_detail=amazon s3&sc_category=s3&sc_segment=192067015656&sc_matchtype=e&sc_country=CA&s_kwcid=AL!4422!3!192067015656!e!!g!!amazon s3&ef_id=WnLI5gAAAOpgfRUG:20180316060043:s

 Sensor data is mostly time series data

 Main issue is cost of storage ($/GB/month depends on storage solution)

 Ex: ~3$/GB/month for SQL DB, ~1$/GB/month for NoSQL DB, a few cents/GB/month
for Object Storage

SUMMARY

©Romeo Kienzler, IBM

4. Processing Big Data: Parallel
Computing on Clusters and Data

Centers

 Cluster consists of potentially many nodes, which need to

coordinate to compute over massive data, itself stored in a

distributed filesystem or database

 A general cluster computing organization: 1 driver node,

organizing computations with many worker nodes

 At a lower level, there is also a cluster manager for job scheduling,

resource management, etc.

 Traditional parallel programming frameworks for high

performance scientific computing such as OpenMP or MPI have

not been used much for “data science”

 Programming level is too low (ex: specify every exchange of data)

 Does not include fault-tolerance (rebalancing workload when a node

becomes slow of fails, etc.), but this is critical when computing

infrastructure scales up

 See this opinion article

PARALLEL PROGRAMMING AT SCALE

https://www.dursi.ca/post/hpc-is-dying-and-mpi-is-killing-it.html

 Collection of open-source software modules to store (HDFS) and

process (Hadoop MapReduce) big data

From the Hadoop page

 “The Apache Hadoop project develops open-source software for

reliable, scalable, distributed computing”

http://hadoop.apache.org/

 4 main modules

Hadoop Common: The common utilities that support the other Hadoop modules.

Hadoop Distributed File System (HDFS): A distributed file system that provides

high-throughput access to application data.

Hadoop YARN: A framework for job scheduling and cluster resource management.

Hadoop MapReduce: A YARN-based system for parallel processing of large data sets.

APACHE HADOOP

http://hadoop.apache.org/

 Programming model for parallel distrib. computing on clusters

 Originally a Google technology, open-source implementation in

Hadoop

 Constrains the structure of programs to parallelize them:

 Operate on (key, value) pairs

 Map step: worker nodes apply a function on their local data elements

 Shuffle step: data redistrib. among workers based on associated keys

 Reduce step: summary operation by the workers (ex: summing)

MAPREDUCE PROGRAMMING MODEL

 MapReduce model very powerful for certain types of jobs but

constraining, restrictive, low-level / difficult to use

 Not well adapted to iterative/repeated queries common in

machine learning, revisiting dataset multiple times

 In particular, requires rewriting data on disks multiple times, slow

 Hadoop MapReduce (HMR) essentially attached to the rest of the

Hadoop Ecosystem

 Apache Spark is a more recent very popular framework

facilitating cluster computing

 Generally much faster than HMR for big data processing (using

in-memory computing) & more convenient to use

HADOOP MAPREDUCE VS. SPARK

 Spark Core + several

libraries targeting different

types of applications

https://spark.apache.org/

 Very actively developed open source engine for parallel data

processing on (large-scale) computer clusters

 Project started at UC Berkeley in 2009 at the AMPLab

 Initial paper in 2010 by Matei Zaharia et al.

 Goal was to overcome issues with MapReduce, e.g., for machine

learning

 For the end user: API based on functional programming to express

multistep applications

 Under the hood: Engine to perform computations efficiently, in-

memory data sharing

 Implemented in Scala, runs on Java Virtual Machines (JVM)

APACHE SPARK

https://amplab.cs.berkeley.edu/
https://dl.acm.org/citation.cfm?id=1863103.1863113

LANGUAGE BINDINGS FOR SPARK

©Romeo Kienzler, IBM

 Can also switch seamlessly between several different data

storage solutions, use different cluster managers, …

 Basic data type: Resilient Distributed Dataset (RDDs)

 Immutable partitioned fault-tolerant collection of records

(Java/Scala/Python objects), which can be operated on in parallel

 Distribute data in nodes’ memory (lazily, if action performed)

 Since Spark 2.0, user should use Structured Data Types wrapping

RDDs when possible rather than RDDs directly, for better

optimization of workloads. But everything still compiled to RDDs

 DataFrames: maintains a schema on top of RDD, support SQL queries

 DataSets: typed DataFrames, only in Scala & Java

 Structured Streaming

SPARK DATA TYPES

[Chambers and Zaharia, 2018]

 Mathematical foundation of FP: lambda calculus, expresses

computations as application of functions

 Data is immutable, functions applied to create new data

 Example of FP languages: Haskell, OCaml, Lisp, Scheme…

 Python supports some basic FP constructs (lambda functions)

 Scala supports FP but is multi-paradigm (imperative, OO)

 FP has many advantages for parallel computations (ex: can send

the function to each worker node and apply it on data there)

 Example:

FUNCTIONAL PROGRAMMING PARADIGM

FOR PARALLEL PROGRAMMING

https://en.wikipedia.org/wiki/Lambda_calculus

 Spark app: driver process (assigns work) + executor processes

(carry work, report back)

 Developing applications in Spark uses the following paradigm

 Define Transformations: instruct how to modify data, but do not

actually perform comp. (“evaluate lazily”)

 Perform Actions: evaluate eagerly, actually manipulate data in a

distributed fashion

 Ex: map transformation defines a function to apply to each

element of a dataset, collect action brings dataset back in the

memory of the driver node

 Will crash driver node if too big to fit in its memory!

SPARK APPLICATIONS

TRANSFORMATIONS VS. ACTIONS

 Matlab Tall Arrays (data type)

 Columnar data that does not necessarily fit in memory

 Support data parallelism storage (HDFS)

 Parallel computing with parallel computing toolbox

 Can use Matlab compiler to execute applications on Spark

 Link

USING MATLAB FOR BIG DATA PROCESSING

https://www.mathworks.com/help/matlab/tall-arrays.html
https://www.mathworks.com/help/compiler/spark-applications.html
https://www.mathworks.com/discovery/matlab-hadoop-and-spark.html
https://www.mathworks.com/discovery/matlab-hadoop-and-spark.html

 Cloud computing provides new technologies useful for

distributed automation

 Demand for cloud based SCADA + IoT solutions available from

many vendors: convergence?

 Various frameworks, services (commercial or not) simplify the

management of computing clusters, distributed data stores,

parallel fault-tolerant programming on clusters, etc.

 Architecture (local distributed vs. cloud computing) should still

be made carefully. Consider

 Network reliability, latency

 Cost of data transfer

 Cost of computing nodes, renting vs. buying, maintenance, etc.

 IP and data sensitivity issues (security, privacy, secrecy), compliance

 Etc.

CONCLUSIONS - RECAP

 We’ll use IBM Bluemix (Watson IoT Platform, Data Science

Experience, etc.) for HW Assignment 4

 No fundamental reason, IBM not involved in this course beyond

providing standard academic credits (not course specific)

 Bluemix more focused on PaaS compared to Amazon:

services/software perhaps easier to set-up for beginner

 AWS provides IaaS and PaaS services, has more or less equivalent

services to those used in assignment

 For a new application, would have to decide platform and service

level based on your team: experience with platforms, personnel

dedicated to infrastructure set-up and maintenance, etc.

HOMEWORK ASSIGNMENT AND

CHOICE OF CLOUD PROVIDER

