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DT state-space controller example

Implement algorithm:
Tr+1 = Fap + Gyr + Geue DAC ADC
ur = Cz + Dy + Deuc

Procedure Regulate at clock interrupt P

begin
1 Adin y uc
2 u:=ul+D*y+Dc*uc output u asap
3 Dacut u y: sensor outputs
4 x:=Fxx+G¥y+Geruc | precompute for uc: ext. command sig.
5 ul:=Cex next period u: controller output

end X: controller state



CURRENT REALITY: A

AVIONICS EXAMPLE

Federated vs. IMA Federated vs. IMA
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= AFDX/ARINC 664 Part 7: a type of switched Ethernet communication
network

= ARINC 653: Partitioning for safety-critical avionics RTOS (real-time
operating system)



VARIETY OF CONTROL SYSTEM
CONFIGURATIONS TO CONSIDER

Scheduler
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Ex: wireless
control networks



https://www.slideshare.net/eawareTech/wirelesshart
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ISSUES

Classical digital control is concerned with algorithms
implementable on essentially dedicated resources: little need to
worry about implementation at the algorithm design stage

Modern implementation platforms are significantly more
problematic for control algorithms, due to shared resources,
unreliable communication, etc.: now need to model
implementation artefacts already at algorithm design stage
Examples:

= Networked sensors with incorporated sampling circuitry: sampling is
not synchronous among sensors, not decided by clock of controller

= When data samples arrives at controller, might not be ready to
execute the control task (multitasking with RTOS)

= Output produced by controller needs to travel back on a network to
reach actuators, DAC is performed there

= How tightly are clocks on the network synchronized (if at all)?
= What are protocols & resource scheduling policies used ? Etc.
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HOLY GRAIL OF MODEL-BASED MONTREAL

SYSTEMS ENGINEERING (MBSE)

Provide

= high-level application specifications
(stability, performance)

= model of the physical plant and
uncertainty
» description of available

implementation platform (network,
computers, RTOS, etc.)

Output:

*= Generated code for target platform,
scheduling policies, etc.

= Proof / certificate that algo +

platform + plant model satisfy specs
or that it is impossible to satisfy

= More realistically?

" Generate code implementing a
given control law on a specific
platform that preserves the
certification/proofs provided at the
control design stage

=  Current efforts in MBSE:
AADL+Ocarina, Papyrus(-RT) &
SYysML, ...
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AGENDA

1. Sharing of computational resources: RTOS task scheduling
2. Networking

3. Simulation with TrueTime
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SOME TERMINOLOGY

= In computer science (CS), reactive systems are computer systems
that interact with the environment via inputs and outputs

* Focus different from traditional computing (logic+speed, ex: sorting)
" Real-time systems are reactive systems that must provide timing
guarantees when reacting to external events
= Execution timing must be predictable, not necessarily fast
= Ex:control systems. Execute a control task every 10 ms
» Hard/firm/soft real-time constraints. Ex: Patriot missile failure
= Often (but not always), RTS are embedded systems: HW/SW
integrated with machines (mechanical, electrical, etc.) for a
specific purpose (vs. general-purpose computing)
= Ex.of embedded systems: cell phone, smart toy, cruise controller,
flight control system, robot controller, etc.

= Many (but not all) embedded systems are real-time systems

= How can we rigorously design and program real-time systems to
satisfy these timing (and performance) constraints?


http://www-users.math.umn.edu/~arnold/disasters/patriot.html

CONCURRENT PROGRAMMING
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AProcess
A
Bi
C
o
Logical concurrency Time
AProcess
A | _ Context
B - _ - Switch
: >
|

Time sharing concurrency ~ Time

[K-E Arzén, LTH]

Ex: use single computer

to close multiple control

loops

Sharing computing time

on single CPU to achieve
pseudo-parallelism

# true parallelism with
multi-core or networked
computers, etc. See later
in the course for
distributed computations.
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REAL-TIME OPERATING SYSTEMS

= An RTOS provides abstraction/interface to facilitate programming /
understanding / maintaining / certifying RT software
= Multiple functions/applications sharing same processor

= Alternative to “bare-metal programming” using assembly, timers, interrupts, low-
level drivers, etc. directly

= Want formal guarantees to avoid in particular occurrence of rare but possible
timing bugs, very hard to find otherwise via testing
= Ex:Patriot missile accumulated 57 ps per minute, 343 ms after 100 hr

= RTOS provides some or all of the following:

= Real-time kernel, allowing switches between processes, preemption with timing
guarantees (vs. kernel of standard OS)

= Scheduler (periodic and non-periodic tasks) and (possibly) API to specify timing
constraints on tasks

* Handling interrupts, I/0

» Context switching for persistent state between task activations

» Communication between processes, memory partitioning / management
= Possibly support for time triggered architecture, etc.

= OS standards to facilitate programming portable applications

* (RT-)POSIX (gen. purpose), OSEK/VDX/AUTOSAR OS (automotive), ARINC
653/APEX (avionics), pITRON (small embedded systems)
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SYSTEM ARCHITECTURE

Target Hardware

[ELES200, G. Zhu]




PROGRAMMING WITH AN RTOS
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Task(x) {

int local;
initialization();

for (;;){
do_instance();

| end_instance() ;|
} suspend task until

} next activation

Ex: Static thread in ChibiOS

#include <ch.h>

* Working area for the LED flashing thread.

static THD_WORKING_AREA(myThreadWorkingArea, 128

* LED flashing thread.
static THD FUNCTION(myThread, arg

true
LED_ON
chThdSleepMilliseconds
LED_OFF
chThdSleepMilliseconds

int main(int argc, char *argv

/* Starting the flashing LEDs thread.
void)chThdCreateStatic (myThreadWorkingArea, sizeof (myThreadWorkingArea
NORMALPRIO, myThread, NULL

> 100 commezrcial RTOS

= Ex:VxWorks, OSE, Windows
CE, ONX, INTEGRITY, PikeOS,
etc.
Some open-source options
and/or free for certain
applications
» Ex:FreeRTOS, RT-Linux, eCos,
ChibiOS
Typically restricted set of
scheduling policies
(preemptive, often static, etc.)

Real-time research kernels
= Ex: Erika, Shark, Marte OS

= Support for more advanced
features studied in RT
scheduling research
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CHOICE OF TASK ORGANIZATION MONTREAL 0

void task(void * pdata)

{ = Shorter tasks can improve
servo_setup(pdata); schedulability (better for
sensor_setup(pdata); .
for (34 RT design, cost, etc.)
y = read_measurement(); » But can reduce
r = read_reference(); .. .
x = Ac*x + Be*(ry); determinisn, ex: ordering
u = Cc*x + Dc*(r-y); of operations (more
write_control_signal(u);

} problems for control and

} algorithm design)

[ELE8200, G. Zhu]
void task1(void * pdata) void task2(void * pdata)
{ {
sensor_setup(pdata); servo_setup(pdata);
for (;;){ for (;;){
time_out(); time_out();
y = read_measurement(); r = read_reference();
} x = Ac*x + Bc*(r-y);
} u = Cc*x + Dc*(r-y);
write_control_signal(u);
}
}
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BASICS OF REAL-TIME SCHEDULING: MONTREAL {17

TERMINOLOGY

= Task: code that can execute repetitively on the CPU (seq. of jobs)
= Periodic or aperiodic (sporadic if minimum inter-arrival time)

first Dj k th
instance instance
Periodic Ci
T
task !

(¥

i+ k-DT

computation time, in fact

arrival/release time  Worst Case Execution deadline
Time (WCET) C;

Ti | ] | ¢

start time finishing time [Buttazzo, 2011]

= Goal of scheduling: guarantee that a set of tasks execute on CPU and
satisfy their (timing, precedence, mutual exclusion) constraints
* Scheduling: Preemptive, nonpreemptive or using preemption points

= Most RT systems allow preemption (execute critical tasks asap, higher
efficiency)



SCHEDULING WITH PREEMPTION

[Insup Lee, Upenn]

preemption
wait on

busy resource

signal

T1(4,1)h - t H h . t -
T2(5,2)1 | t | t I I T

5 10 15 3 periodic tasks
T3(7,2)l - | t | - o T | scheduled with EDF

5 10 15

= Tasks with higher priority can preempt those with lower priority

= Priorities can be set statically (at design time, ex: rate monotonic -
RM) or dynamically (based on their current state, ex: Earliest
Deadline First — EDF: schedule task with current earliest deadline)
= EDF is more efficient but not typically available commercially. RM is more

predictable for high priority tasks, can be implemented even if no
explicit support for timing constraints in RTOS

= Given a set of tasks if the EDF algorithm fails to find a feasible schedule,
then there is no feasible schedule (meeting releases/deadlines)
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RATE MONOTONIC SCHEDULING (RM)

" Jobs with smaller period have higher priority

Deadline Miss !

[Insup Lee, Upenn]
Tl (4, 1) h | | h | | T | | | | | | 1 5
T2 (5 ,2) ' | \ | / T | | | | 1 5
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RM Utilization Bounds
= A set of n tasks is schedulable if p
n 1 de
Z Q < n(zl/n _ 1) [Liu and Layland, é 0.9 \\
— T, — 1973] T 08
1=1 = 07 \¢ vvvvvvv
= Sufficient condition (bound = 1 for EDF) = os
0.5

1 4 16 64 256 1024 4096

The Number of Tasks
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CONTROLLER TIMING EXAMPLE MONTREAL i

WITH AN RTOS

- R, k.,  [KEArzén, LTH]
Lot : Lk - LE L L
|l o | — | t

w "

— T — T {
Tk—1 Sk—1 fr-1 Tk Sk fr Th+1 Sk+1 fpi1

e Control task 7 released periodically at time instances r;, = kh
e Output y(¢) sampled after time-varying sampling latency L,
e Control u(t) generated after time-varying input-output latency L;,
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AGENDA

1. Sharing of computational resources: RTOS task scheduling
2. Networking

3. Simulation with TrueTime
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» Various components of control loops now often connected via
digital communication network

= Communication delays (generally due to congestion, not
transmission time), lost packets
= Communication medium tends to be shared by several
applications (as for computing resources)

* Need management of communication resources as well
* The system design choices for communication and computation

(hardware, protocols, etc.) not typically dictated by the control
engineers (cost, in many industries, is a big factor)

= E.g. CAN networks in automotive application introduce time-varying
delays, bad from control perspective

= But control and other timing concerns tends to slowly influence
choices (TT-CAN, FlexRay, AFDX...)

= Push to use Commercial Off-the-shelf (COTS) components, reuse
components and software from other/previous systems
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COMMUNICATION NETWORKS

» Wired point-to-point (no real network)
» Wired data bus (with or without bus controller), e.g., CAN
» Switched network (ex: AFDX)

* Wireless networks (e.g., for industrial applications, process
control. With added reliability mechanisms (ex: WirelessHART)

= Delays, reliability (packet losses), jitter, etc. are network and
protocol dependent. Impacts performance of control systems.

Volvo XC 90 network topology

250kbit
125kbit
25Mbit

CAN High Speed
CAN Low Speed
MOST
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AUTOMOTIVE INDUSTRY EXAMPLE: MONTREAL

CAN AND FLEXRAY (BUS TECHNOLOGY)

* De facto Standard in Automotive
Industry: CAN (Controller Area
Network)

= Messages have an identifier used to
set priorities in case of collision

» Unsuccessful node retries later

» Jssues with non-determinism

= Move toward time-triggered
architectures (TDMA: Time-division
multiple access, e.g. TT-CAN), for

timing predictability
= But wastes bandwidth | Cycle Star YL IME: 178
» FlexRay: part TT, part not to ] i
accommodate different types of Static Segment
traffic (video feed vs. engine rpm...) Dynamic Segment ——
Symbol Window

Network Idle Time ——
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AVIONICS EXAMPLE: MONTREAL (11}

AFDX (SWITCHED NETWORK TECHNOLOGY)

= All electronic fly-by-wire now only type of control systems used
on new airliners

= Other on-board safety-critical system systems also rely on timely
delivery of data: communications, inertial platforms, etc.

= AFDX:*“Avionics Full-DupleX, switched Ethernet”. Original
concept by Airbus. Evolved into a standard: IEEE 802.3 (Ethernet
frame format) and ARINC 664, Part 7.

* Used by Airbus for A380, by Boeing for 787 Dreamliner

= Replaces ARINC 429 (point-to-point technology), and also MIL-
STD 1553 (bus technology). Higher data rate: 100 Mbps, 1000
times faster than ARINC 429.

* Reduces wiring, hence weight
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AFDX IS BASED ON ETHERNET

* Benefits from many investments and advancements since 1972

= Ethernet has no centralized bus control: transmissions can collide.
“CSMA/CD” protocol (Carrier Sense, Multiple Access, and
Collision Detection)
= If you have a message to send and the medium is idle, send the message.

= [f the message collides with another transmission, try sending the
message later using a suitable back-off strategy = non-deterministic
behavior, possibility of repeated collisions

= Ethernet frame between 64 and 1518 bytes

= Ethernet comm. is connectionless. ACK must be handled at higher
levels in the protocol stack
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AFDX: FULL-DUPLEX, SWITCHED ETHERNET

= With Ethernet, very large transmission
delays are theoretically possible AFDX Switch

=  AFDX bounds the max. transmission
time between a Tx and a Rx Switch

= Moves from Half-duplex Ethernet to Formureing Tobie
Full-duplex Switched Ethernet to -
eliminate possibility of collisions :

= Now switch needs to move packets *
from Rx to Tx buffers through memory =
bus (store and forward architecture).
Delays possible due to congestion at
the switch

= Each buffer can store multiple packets
in FIFO order. Requirements on o || m || || ™
avionics subsystems to avoid overflow. e B e e

= Jitter introduced in packet transmission
times when waiting for other packets
to be transmitted

= Multiple switches can be connected
AVONICS

* Redundancy: an AFDX system consists R Heods-up Cther Perw———
in fact of two independent networks Dspiay o
sending the same packets between
end systems
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MESSAGE FLOWS

= Packets (AFDX frames, almost
identical to Ethernet frames) are
sent between End Systems using

“Virtual Links” (VLs) e R
» Total 100 Mbps bandwidth at — \ e
each end system is shared wox |
between VLs Bt
* The bandwidth of each VL is N /
limited: mandatory gaps between - ) -
messages, max. size of frames e I | yses
» bandwidth choice depends on T~ '
applications connecting to end S
system via comm. ports | li—
* bandwidth restrictions enforced nax. 54
by source End Systems, using VL o
scheduling algorithms. il

= VL scheduler also multiplexes
the VL transmission to minimize
jitter
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INTERFACE RTOS / NETWORK vonTRea SR

ARINC 653 / AFDX

= ARINC 653 RTOS: One computer
system partitioned in multiple

subsystems
= restrict address space of each Avionics Computer System
partition
* limits on amount of CPU time for each
partition Controllers »  Subsystem
. . . . Partition 1
= Avionics applications send messages /
using communication ports — poacdll o [
* communication ports are part of OS Fartiton 2
API for portable avionics applications Avionics
described in ARINC 653 Actuctors v g
= Sampling ports and Queuing ports
= AFDX end system has corresponding
sampling and queuing ports, + et WOt o
Service Access Point (SAP) ports for T S;l‘..,._‘.'j{ri'i.t -

comm. with non-AFDX systems

» Each sending AFDX comm. ports is
associated with a single VL
transporting its messages
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ARINC 653/AFDX COMMUNICATION PORTS

* Sampling Ports
* buffer storage for a single message.

" amessage stays in the buffer until overwritten by new message. Can
be read multiple times

* must provide time-stamped messages. Indication of the freshness of
the message in the buffer

= Adequate for data sampled for control applications

* Queuing Ports
* buffer can store a fixed number of message (config. param.)
* reading a message removes it from the queue (FIFO)
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AGENDA

1. Sharing of computational resources: RTOS task scheduling
2. Networking

3. Simulation with TrueTime



USING SIMULATION TOOLS

» TrueTime [Henriksson, Cervin,
Ohlin, Eker 1999-2008]

= Matlab/Simulink toolbox, can be
interfaced with other Simulink
blocks. Allows co-simulation of
global system (implementation
platform (RTOS+network) +
model of physical plant)

= Focus on control systems
= Usedin HW1

=  Other simulators, with focus RT

computer systems only: RTSim,
ChronSIV,, ...

FEATURE

How Does Control Timing

POLYTECHNIQUE

MONTREAL

Affect Performance?

Analysis and Simulation of Timing
Using Jitterbug and TrueTime

ontrol systems are becoming in-

creasingly complex from both the

control and computer science

perspectives. Today, even seem-

ingly simple embedded control

systems often contain a multi-
tasking real-time kernel and support networking. At
the same time, the market demands that the cost of
the system be kept at a minimum. For optimal use
of computing resources, the control algorithm and
the control software designs need to be considered
at the same time. For this reason, new com-
puter-based tools for real-time and control
codesign are needed.

Many computer-controlled systems are distrib-
uted systems consisting of computer nodes and a
communication network connecting the various
systems. It is not uncommon for the sensor, actua-
tor, and control calculations to reside on different
nodes, as in vehicle systems, for example. This
gives rise to networked control loops (see [1]).
Within the individual nodes, the controllers are of-
tenimplemented as one or several tasks on a micro-
processor with a real-time operating system. Often
the microprocessor also contains tasks for other
functions (e.g., communication and user inter-
faces). The operating system typically uses multi-
programming to multiplex the execution of the
various tasks. The CPU time and the communica-
tion bandwidth can hence be viewed as shared re-
sources for which the tasks compete.

Digital control theory normally assumes equidis-
tant sampling intervals and a negligible or constant
control delay from sampling to actuation. However,

By Anton Cervin, Dan Henriksson,

Bo Lincoln, ]ohe!n Eker, and
Karl-Erik Arzén

g
£
g
H
5

Cervin (anton@control.lth.se), Henriksson, Lincoln, Eker; and Arzén are with the Department of Automatic Conirol, Lund Institute of

Technology, Box 118, SE-221 00 Lund, Sweden.

0272-1708/03/$17.0002003IEEE

16 IEEE Control Systems Magazine

[Cervin et al. IEEE CSM, 2003]

June 2003
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THREE PENDULUM EXAMPLE

3 CPUs RM scheduling (schedulable)
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TRUETIME LIBRARY
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TrueTime Kernel

TrueTime Battery

Schedule

D/A Data Data
1 Schedule p 1:1 1:1
Trigger Trigger
rusTime Netw TrueTime Send TrueTime Receive
Jx X
1 Schedule p 1 Schedule p
dy y
TrueTime Wireless TrueTime Ultrasound
Network Network

Truetime 2.0 Block Library
Copyright (c) 2016 Lund University
Written by Anton Cervin, Dan Henriksson and Martin Ohlin,

Department of Automatic Control LTH, Lund University, Sweden
Please direct questions and bug reports to: truetime@control.lth.se

Kernel block (RTOS) to simulate task scheduling policies
Networking blocks to simulate communication protocols
Battery block (and dynamic voltage scaling)
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QUESTIONS RAISED BY THESE EXAMPLES MONTRERL §

Possible NECS design approaches?

= Design control loops as usual, ignoring implementation issues

= Research question: analyze the impact of implementation choices on
stability and performance

= Control and embedded system co-design: design control loops
together with the scheduling policies, communication protocols, etc.

= Popular research topic, perhaps not a viable due to other influences than
control system on implementation choices

* Design implementation aware control loops

= Add compensating mechanisms within the control laws, for delays, jitter,
packets losses.

= Control laws more complex to implement, but we are (as much as
possible) only modifying the control systems, not the global system
design.

= Expect potential loss in performance with respect to co-design, but
should be better than ignoring issues. Also, in this approach, we would
like to certify against sets of possible choices of implementations, to leave
more design freedom, possible subsequent changes of design without
recertification, increase possibilities of software component reuse, etc.



