
Lecture 3-1: NECS Implementation Examples & Simulation

Jérôme Le Ny
Department of Electrical Engineering, Polytechnique Montreal

ELE6953E : Cyber-Physical Systems and the Internet of Things

CLASSICAL IMPLEMENTATION
OF CONTROL TASKS

CT Plant

2 Computer Control

r----- ---------- --------- -------- ,
Computer

Chap. 1

Clock

{y(t k)} {u(t /c)} u(t) y(t)

A-D Algorithm D-A Process
I I
I I
I I______________ ___ ______ _________J

Figure 1.1 Schematic diagramofa computer-controlled system.

sampled-data systems, and this term will be used here as a synonymfor com-
puter-controlled systems.

The mixture of different types of signals sometimes causes difficulties. In
most cases it is, however, sufficient to describe the behavior of the system at
the sampling instants. The signals are then of interest only at discrete times.
Such systems will be called discrete-time systems. Discrete-time systems deal
with sequences of numbers, so a natural way to represent these systems is to
use difference equations.

The purpose of the book is to present the control theory that is relevant to
the analysis and design of computer-controlled systems. This chapter provides
somebackground. Abrief overview ofthe development ofcomputer-control tech-
nology is given in Sec. 1.2.The need for a suitable theory is discussedin Sec. 1.3.
Examples are used to demonstrate that computer-controlled systems cannot be
fully understoodby the theory oflinear time-invariant continuous-time systems.
An example shows not only that computer-controlled systems can be designed
using continuous-time theory and approximations, but alsothat substantial im-
provements can be ohtained by other techniques that use the full potential of
computer control. Section 1.4 gives some examples of inherently sampled sys-
tems. The development of the theory of sampled-data systems is outlined in
Sec. 1.5.

1.2 Computer Technology

The idea of using digital computers as components in control systems emerged
around 1950. Applications in missileand aircraft control were investigated first.
Studies showed that there was nopotential for using the general-purpose digital
computers that were available at that time. The computers were too big. they
consumed too much power, and they were not sufficiently reliable. For this
reason special-purpose computers--digital differential analyzers (DDAs)-were
developed for the early aerospace applications.

330 Implementation ofDigital Controllers Chap. 9

Listing 9.2 Computer code skeleton that implements the control algorithm
(9.2). This code has a smaller computational delay than the code in List-
ing 9.1.

Procedure Regulate
begin

1 Adin '! uc
2 u;=u1+D*y+Dc*uc
3 Daout u
4 x:=F*xtG*y+Gc*uc
5

end

Outliers and Measurement Mal'unctions
The linear filtering theory that will be discussedin Chapter 11 is veryuseful in
reducing the influenceofmeasurement noise. However, there may also he other
types oferrors, such as instrument malfunction and conversionerrors. Theseare
typically characterized by large deviations. which occurwith low probabilities.
It is very important to try to eliminate such errors 80 that they do notenter into
the control-law calculations. There are many good ways to achieve this when
using computer control.

The errors may be detected at the source. In systems with high-reliability
requirements) this is dune by duplication of the sensors. Tw-o sensors are then
combined with a simple logic, which gives an alarm if the difference between
the sensor signals is larger than a threshold. A pair of redundant sensors may
be regarded as one sensor that gives either a reliable measurement or a signal
that it does not work.

Three sensors may beused in more extreme cases.Ameasurement is then
acceptedas longas twoout of the three sensors agree (two-out-of-three logic). It
is also possible to use even more elaborate combinations of sensors and filters.

An observer can also be used for error detection. For example, consider
the controlalgorithm of (9.1) with an explicit observer. Notice that the one-step
prediction error

e(k) y(k) - y(klk -1) =: y(k) - Ci(klk -1) (9.4)

appears explicitly in the algorithm. This error can be used for diagnosis and
to detect if the measurements are reasonable. Thiswill be further discussed in
connection with the Kalman filter in Chapter 11.

In computer control there are also many other possibilities for detecting
different types ofhardware and softwareerrors. A few extra channels in the A-D
converter, which are connected to fixed voltages, may be used for testing and
calfhration.By connecting a D-A channel to an A-D channel, the D-A converter
may also be tested and calibrated.

DT state-space controller example
Implement algorithm:

output u asap

precompute for
next period

[Aström & Wittenmark, 1997]

y: sensor outputs
uc: ext. command sig.
u: controller output
x: controller state

xk+1 = Fxk +Gyk +Gcuc,k

uk = Cxk +Dyk +Dcuc,k

at clock interrupt

ADCDAC

§ AFDX/ARINC 664 Part 7: a type of switched Ethernet communication
network

§ ARINC 653: Partitioning for safety-critical avionics RTOS (real-time
operating system)

CURRENT REALITY:
AVIONICS EXAMPLE

7 Courtesy of © Wind River Inc. 2008 – IEEE-CS Seminar – June 4th, 2008

Federated vs. IMA

Radar
Sensor systems

FLIR
EO/OP

Engine Controls
Engine Monitoring

Fire Control

Weapons Control
Stores Management
Targeting Computer

Flight Controls
Flight Management

Inertial Reference System

Displays
Navigation Computer

Mission Computer

8 Courtesy of © Wind River Inc. 2008 – IEEE-CS Seminar – June 4th, 2008

Federated vs. IMA
Flight Controls

Flight Management
Inertial Reference System

Radar
Sensor systems

FLIR
EO/OP

Engine Controls
Engine Monitoring

Fire Control

Weapons Control
Stores Management
Targeting Computer

Displays
Navigation Computer

Mission Computer

8

destination address (virtual link identifier) and then goes to
the Forwarding Table to determine which Tx buffers are to
receive the packet. The packet is then copied into the Tx
buffers, through the Memory Bus, and transmitted (in FIFO
order) on the outgoing link to the selected Avionic Subsystem
or to another switch. This type of switching architecture is
referred to as store and forward.

Consequently, with this full-duplex switch architecture the
contention encountered with half-duplex Ethernet is elimi-
nated, simply because the architecture eliminates collisions.
Theoretically, a Rx or Tx buffer could overflow, but if the
buffer requirement in an avionics system are sized correctly,
overflow can be avoided.

There are no collisions with full-duplex switched Ethernet,
but packets may experience delay due to congestion in
the switch.

Instead of collisions and retransmissions, switching architec-
ture may result in jitter, due to the random delay introduced
by one packet waiting for another to be transmitted. The
extent of jitter introduced by an End System and Switch must
be controlled if deterministic behavior of the overall Avionics
System is to be achieved.

Reducing Wire Runs and Weight

In addition to the enhancements already described, AFDX
delivers some additional benefits, compared to ARINC 429.
Figure 8 shows some distinctions between ARINC 429 and
AFDX. In ARINC 429, a twisted pair must link every device that
receives the azimuth signal form the inertial platform. The
point-to-multi-point and unidirectional properties of ARINC
429 means that the avionics system must include an ARINC
429 bus for each communication path. In a system with
many end points, point-to-point wiring is a major overhead.
This can lead to some huge wiring harnesses, with the added
weight that goes along with them.

But in the case of AFDX, as shown in Figure 8b, each signal
is connected to the switch only once so that no matter how
many subsystems require the azimuth signal from the inertial
platform, they need not be connected individually to the
inertial platform.

With ARINC 429, a transmitter can fan out to only 20 receiv-
ers. With AFDX, the number of fan-outs from the inertial
platform is limited only by the number of ports on the switch.
Also, by cascading switches, the fan-out can be easily
increased as needed.

Autopilot
Other

Systems,
etc.

Heads-up
Display

Inertial
Platform

Transmitter Receiver ReceiverReceiver

End
System

End
System

End
System

Other
Systems,

etc.

Heads-up
Display

Inertial
Platform

Switch

Azimuth data
Twisted-pair copper wire

Simplex
100 Kbps (maximum)
Up to 20 receivers

Full duplex
100 Mbps (maximum)
Number of connections
governed by number
of switch ports

Two pairs
category 5 UTP
twisted-pair
copper wire

ARINC 429

AFDX

Figure 8 AFDX versus ARINC 429 architecture

9

End Systems and Avionics Subsystems

As Figure 9 shows, an Avionics computer system connects
to the AFDX network through an End System. In general, an
Avionics computer system is capable of supporting multiple
Avionics subsystems. Partitions provide isolation between
Avionics subsystems within the same Avionics computer
system. This isolation is achieved by restricting the address
space of each partition and by placing limits on the amount
of CPU time allotted to each partition. The objective is to
ensure that an errant Avionics subsystem running in one par-
tition will not affect subsystems running in other partitions.

Avionics applications communicate with each other by send-
ing messages using communication ports. The specification
of an operating system API for writing portable avionics
applications can be found in ARINC 653. In particular, ARINC
653 defines two types of communications ports – sampling

Chapter 3 End Systems and Avionics Subsystems

Figure 9 End Systems and Avionics Subsystems Example

and queuing ports. Accordingly, it is necessary that End
Systems provide a suitable communications interface for
supporting sampling and queuing ports. The AFDX ports,
defined in ARINC 664, Part 7, include sampling, queuing and
SAP ports. The AFDX sampling and queuing ports correspond
to ARINC 653 sampling and queuing ports, respectively. AFDX
introduces a third port type called a Service Access Point (SAP)
port. SAP ports are used for communications between AFDX
system components and non-AFDX systems. More about this
in the next chapter.

End Systems are identified using two 8-bit quantities: a
Network ID and an Equipment ID. These may be combined
into a single 16-bit quantity. As we shall see, the End System
identification is used in forming source MAC addresses and
unicast IP addresses.

ARINC 653
Sampling ports
Queuing ports

Avionics Computer System

End
System

Avionics
Subsystem
Partition 1

Avionics
Subsystem
Partition 3

Avionics
Subsystem
Partition 2

Controllers

Sensors

Actuators

AFDX
Switch

AFDX
Network

ARINC 664, Part 7
AFDX communications ports
 Sampling ports
 Queuing ports
 Service access point port

[© Wind River]

[© GE]

VARIETY OF CONTROL SYSTEM
CONFIGURATIONS TO CONSIDER

Ex: wireless
control networks

https://www.slideshare.net/eawareTech/wirelesshart

§ Classical digital control is concerned with algorithms
implementable on essentially dedicated resources: little need to
worry about implementation at the algorithm design stage

§ Modern implementation platforms are significantly more
problematic for control algorithms, due to shared resources,
unreliable communication, etc.: now need to model
implementation artefacts already at algorithm design stage

§ Examples:
§ Networked sensors with incorporated sampling circuitry: sampling is

not synchronous among sensors, not decided by clock of controller
§ When data samples arrives at controller, might not be ready to

execute the control task (multitasking with RTOS)
§ Output produced by controller needs to travel back on a network to

reach actuators, DAC is performed there
§ How tightly are clocks on the network synchronized (if at all)?
§ What are protocols & resource scheduling policies used ? Etc.

ISSUES

§ Provide
§ high-level application specifications

(stability, performance)
§ model of the physical plant and

uncertainty
§ description of available

implementation platform (network,
computers, RTOS, etc.)

§ Output:
§ Generated code for target platform,

scheduling policies, etc.
§ Proof / certificate that algo +

platform + plant model satisfy specs
or that it is impossible to satisfy

§ More realistically?
§ Generate code implementing a

given control law on a specific
platform that preserves the
certification/proofs provided at the
control design stage

§ Current efforts in MBSE:
AADL+Ocarina, Papyrus(-RT) &
SysML, …

HOLY GRAIL OF MODEL-BASED
SYSTEMS ENGINEERING (MBSE)

1. Sharing of computational resources: RTOS task scheduling

2. Networking

3. Simulation with TrueTime

AGENDA

▪ In computer science (CS), reactive systems are computer systems
that interact with the environment via inputs and outputs
▪ Focus different from traditional computing (logic+speed, ex: sorting)

▪ Real-time systems are reactive systems that must provide timing
guarantees when reacting to external events
▪ Execution timing must be predictable, not necessarily fast
▪ Ex: control systems. Execute a control task every 10 ms
▪ Hard/firm/soft real-time constraints. Ex: Patriot missile failure

▪ Often (but not always), RTS are embedded systems: HW/SW
integrated with machines (mechanical, electrical, etc.) for a
specific purpose (vs. general-purpose computing)
▪ Ex. of embedded systems: cell phone, smart toy, cruise controller,

flight control system, robot controller, etc.

▪ Many (but not all) embedded systems are real-time systems
▪ How can we rigorously design and program real-time systems to

satisfy these timing (and performance) constraints?

SOME TERMINOLOGY

http://www-users.math.umn.edu/~arnold/disasters/patriot.html

§ Ex: use single computer
to close multiple control
loops

§ Sharing computing time
on single CPU to achieve
pseudo-parallelism

§ ≠ true parallelism with
multi-core or networked
computers, etc. See later
in the course for
distributed computations.

CONCURRENT PROGRAMMING

Multicores

Several processors (cores) on the same chip

Multicore – typically 2-16 cores

Manycore – > 16 cores

Shared main memory

Shared or separate caches

7

Concurrent Programming

1. Multiprogramming: the processes multiplex their
execution on a single CPU

2. Multiprocessing: the processes multiplex their execution
on a multiprocessor system with tightly coupled proces-
sors, e.g., a multi-core platform

3. Distributed processing: the processes multiplex their
execution on several CPUS connected through a network

True parallelism: (2) and (3)

Logical parallelism (pseudo-parallelism): (1) – the main topic

8

Process

Time

A

B

C

Logical concurrency

Process

Time

A

B

C

Time sharing concurrency

Context
Switch

9

Approaches

• Real-Time Operating System (RTOS)

– sequential language (C) with real-time primitives

– real-time kernel for process handling

• Real-time programming language (e.g. Ada)

– the language itself or the run-time system provides the
functionality of a real-time kernel

10

Memory models

Processes may have

• shared address space

– thread (sometimes also called light-weight process)

– shared variables and code

– process = procedure (Modula 2) or run method (Java)

– used in the course

• separate address space

– independent of each other

– cp. Linux, Windows

– message-passing

11

Processes vs threads

A thread (light-weight process) resides within an “ordinary”
process and shares it address space.

The scheduler operates on threads.

Process 1

Process 2

Process 3Threads

Scheduler

Windows, Linux ...

In the course we will only deal with threads. However, for historical

reasons we, incorrectly, call the STORK threads for processes (not

unusual). 12

[K-E Arzén, LTH]

§ An RTOS provides abstraction/interface to facilitate programming /
understanding / maintaining / certifying RT software
§ Multiple functions/applications sharing same processor
§ Alternative to “bare-metal programming” using assembly, timers, interrupts, low-

level drivers, etc. directly
§ Want formal guarantees to avoid in particular occurrence of rare but possible

timing bugs, very hard to find otherwise via testing
§ Ex: Patriot missile accumulated 57 !s per minute, 343 ms after 100 hr

§ RTOS provides some or all of the following:
§ Real-time kernel, allowing switches between processes, preemption with timing

guarantees (vs. kernel of standard OS)
§ Scheduler (periodic and non-periodic tasks) and (possibly) API to specify timing

constraints on tasks
§ Handling interrupts, I/O
§ Context switching for persistent state between task activations
§ Communication between processes, memory partitioning / management
§ Possibly support for time triggered architecture, etc.

§ OS standards to facilitate programming portable applications
§ (RT-)POSIX (gen. purpose), OSEK/VDX/AUTOSAR OS (automotive), ARINC

653/APEX (avionics), !ITRON (small embedded systems)

REAL-TIME OPERATING SYSTEMS

SYSTEM ARCHITECTURE

10

Organisation générale du système

BSP (Board Support Package)

Target Hardware

Applications

File System
Networking Protocols

C/C++ Support
Libraries

Device Drivers

POSIX Support

Other Components

Device I/O

Debugging Facilities

RTOS

Kernel

Poly MTLELE8200

[ELE8200, G. Zhu]

§ > 100 commercial RTOS
§ Ex: VxWorks, OSE, Windows

CE, QNX, INTEGRITY, PikeOS,
etc.

§ Some open-source options
and/or free for certain
applications
§ Ex: FreeRTOS, RT-Linux, eCos,

ChibiOS
§ Typically restricted set of

scheduling policies
(preemptive, often static, etc.)

§ Real-time research kernels
§ Ex: Erika, Shark, Marte OS
§ Support for more advanced

features studied in RT
scheduling research

PROGRAMMING WITH AN RTOS

422 Chapter 12

Kernel Awareness. The OSEK standard supports a standard OSEK Run Time
Interface (ORTI) used to instruct a debugger about the meaning of specific data
structures, so that specific information can be visualized on the screen in the
proper way. For example, when tracing the running task, it is possible to visualize
the corresponding task identifier, as well as the time at which context switches
take place.

Support for Time Triggered Architectures. The OSEK Standard provides the
specification of OSEKTime OS, a time-triggered operating system that can be
fully integrated in the OSEK/VDX framework.

DETAILS ON THE OSEK/VDX STANDARD

The first feature that distinguishes an OSEK kernel from other operating systems is
that all kernel objects are statically defined at compile time. In particular, most of
these systems do not support dynamic memory allocation and dynamic tasks creation.
To help the user in configuring the system, the OSEK/VDX standard defines an OSEK
Implementation Language" (OIL) to specify the objects that must be instantiated in
the application. When the application is compiled, the OIL Compiler generates the
operating system data structures, allocating the exact amount of memory needed by
the application, to be put in flash memory (which is less expensive than RAM memory
on most microcontrollers).

The second feature distinguishing an OSEK/VDX system is the support for Stack
Sharing. The reason for providing stack sharing is to save RAM memory, which is
very expensive on small microcontrollers. The possibility of implementing a stack
sharing system is related to how the task code is written. In traditional real-time sys-
tems, a periodic task is structured according to the following scheme:

Task(x) {
int local;
initialization();

for (;;) {
do instance();
end instance();

}
}

suspend task until
next activation

Ex: Static thread in ChibiOS

§ Shorter tasks can improve
schedulability (better for
RT design, cost, etc.)

§ But can reduce
determinisn, ex: ordering
of operations (more
problems for control and
algorithm design)

CHOICE OF TASK ORGANIZATION

• Exemple

void task1(void * pdata)
{

sensor_setup(pdata);
for (; ;) {

time_out();
y = read_measurement();

}
}

void task2(void * pdata)
{

servo_setup(pdata);
for (; ;) {

time_out();
r = read_reference();
x = Ac*x + Bc*(r-y);
u = Cc*x + Dc*(r-y);
write_control_signal(u);

}
}

18

1

() :

k C k C k

k C k C k

C z
x A x B e
u C x D e
� �
 �

Éléments de l’environnement multitâche

Poly MTL

�
()H z

�

r y
()C ze u

ELE8200

• Exemple

1

() :

k C k C k

k C k C k

C z
x A x B e
u C x D e
� �
 �

void task(void * pdata)
{

servo_setup(pdata);
sensor_setup(pdata);
for (; ;) {

y = read_measurement();
r = read_reference();
x = Ac*x + Bc*(r-y);
u = Cc*x + Dc*(r-y);
write_control_signal(u);

}
}

17

Éléments de l’environnement multitâche

Poly MTL

�
()H z

�

r y
()C ze u

ELE8200 [ELE8200, G. Zhu]

§ Task: code that can execute repetitively on the CPU (seq. of jobs)
§ Periodic or aperiodic (sporadic if minimum inter-arrival time)

§ Goal of scheduling: guarantee that a set of tasks execute on CPU and
satisfy their (timing, precedence, mutual exclusion) constraints

§ Scheduling: Preemptive, nonpreemptive or using preemption points
§ Most RT systems allow preemption (execute critical tasks asap, higher

efficiency)

BASICS OF REAL-TIME SCHEDULING:
TERMINOLOGY

Basic Concepts 27

i

iC

a d if is i

i tτ

Figure 2.4 Typical parameters of a real-time task.

Arrival time ai is the time at which a task becomes ready for execution; it is also
referred as request time or release time and indicated by r i;

Computation time Ci is the time necessary to the processor for executing the
task without interruption;

Absolute Deadline di is the time before which a task should be completed to
avoid damage to the system;

Relative Deadline Di is the difference between the absolute deadline and the
request time: Di = di − ri;

Start time si is the time at which a task starts its execution;

Finishing time fi is the time at which a task finishes its execution;

Response time Ri is the difference between the finishing time and the request
time: Ri = fi − ri;

Criticality is a parameter related to the consequences of missing the deadline
(typically, it can be hard, firm, or soft);

Value vi represents the relative importance of the task with respect to the other
tasks in the system;

Lateness Li: Li = fi− di represents the delay of a task completion with respect
to its deadline; note that if a task completes before the deadline, its lateness is
negative;

Tardiness or Exceeding time Ei: Ei = max(0 , Li) is the time a task stays active
after its deadline;

Laxity or Slack time Xi: Xi = di − ai − Ci is the maximum time a task can be
delayed on its activation to complete within its deadline.

Some of the parameters defined above are illustrated in Figure 2.4.

arrival/release time deadline
computation time, in fact
Worst Case Execution
Time (WCET)

start time finishing time

28 Chapter 2

φ

(a)

t

t

i

th

i

C i

τ i

φ + (k-1) T i

i

instance
first D i

T i

D

J

C

a

k
instance

D i

C i

i2

i

i

a d i2d i1i1

(b)

Figure 2.5 Sequence of instances for a periodic task (a) and an aperiodic job (b).

Another timing characteristic that can be specified on a real-time task concerns the
regularity of its activation. In particular, tasks can be defined as periodic or aperiodic.
Periodic tasks consist of an infinite sequence of identical activities, called instances or
jobs, that are regularly activated at a constant rate. For the sake of clarity, from now
on, a periodic task will be denoted by τi, whereas an aperiodic job by Ji. The generic
kth job of a periodic task τi will be denoted by τi,k.

The activation time of the first periodic instance (τi,1) is called phase. If φi is the phase
of task τi, the activation time of the kth instance is given by φi + (k− 1)Ti, where Ti

is the activation period of the task. In many practical cases, a periodic process can be
completely characterized by its phase φi, its computation time Ci, its period Ti, and
its relative deadline Di.

Aperiodic tasks also consist of an infinite sequence of identical jobs (or instances);
however, their activations are not regularly interleaved. An aperiodic task where con-
secutive jobs are separated by a minimum inter-arrival time is called a sporadic task.
Figure 2.5 shows an example of task instances for a periodic and an aperiodic task.

2.2.2 PRECEDENCE CONSTRAINTS

In certain applications, computational activities cannot be executed in arbitrary order
but have to respect some precedence relations defined at the design stage. Such prece-
dence relations are usually described through a directed acyclic graph G, where tasks

Periodic
task

[Buttazzo, 2011]

§ Tasks with higher priority can preempt those with lower priority
§ Priorities can be set statically (at design time, ex: rate monotonic -

RM) or dynamically (based on their current state, ex: Earliest
Deadline First – EDF: schedule task with current earliest deadline)
§ EDF is more efficient but not typically available commercially. RM is more

predictable for high priority tasks, can be implemented even if no
explicit support for timing constraints in RTOS

§ Given a set of tasks if the EDF algorithm fails to find a feasible schedule,
then there is no feasible schedule (meeting releases/deadlines)

SCHEDULING WITH PREEMPTION 34 Chapter 2

WAITING

READY

scheduling

preemption

activation termination

busy resource
wait on

free resource
signal

RUN

Figure 2.13 Waiting state caused by resource constraints.

A task waiting for an exclusive resource is said to be blocked on that resource. All
tasks blocked on the same resource are kept in a queue associated with the semaphore
protecting the resource. When a running task executes a wait primitive on a locked
semaphore, it enters a waiting state, until another task executes a signal primitive that
unlocks the semaphore. Note that when a task leaves the waiting state, it does not
go in the running state, but in the ready state, so that the CPU can be assigned to the
highest-priority task by the scheduling algorithm. The state transition diagram relative
to the situation described above is shown in Figure 2.13.

2.3 DEFINITION OF SCHEDULING PROBLEMS

In general, to define a scheduling problem we need to specify three sets: a set of n
tasks Γ = {τ1, τ2, . . . , τn}, a set of m processors P = {P1, P2, . . . , Pm} and a set of
s types of resources R = {R1, R2, . . . , Rs}. Moreover, precedence relations among
tasks can be specified through a directed acyclic graph, and timing constraints can
be associated with each task. In this context, scheduling means assigning processors
from P and resources from R to tasks from Γ in order to complete all tasks under the
specified constraints [B+93]. This problem, in its general form, has been shown to be
NP-complete [GJ79] and hence computationally intractable.

Indeed, the complexity of scheduling algorithms is of high relevance in dynamic real-
time systems, where scheduling decisions must be taken on line during task execution.
A polynomial algorithm is one whose time complexity grows as a polynomial function
p of the input length n of an instance. The complexity of such algorithms is denoted by
O(p(n)). Each algorithm whose complexity function cannot be bounded in that way
is called an exponential time algorithm. In particular, NP is the class of all decision
problems that can be solved in polynomial time by a nondeterministic Turing machine.

3 periodic tasks
scheduled with EDF

Spring ‘10 CIS 541 33

EDF (Earliest Deadline First)

� Optimal scheduling algorithm
o if there is a schedule for a set of real-time tasks,

EDF can schedule it.

(4,1)

(5,2)

(7,2)

5

5

10

10 15

15

T1

T2

T3

Spring ‘10 CIS 541 34

Optimality of EDF
� Optimality of the earliest deadline first algorithm for

preemptive scheduling on one processor
� Given a task system T, if the EDF algorithm fails to find a

feasible schedule, then T has no feasible schedule, where
o feasible schedule = one in which all release time and

deadline constraints are met

d1

d1

d2

d2

r1 , r2

r1 , r2

T2’s deadline T1’s deadline

T1 T2

T2 T1T2

can always be transform to

[Insup Lee, Upenn]

§ Jobs with smaller period have higher priority

§ A set of n tasks is schedulable if

§ Sufficient condition (bound = 1 for EDF)

RATE MONOTONIC SCHEDULING (RM)

Spring ‘10 CIS 541 45

RM (Rate Monotonic)

� Executes a job with the shortest period

(4,1)

(5,2)

(7,2)

Deadline Miss !

5

5

10

10 15

15

T1

T2

T3

Spring ‘10 CIS 541 46

RM – Utilization Bound

� Real-time system is schedulable under RM if
∑Ui ≤ n (21/n-1)

Liu & Layland,
“Scheduling algorithms for multi-programming in a
hard-real-time environment”, Journal of ACM,
1973.

[Insup Lee, Upenn]

Spring ‘10 CIS 541 47

RM – Utilization Bound

� Real-time system is schedulable under RM if
∑Ui ≤ n (21/n-1)

� Example: T1(4,1), T2(5,1), T3(10,1),

∑Ui = 1/4 + 1/5 + 1/10
= 0.55

3 (21/3-1) ≈ 0.78

Thus, {T1, T2, T3} is schedulable under RM.

Spring ‘10 CIS 541 48

RM Utilization Bounds

0.5

0.6

0.7

0.8

0.9

1

1.1

1 4 16 64 256 1024 4096

The Number of Tasks

U
til

iz
at

io
n

RM – Utilization Bound

� Real-time system is schedulable under RM if
∑Ui ≤ n (21/n-1)

nX

i=1

Ci

Ti
 n(21/n � 1) [Liu and Layland,

1973]

CONTROLLER TIMING EXAMPLE
WITH AN RTOS

Sampled-data control systems

Process

u t()

)

uk

y t(u t()

yk

SamplerHold

Computer

uk

yk

tt

t

y t()

t

D-A A-D

• Mix of continuous-time and discrete-time signals

• Discretization in time and in space

19

Networked control systems

uk

uk

k
y

k
y

Communication network

Computer

Process

y(t).
u(t)

t

.

and
D−A

Hold

Sampler

A−D
and

y(t)u(t)

. . . .
t

. .
. .

.. . .
t

t

• Extra delay, possibly lost packets

20

Design Approaches

Sampled control-design:

• Discrete-time design

• Use a model of the plant that only describes the behaviour
at the sampling instants – sampling the system

Approximation of a continuous-time design

• Design the controller assuming a continuous-time imple-
mentation

• Approximate this controller by a discrete-time controller

21

Ideal Controller Timing

y

 y(tk−1)

 y(tk)

 y(tk+ 1)

Time

u

 t k−1 t k tk+ 1

 u(tk− 1)

 u(t k)

Time

C
o
n

tr
o
l

V
a

ri
a

b
le

M
e
a

su
re

d
 V

a
ri

a
b

le

Computa-
tional
lag τ

• Output y(t) sampled periodically at time instants tk = kh

• Control u(t) generated after short and constant time delay τ

22

Real Controller Timing

y(t)

u(t)

rk−1 rk rk+ 1

Lk−1s Lk−1io Lks Lkio Lk+ 1s Lk+ 1io

sk−1 fk−1 sk fk sk+ 1 fk+ 1

Rk−1 Rk Rk+ 1

τ

t

t

• Control task τ released periodically at time instances rk = kh

• Output y(t) sampled after time-varying sampling latency Ls

• Control u(t) generated after time-varying input-output latency Lio
23

Non-Deterministic Timing

Caused by sharing of computing resources

• multiple tasks sharing the CPU

• preemptions, blocking, priority inversion, varying computa-
tion times, ...

Caused by sharing of network bandwidth

• control loops closed over communication networks

• network interface delay, queuing delay, transmission delay,
propagation delay, resending delay, ACK delay, ...

• lost packets

How can we minimize the non-determinism?

How does the non-determinism effect control performance?
24

[K-E Arzén, LTH]

1. Sharing of computational resources: RTOS task scheduling

2. Networking

3. Simulation with TrueTime

AGENDA

§ Various components of control loops now often connected via
digital communication network
§ Communication delays (generally due to congestion, not

transmission time), lost packets
§ Communication medium tends to be shared by several

applications (as for computing resources)
§ Need management of communication resources as well

§ The system design choices for communication and computation
(hardware, protocols, etc.) not typically dictated by the control
engineers (cost, in many industries, is a big factor)
§ E.g. CAN networks in automotive application introduce time-varying

delays, bad from control perspective
§ But control and other timing concerns tends to slowly influence

choices (TT-CAN, FlexRay, AFDX...)
§ Push to use Commercial Off-the-shelf (COTS) components, reuse

components and software from other/previous systems

NETWORKING ISSUES

§ Wired point-to-point (no real network)
§ Wired data bus (with or without bus controller), e.g., CAN
§ Switched network (ex: AFDX)
§ Wireless networks (e.g., for industrial applications, process

control. With added reliability mechanisms (ex: WirelessHART)
§ Delays, reliability (packet losses), jitter, etc. are network and

protocol dependent. Impacts performance of control systems.

COMMUNICATION NETWORKS

Lecture 16: Real-Time Networks and
Networked Control SystemsNetworked Control Systems

[These slides]

• BackgroundBackground
• Real-Time Networks
• Protocol Stack
• Network Examples• Network Examples

– CAN
– TTP

• Networked Control Systems• Networked Control Systems

These slides are partly based on material
from Luis Almeida, Universidade de Aveiro, Portugal

Background
Distributed architectures are pervasive in many

application fields:application fields:
– Industrial automation
– Transportation systems (airplanes, cars, trucks, trains, …)Transportation systems (airplanes, cars, trucks, trains, …)
– Multimedia systems (remote surveillance, industrial monitoring,

video on demand, …)

In many cases with critical timeliness and safety
i trequirements

I i l h System Sensor
d

Actuator
dIncreasingly common that

control loops are closed
over networks

System nodenode

Network
over networks
(= networked control) Controller

node

Background
Motivations for distributed architectures:

Processing closer to data source /sink– Processing closer to data source /sink
• ”Intelligent” sensors and actuators

– Dependabilityp y
• Error-containment within nodes

– Composability
S t iti b i t ti b t• System composition by integrating subsystems

– Scalability
• Easy addition of new nodes with new or replicated functionalityy p y

– Maintainability
• Modularity and easy node replacement

Si lifi ti f th bli• Simplification of the cabling

Background
Today there are many different networks with real-time

capabilities aiming at different application domains e gcapabilities aiming at different application domains, e.g.

ATINC629 SwiftNet SAFEbus avionics– ATINC629, SwiftNet, SAFEbus – avionics
– WorldFIP, TCN – trains
– CAN, TT-CAN, FlexRay – carsy
– ProfiBus, WorldFIP, P-Net, DeviceNet, Ethernet – automation
– Firewire, USB - multimedia

VW Phaeton

• 11 136 electrical parts• 11,136 electrical parts
• 61 ECUs (Electronic

Controller Units == CPUs)Controller Units CPUs)
• Optical bus for high

bandwidth infotainmentbandwidth infotainment
data

• 35 ECUs connected by 3 y
CAN-busses sharing
– 2500 signals
– In 250 CAN messages

Volvo XC 90 network topology

§ De facto Standard in Automotive
Industry: CAN (Controller Area
Network)
§ Messages have an identifier used to

set priorities in case of collision
§ Unsuccessful node retries later

§ Issues with non-determinism
§ Move toward time-triggered

architectures (TDMA: Time-division
multiple access, e.g. TT-CAN), for
timing predictability

§ But wastes bandwidth

§ FlexRay: part TT, part not to
accommodate different types of
traffic (video feed vs. engine rpm...)

AUTOMOTIVE INDUSTRY EXAMPLE:
CAN AND FLEXRAY (BUS TECHNOLOGY)

§ All electronic fly-by-wire now only type of control systems used
on new airliners

§ Other on-board safety-critical system systems also rely on timely
delivery of data: communications, inertial platforms, etc.

§ AFDX: “Avionics Full-DupleX, switched Ethernet”. Original
concept by Airbus. Evolved into a standard: IEEE 802.3 (Ethernet
frame format) and ARINC 664, Part 7.

§ Used by Airbus for A380, by Boeing for 787 Dreamliner
§ Replaces ARINC 429 (point-to-point technology), and also MIL-

STD 1553 (bus technology). Higher data rate: 100 Mbps, 1000
times faster than ARINC 429.

§ Reduces wiring, hence weight

AVIONICS EXAMPLE:
AFDX (SWITCHED NETWORK TECHNOLOGY)

AVIONICS NETWORKS

ARINC 429

AFDX

§ Benefits from many investments and advancements since 1972
§ Ethernet has no centralized bus control: transmissions can collide.

“CSMA/CD” protocol (Carrier Sense, Multiple Access, and
Collision Detection)

§ If you have a message to send and the medium is idle, send the message.
§ If the message collides with another transmission, try sending the

message later using a suitable back-off strategy à non-deterministic
behavior, possibility of repeated collisions

§ Ethernet frame between 64 and 1518 bytes
§ Ethernet comm. is connectionless. ACK must be handled at higher

levels in the protocol stack

AFDX IS BASED ON ETHERNET

§ With Ethernet, very large transmission
delays are theoretically possible

§ AFDX bounds the max. transmission
time between a Tx and a Rx

§ Moves from Half-duplex Ethernet to
Full-duplex Switched Ethernet to
eliminate possibility of collisions

§ Now switch needs to move packets
from Rx to Tx buffers through memory
bus (store and forward architecture).
Delays possible due to congestion at
the switch

§ Each buffer can store multiple packets
in FIFO order. Requirements on
avionics subsystems to avoid overflow.

§ Jitter introduced in packet transmission
times when waiting for other packets
to be transmitted

§ Multiple switches can be connected
§ Redundancy: an AFDX system consists

in fact of two independent networks
sending the same packets between
end systems

AFDX: FULL-DUPLEX, SWITCHED ETHERNET

AFDX Switch

§ Packets (AFDX frames, almost
identical to Ethernet frames) are
sent between End Systems using
“Virtual Links” (VLs)

§ Total 100 Mbps bandwidth at
each end system is shared
between VLs

§ The bandwidth of each VL is
limited: mandatory gaps between
messages, max. size of frames
§ bandwidth choice depends on

applications connecting to end
system via comm. ports

§ bandwidth restrictions enforced
by source End Systems, using VL
scheduling algorithms.

§ VL scheduler also multiplexes
the VL transmission to minimize
jitter

MESSAGE FLOWS

§ ARINC 653 RTOS: One computer
system partitioned in multiple
subsystems
§ restrict address space of each

partition
§ limits on amount of CPU time for each

partition
§ Avionics applications send messages

using communication ports
§ communication ports are part of OS

API for portable avionics applications
described in ARINC 653

§ Sampling ports and Queuing ports
§ AFDX end system has corresponding

sampling and queuing ports, +
Service Access Point (SAP) ports for
comm. with non-AFDX systems

§ Each sending AFDX comm. ports is
associated with a single VL
transporting its messages

INTERFACE RTOS / NETWORK
ARINC 653 / AFDX

§ Sampling Ports
§ buffer storage for a single message.
§ a message stays in the buffer until overwritten by new message. Can

be read multiple times
§ must provide time-stamped messages. Indication of the freshness of

the message in the buffer
§ Adequate for data sampled for control applications

§ Queuing Ports
§ buffer can store a fixed number of message (config. param.)
§ reading a message removes it from the queue (FIFO)

ARINC 653/AFDX COMMUNICATION PORTS

1. Sharing of computational resources: RTOS task scheduling

2. Networking

3. Simulation with TrueTime

AGENDA

§ TrueTime [Henriksson, Cervin,
Ohlin, Eker 1999-2008]
§ Matlab/Simulink toolbox, can be

interfaced with other Simulink
blocks. Allows co-simulation of
global system (implementation
platform (RTOS+network) +
model of physical plant)

§ Focus on control systems
§ Used in HW1

§ Other simulators, with focus RT
computer systems only: RTSim,
ChronSIM, …

USING SIMULATION TOOLS

How Does Control Timing
Affect Performance?

Analysis and Simulation of Timing
Using Jitterbug and TrueTime

Control systems are becoming in-
creasingly complex from both the
control and computer science
perspectives. Today, even seem-
ingly simple embedded control
systems often contain a multi-

tasking real-time kernel and support networking. At
the same time, the market demands that the cost of
the system be kept at a minimum. For optimal use
of computing resources, the control algorithm and
the control software designs need to be considered
at the same time. For this reason, new com-
puter-based tools for real-time and control
codesign are needed.

Many computer-controlled systems are distrib-
uted systems consisting of computer nodes and a
communication network connecting the various
systems. It is not uncommon for the sensor, actua-
tor, and control calculations to reside on different
nodes, as in vehicle systems, for example. This
gives rise to networked control loops (see [1]).
Within the individual nodes, the controllers are of-
ten implemented as one or several tasks on a micro-
processor with a real-time operating system. Often
the microprocessor also contains tasks for other
functions (e.g., communication and user inter-
faces). The operating system typically uses multi-
programming to multiplex the execution of the
various tasks. The CPU time and the communica-
tion bandwidth can hence be viewed as shared re-
sources for which the tasks compete.

Digital control theory normally assumes equidis-
tant sampling intervals and a negligible or constant
control delay from sampling to actuation. However,

16 IEEE Control Systems Magazine June 2003
0272-1708/03/$17.00©2003IEEE

Cervin (anton@control.lth.se), Henriksson, Lincoln, Eker, and Årzén are with the Department of Automatic Control, Lund Institute of
Technology, Box 118, SE-221 00 Lund, Sweden.

By Anton Cervin, Dan Henriksson,
Bo Lincoln, Johan Eker, and

Karl-Erik Årzén

©
M

A
S

T
E

R
S

E
R

IE
S

[Cervin et al. IEEE CSM, 2003]

THREE PENDULUM EXAMPLE

Control Design

• State feedback poles: ωc= 53, 38, 31 rad/s

• Observer poles: ω o = 106, 75, 61 rad/s

• Sampling intervals: T = 10, 14.5, 17.5 ms

• Sampling at the beginning of the period, actuation at the
end of execution

• Assumed execution time: C = 3.5 ms

13

Simulation 1 – Ideal Case

Each control task runs on a separate CPU.

0 0.1 0.2 0.3
−0.5

0

0.5

1

1.5

O
u
tp

u
t
 y

Pendulum 1

0 0.1 0.2 0.3
−0.5

0

0.5

1

1.5
Pendulum 2

0 0.1 0.2 0.3
−0.5

0

0.5

1

1.5
Pendulum 3

0 0.1 0.2 0.3
−10

−5

0

5

Time

In
p
u

t
 u

0 0.1 0.2 0.3
−10

−5

0

5

Time
0 0.1 0.2 0.3

−10

−5

0

5

Time

14

Schedulability Analysis

• Assume Di = Ti
• Utilization U =

∑3
i= 1

Ci
Ti
= 0.79

• Schedulable under EDF?

U < 1 ! Yes

• Schedulable under RM?

U > 3(21/3−1) = 0.78 ! Cannot say

Must compute worst-case response times Ri:

Task T D C R

1 10 10 3.5 3.5

2 14.5 14.5 3.5 7.0

3 17.5 17.5 3.5 14.0

∀i : Ri < Di ! Yes

15

Simulation 2 – Rate-Monotonic Scheduling

0 0.1 0.2 0.3
−0.5

0

0.5

1

1.5

O
u

tp
u
t
 y

Pendulum 1

0 0.1 0.2 0.3
−0.5

0

0.5

1

1.5
Pendulum 2

0 0.1 0.2 0.3
−4

−2

0

2

4
Pendulum 3

0 0.1 0.2 0.3
−10

−5

0

5

Time

In
p
u

t
 u

0 0.1 0.2 0.3
−10

−5

0

5

Time
0 0.1 0.2 0.3

−10

−5

0

5

10

Time

• Loop 3 becomes unstable
16

Simulation 3 – Earliest-Deadline-First Scheduling

0 0.1 0.2 0.3
−0.5

0

0.5

1

1.5

O
u
tp

u
t
 y

Pendulum 1

0 0.1 0.2 0.3
−0.5

0

0.5

1

1.5
Pendulum 2

0 0.1 0.2 0.3
−0.5

0

0.5

1

1.5
Pendulum 3

0 0.1 0.2 0.3
−10

−5

0

5

Time

In
p
u
t
 u

0 0.1 0.2 0.3
−10

−5

0

5

Time
0 0.1 0.2 0.3

−10

−5

0

5

Time

• All loops are OK
17

Questions

• How can a loop become unstable even though the system
is schedulable?

• Why does EDF work better than RM in this example?

Need to study control loop timing

18

Control Design

• State feedback poles: ωc= 53, 38, 31 rad/s

• Observer poles: ω o = 106, 75, 61 rad/s

• Sampling intervals: T = 10, 14.5, 17.5 ms

• Sampling at the beginning of the period, actuation at the
end of execution

• Assumed execution time: C = 3.5 ms

13

Simulation 1 – Ideal Case

Each control task runs on a separate CPU.

0 0.1 0.2 0.3
−0.5

0

0.5

1

1.5

O
u

tp
u

t
 y

Pendulum 1

0 0.1 0.2 0.3
−0.5

0

0.5

1

1.5
Pendulum 2

0 0.1 0.2 0.3
−0.5

0

0.5

1

1.5
Pendulum 3

0 0.1 0.2 0.3
−10

−5

0

5

Time

In
p

u
t
 u

0 0.1 0.2 0.3
−10

−5

0

5

Time
0 0.1 0.2 0.3

−10

−5

0

5

Time

14

Schedulability Analysis

• Assume Di = Ti
• Utilization U =

∑3
i= 1

Ci
Ti
= 0.79

• Schedulable under EDF?

U < 1 ! Yes

• Schedulable under RM?

U > 3(21/3−1) = 0.78 ! Cannot say

Must compute worst-case response times Ri:

Task T D C R

1 10 10 3.5 3.5

2 14.5 14.5 3.5 7.0

3 17.5 17.5 3.5 14.0

∀i : Ri < Di ! Yes

15

Simulation 2 – Rate-Monotonic Scheduling

0 0.1 0.2 0.3
−0.5

0

0.5

1

1.5

O
u

tp
u

t
 y

Pendulum 1

0 0.1 0.2 0.3
−0.5

0

0.5

1

1.5
Pendulum 2

0 0.1 0.2 0.3
−4

−2

0

2

4
Pendulum 3

0 0.1 0.2 0.3
−10

−5

0

5

Time

In
p

u
t
 u

0 0.1 0.2 0.3
−10

−5

0

5

Time
0 0.1 0.2 0.3

−10

−5

0

5

10

Time

• Loop 3 becomes unstable
16

Simulation 3 – Earliest-Deadline-First Scheduling

0 0.1 0.2 0.3
−0.5

0

0.5

1

1.5

O
u

tp
u

t
 y

Pendulum 1

0 0.1 0.2 0.3
−0.5

0

0.5

1

1.5
Pendulum 2

0 0.1 0.2 0.3
−0.5

0

0.5

1

1.5
Pendulum 3

0 0.1 0.2 0.3
−10

−5

0

5

Time

In
p

u
t
 u

0 0.1 0.2 0.3
−10

−5

0

5

Time
0 0.1 0.2 0.3

−10

−5

0

5

Time

• All loops are OK
17

Questions

• How can a loop become unstable even though the system
is schedulable?

• Why does EDF work better than RM in this example?

Need to study control loop timing

18

Control Design

• State feedback poles: ωc= 53, 38, 31 rad/s

• Observer poles: ω o = 106, 75, 61 rad/s

• Sampling intervals: T = 10, 14.5, 17.5 ms

• Sampling at the beginning of the period, actuation at the
end of execution

• Assumed execution time: C = 3.5 ms

13

Simulation 1 – Ideal Case

Each control task runs on a separate CPU.

0 0.1 0.2 0.3
−0.5

0

0.5

1

1.5

O
u
tp

u
t
 y

Pendulum 1

0 0.1 0.2 0.3
−0.5

0

0.5

1

1.5
Pendulum 2

0 0.1 0.2 0.3
−0.5

0

0.5

1

1.5
Pendulum 3

0 0.1 0.2 0.3
−10

−5

0

5

Time

In
p
u
t
 u

0 0.1 0.2 0.3
−10

−5

0

5

Time
0 0.1 0.2 0.3

−10

−5

0

5

Time

14

Schedulability Analysis

• Assume Di = Ti
• Utilization U =

∑3
i= 1

Ci
Ti
= 0.79

• Schedulable under EDF?

U < 1 ! Yes

• Schedulable under RM?

U > 3(21/3−1) = 0.78 ! Cannot say

Must compute worst-case response times Ri:

Task T D C R

1 10 10 3.5 3.5

2 14.5 14.5 3.5 7.0

3 17.5 17.5 3.5 14.0

∀i : Ri < Di ! Yes

15

Simulation 2 – Rate-Monotonic Scheduling

0 0.1 0.2 0.3
−0.5

0

0.5

1

1.5

O
u
tp

u
t
 y

Pendulum 1

0 0.1 0.2 0.3
−0.5

0

0.5

1

1.5
Pendulum 2

0 0.1 0.2 0.3
−4

−2

0

2

4
Pendulum 3

0 0.1 0.2 0.3
−10

−5

0

5

Time

In
p
u
t
 u

0 0.1 0.2 0.3
−10

−5

0

5

Time
0 0.1 0.2 0.3

−10

−5

0

5

10

Time

• Loop 3 becomes unstable
16

Simulation 3 – Earliest-Deadline-First Scheduling

0 0.1 0.2 0.3
−0.5

0

0.5

1

1.5

O
u
tp

u
t
 y

Pendulum 1

0 0.1 0.2 0.3
−0.5

0

0.5

1

1.5
Pendulum 2

0 0.1 0.2 0.3
−0.5

0

0.5

1

1.5
Pendulum 3

0 0.1 0.2 0.3
−10

−5

0

5

Time

In
p
u
t
 u

0 0.1 0.2 0.3
−10

−5

0

5

Time
0 0.1 0.2 0.3

−10

−5

0

5

Time

• All loops are OK
17

Questions

• How can a loop become unstable even though the system
is schedulable?

• Why does EDF work better than RM in this example?

Need to study control loop timing

18

3 CPUs RM scheduling (schedulable)

EDF scheduling
(schedulable)

§ Kernel block (RTOS) to simulate task scheduling policies
§ Networking blocks to simulate communication protocols
§ Battery block (and dynamic voltage scaling)

TRUETIME LIBRARY

QUESTIONS RAISED BY THESE EXAMPLES

Possible NECS design approaches?
§ Design control loops as usual, ignoring implementation issues

§ Research question: analyze the impact of implementation choices on
stability and performance

§ Control and embedded system co-design: design control loops
together with the scheduling policies, communication protocols, etc.
§ Popular research topic, perhaps not a viable due to other influences than

control system on implementation choices

§ Design implementation aware control loops
§ Add compensating mechanisms within the control laws, for delays, jitter,

packets losses.
§ Control laws more complex to implement, but we are (as much as

possible) only modifying the control systems, not the global system
design.

§ Expect potential loss in performance with respect to co-design, but
should be better than ignoring issues. Also, in this approach, we would
like to certify against sets of possible choices of implementations, to leave
more design freedom, possible subsequent changes of design without
recertification, increase possibilities of software component reuse, etc.

