Sampling and Sampled-Data Systems

5.1 Introduction

Today, virtually all control systems are implemented digitally, on platforms that range from large computer
systems (e.g. the mainframe of an industrial SCADAE system) to small embedded processors. Since computers
work with digital signals and the systems they control often live in the analog world, part of the engineered
system must be responsible for converting the signals from one domain to another. In particular, the control
engineer should understand the principles of sampling and quantization, and the basics of Analog to Digital
and Digital to Analog Converters (ADC and DAC).

Control systems that combine an analog part with some digital components are traditionally referred to as
sampled-data systems. Alternative names such as hybrid systems or cyber-physical systems (CPS) have also
been used more recently. In this case, the implied convention seems to be that the digital part of the system
is more complex than in traditional sampled-data systems, involving for example logic statements so that
the system can switch between different behaviors and/or many distributed networked components. Another
important concern for the development of CPS is system integration, since we must often assemble complex
systems from heterogeneous components that might be designed independently using perhaps different modeling
abstractions. In this chapter however we are concerned with the classical theory of sampled-data system and
with digital systems that are assumed to be essentially dedicated to the control task and as powerful for this
purpose as needed. Even in this case, interesting questions are raised by the capabilities of modern digital
systems, such as the possibility of very high sampling rates. Moreover, we can build on this theory to relax its
unrealistic assumptions for modern embedded implementation platforms and to consider more complex hybrid
system and CPS issues, as discussed in later chapters.

5.1.1 Architecture of Sampled-Data Systems

The input signals of a digital controller consist of discrete sequences of finite precision numbers. We call such
a sequence a digital signal. Often we ignore quantization (i.e., finite precision) issues and still call the discrete
sequence a digital signal. In sampled-data systems, the plant to be controlled is an analog system (continuous-
time and usually continuous-state) and measurements about the state of this plant that are initially in the
analog domain need to be converted to digital signals. This conversion process from analog to digital signals
is generally called sampling, although sampling can also refer to a particular part of this process, as we discuss
below. Similarly, the digital controller produces digital signals, which need to be transformed to analog signals
to actuate the plant. In control systems, this transformation is typically done by a form of signal holding
device, most commonly a zero-order hold (ZOH) producing piecewise constant signals, as discussed in section
(.3 Fig. shows a sampled-data model, i.e., the continuous plant together with the DAC and ADC devices,
which takes digital input signals and produces digital output signals and can be connected directly to a digital
controller. The convention used throughout these notes is that continuous-time signals are represented with
full lines and sampled or digital signals are represented with dashed lines. Note that the DAC and ADC can be
integrated for example on the microcontroller where the digital controller is implemented, and so the diagram

1SCADA = Supervisory Control and Data Acquisition
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Figure 5.1: Sampled-data model. H = hold, S = sampler, Q = quantizer (+ decoder), AAF = anti-aliasing
(low-pass) filter. Continuous-time signals are represented with full lines, discrete-time signals with dashed
lines.

does not necessarily represent the physical configuration of the system. We will revisit this point later as we
discuss more complex models including latency and communication networks. The various parts of the system
represented on Fig. are discussed in more detail in this chapter.

5.2 Sampling

5.2.1 Preliminaries

We first introduce our notation for basic transforms, without discussing issues of convergence. Distributions
(e.g., Dirac delta) are also used informally (Fourier transforms can be defined for tempered distributions).

Continuous-Time Fourier Transform (CTFT): For a continuous-time function f(t), its Fourier trans-
form is

fw) = Ffw) :/_OO f(t)e ™“tdt.

Inverting the Fourier transform, we then have
10 = 5= [ fea
= — w)e*dw.
2r J_

Laplace Transform: the Laplace transform generalizes the Fourier transform to a fonction defined on the
whole complex plane rather than just the imaginary axis. In control however, we generally use the one-sided
Laplace transform

o0
fls)=Lf(s)= [ f()e™dt, seC,
o-
which is typically not an issue since we also assume that signals are zero for negative time. We can invert it
using
1 c+ioco R
t) = — s)estds

0 =g [ Feetas
where c is a real constant that is greater than the real parts of all the singularities of f (s).

For G a CT LTI system (continuous-time linear time-invariant system) with matrices A, B, C, D, as usual
and (in general matrix valued) impulse response g(t) = D4(t) + CeAtB, its transfer function (a matrix in
general) is

G(s) =D+ C(sI —\A)™'B,
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and is also denoted
A|B
C|D |’
Discrete-Time Fourier Transform (DTFT): for a discrete-time sequence {z[k]}, its Fourier transform

1S
o0

i(e™) = Fr(e™) = Z x[k]e™ k.
k=—oc0

The inversion is

1 " AW piwk
x[k] = 5 /_Tr z(e") e dw,
where the integration could have been performed over any interval of length 27. Since we use both continuous-
time and discrete-time signals, we use the term discrete-time Fourier transform (DTFT) for the Fourier trans-
form of a discrete-time sequence. The notation should remind the reader that #(e) is periodic of period 27
(similarly in the following, we use Z(e’"), which is periodic of period w, = 27/h). It is sufficient to consider
the DTFT of a sequence over the interval (—m,w]. The frequencies close to 0 + 2km correspond to the low
frequencies, and the frequencies close to m + 2k7 to the high frequencies. The theory of the DTFT is related
to that of the Fourier series for the periodic function Z(e').

z-transform and A-transform: generalizing the DTFT for a discrete sequence {x[k]}r, we have the two-

sided z-transform
o

#(z)= Y alklz*, zeC.

k=—o0

In control however, we often use the one-sided z-transform

#(z) =) zlk]z7*, z€C,
k

=0

but this not an issue, because the sequences are typically assumed to be zero for negative values of k. The
z-transform is analogous to the Laplace transform, now for discrete-time sequences. It is often convenient to
use the variable A = 1/z instead, and we call the resulting transform the A-transform

i\ = i z[k]\F, A eC.

k=—00

For G a DT LTI system (discrete-time linear time-invariant system) with matrices A, B, C, D, as usual and
impulse response {g(k)}, its transfer function (a matrix in general) is

G(\) =D+ \XC(I — \A)"'B,

or
G(z)=D+C(2I — A)7'B,

448]

5.2.2 Periodic Sampling of Continuous-Time Signals

and also denoted

In sampled-data systems the plant lives in the analog world and data conversion devices must be used to
convert its analog signals in a digital form that can be processed by a computer. We first consider the output
signals of the plant, which are transformed into digital signals by an Analog-to-Digital Converter (ADC). For
our purposes, an ADC consists of four blocksﬂ

2this discussion assumes a “Nyquist-rate” ADC rather than an “oversampling” Delta-Sigma converter, see [Raz94].
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1. First, an analog low-pass filter limits the signal bandwidth so that subsequent sampling does not alias
unwanted noise or signal components into the signal band of interest. In a control system, the role of this
Anti-Aliasing Filter (AAF) is also to remove undesirable high-frequency disturbances that can perturb
the behavior of the closed-loop system. Aliasing is discussed in more details in the next paragraph. For
the purpose of analysis, the AAF can be considered as part of the plant (the dynamics of the AAF can in
some rare instances be neglected, see [AW97, p. 255]). Note that most analog sensors include some kind
of filter, but the filter is generally not chosen for a particular control application and therefore might not
be adequate for our purposes.

2. Next, the filter output is sampled to produce a discrete-time signal, still real-valued.

3. The amplitude of this signal is then quantized, i.e., approximated by one of a fixed set of reference levels,
producing a discrete-time discrete-valued signal.

4. Finally, a digital representation is of this signal is produced by a decoder and constitutes the input of the
processor. From the mathematical point of view, we can ignore this last step which is simply a choice of
digital signal representation, and work with the signal produced by the quantizer.

Let z(t) be a continuous-time signal. A sampler (block S on Fig. operating at times t; with k = 0,1, ...
or k=...,—1,0,1,..., takes = as input-signal and produces the discrete sequence {xj}x, with xp = z(tx).
Traditionally, sampling is performed at regular intervals, as determined by the sampling period denoted h,
so that we have t; = kh. This is the situation considered in this chapter. We then let w, = 27” denote the

s

sampling frequency (in rad/s), and wy = % = 7 is called the Nyquist frequency. Note that we will revisit the

periodic sampling assumption in later chapters, because it is hard to satisfy in networked embedded systems.

Aliasing

Sampling is a linear operation, but sampled systems in general are not time-invariant. Perhaps more precisely,
consider a simple system H.S, consisting of a sampler followed by a perfectly synchronized ZOH device. This
system maps a continuous-time signal into another one, as follows. If w is the input signal, then the output
signal y is

y(t) = ulte), th <t <tpy1,Vk,

where {tx}x is the sequence of sampling (and hold) times. It is easy to see that it is linear and causal, but
not time-invariant. For example, consider the output produced when the input is a simple ramp, and shift the
input ramp in time. This system is in fact periodic of period h if the sampling is periodic with this period,
in the sense that shifting the input signal u by h results in shifting the output y by h. Indeed, periodically
sampled systems are often periodic systems.

Exercise 2. Assume that two systems H;S; and HsSy with sampling periods h; and hs are connected in
parallel. For what values of hy, ho is the connected system periodic?

In particular, sampled systems do not have a transfer function, and new frequencies are created in the
signal by the process of sampling, leading to the distortion phenomenon known as aliasing. Consider a periodic
sampling block S, with sampling period h, analog input signal y and discrete output sequence ¢, i.e., P[k] =
y(kh) for all k.

The following result relates the Fourier transforms of the continuous-time input signal and the discrete-time
output signal. Define the periodic-extension of g(w) by

o0

e(w) := Z 9w + kws),

k=—o00

and note that §. is periodic of period ws, and is characterized by its values in the band (—wp,wn].
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Lemma 5.2.1. The DTFT of ¢ = {y(kh)}r and the CTFT of y are related by the relation

( piwh L.

(™) = 2 ge(w),

h

i.€.,

Sy L w

be) = 50 ()
Proof. Consider the impulse-train ), 6(t — kh) (or Dirac comb), which is a continuous-time signal of period
h. The Poisson summation formula gives the identity

Za (t — kh) Zezkws

Then define the impulse-train modulation
1 zkwst
v(t) = y(t) Ek d(t — kh) =7 gk .

Taking Fourier transforms, we get

1 1.
Ezk: y(w + kws) —hye(w).

On the other hand, we can also write

t)=> (k)d(t — kh).
k

And taking again Fourier transforms

~ w) :/ [Zib(k) t— kh‘| zwtdt Zw 7zwkh _ @(eiwh).
k

O

In other words, periodic sampling results essentially in the periodization of the Fourier transform of the
original signal y (the rescaling by h in frequency is not important here: it is just due to the fact that the
discrete-time sequence is always normalized, with intersample distance equal to 1 instead of h for the impulse
train). If the frequency content of y extends beyond the Nyquist frequency wy, i.e. ¢ is not zero outside of the
band (—wn,wp), then the sum defining g, involves more than one term in general at a particular frequency,
and the signal y is distorted by the sampling process. On the other hand, if § is limited to (—wx,wy ), then we
have (e™") = y(w) for the defining interval (—wy,wy) and the sampling block does not distort the signal,
but acts as a simple multiplicative block with gain 1/h. The presence of an anti-aliasing low-pass filter, with
cut-off frequency at wy, is then a means to avoid the folding of high signal frequencies of the continuous-time
signals into the frequency band of interest due to the sampling process.

5.2.3 Sampling Noisy Signals

The previous discussion concerns purely deterministic signals and justifies the AAF to avoid undesired folding
of high-frequency components in the frequency band of interest. Now, for a stochastic input signal y to the
sampler, it is perhaps more intuitively clear that direct sampling is not a robust scheme, as the values of the
samples become overly sensitive to high-frequency noise. Instead, a popular way of sampling a continuous-time
stochastic signal is to integrate (or average) the signal over a sampling period before sampling

kh
wm=[ y(r)dr,

=(k—1)h
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which is in fact also form of (low-pass) prefiltering since we can rewrite

Y[k] = (f *y)(t)|t=kn,

f(t){l’ 0<t<h 51)

0, otherwise.

where

This filter can be called an averaging filter or “integrate and reset” filter. In other words, the continuous-time
signal y(t) first passes through the filter that produces a signal §(t), in this case

¢
y(t) = / y(s)ds, for (k—1)h <t < kh.
(k=1)h

Note that 7((kh)T) = 0, Vk, i.e., the filter resets the signal just after the sampling time. Also, even though the
signal is reset, if we have access to the samples {¥[k]}r, we can immediately reconstruct the integrated signal
z(t) = fg y(s)ds at the sampling instants, since z(kh) = E?Zl 1[k], and hence the signal y(t) at the sampling
instants as well (since y = £). In Section [5.5| we provide additional mathematical justification for the integrate
and reset filter to sample stochastic differential equations.

Exercise 3. Compute the Fourier transform of f in (5.1) and explain why this is a form of low pass filtering.

5.3 Reconstruction of Analog Signals: Digital-to-Analog Conversion

5.3.1 Zero-Order Hold

The simplest and most popular way of reconstructing a continuous-time signal from a discrete-time signal in
control systems is to simply hold the signal constant until a new sample becomes available. This transforms
the discrete-time sequence into a piecewise constant continuous-time Signaﬂ, and the device performing this
transformation is called a zero-order hold (ZOH). Let us consider the effect of the ZOH in the frequency domain,
assuming an inter-sample interval of h seconds. Introduce

1/h <t<h
wt) = M/ 05t <
0, elsewhere.

Then the relationship between the input and output of the zero-order hold device

————— ZOH——

can be written

Taking Fourier transforms, we get

Note that we can write

and so we have the Laplace transform
1—esh
T(S) = T

3This is again a mathematical idealization. In practice, the physical output of the hold device is continous.
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Figure 5.2: Step-invariant transformation for discretizing G. H here is a ZOH.

We then get the Fourier transform

1— e—iwh

Hw) =

iwh

3 h

—iwhy2 ST Wy
h
Wy

=€

€_Sh/2

Note in particular that 7(s) & at low frequency, and so in this regime 7 acts like a time delay of h/2.

Lemma 5.3.1. The Fourier transforms of the input and output signals of the zero-order hold device are related
by the equation o
§(w) = hir(w)(e™").

5.3.2 First-Order Hold

Other types of hold devices can be considered. In particular, we can try to obtain smaller reconstruction errors
by extrapolation with high-order polynomials. For example, a first-order hold is given by

t—tr
bt — tpy

y(t) = ¥[k] + (k] — Pk —1]), tp <t <try1,

where the times ¢, are the times at which new samples ¢[k] become available. This produces a piecewise

linear CT signal, by continuing a line passing through the two most recent samples. The reconstruction is still

discontinuous however. Postsampling filters at the DAC can be used if these discontinuities are a problem.
One can also try a predictive first-order hold

t— 1t
tevr1 — tk

y(t) = [k + (Y[l +1] = ¥[k]), te <t <trga,

but this scheme is non-causal since it requires ¥[k + 1] to be available at t;. For implementing a predictive
FOH, one can thus either introduce a delay or better use a prediction of [k 4+ 1]. See [AW97, chapter 7]
for more details on the implementation of predictive FOH. In any case, an important issue with any type of
higher-order hold is that it is usually not available in hardware, largerly dominated by ZOH DAC device

5.4 Discretization of Continuous-Time Plants

5.4.1 Step-Invariant discretization of linear systems

We can now consider the discrete-time system obtained by putting a zero-order hold device H and sampling
block S at the input and output respectively of a continuous-time plant G, see Fig. Let us assume that S
is a periodic sampling block and H is a perfectly synchronized with S. The resulting discrete-time system is
denoted Gg = SGH, and is called the step-invariant transformation of G. The name can be explained by the
fact that unit steps are left invariant by the transformation, in the sense that

G4S1=Gyly=SGH1,; = SG1,

where 1 and 14 are the CT and DT unit steps respectively. Using Lemmas and [5.3.1] we obtain the
following result.

4There is also the possibility of adding an inverse-sinc filter and a low-pass filter at the back-end of the ZOH DAC, see [Raz94].
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Theorem 5.4.1. The CTFT §(w) of G and the DTFT of G4 obtained by a step-invariant transformation are
related by the equation

o

Ga(e™h) = Z J(w + kws) P (w + kws),

k=—oc0

ga(e™) = i g (% + kw5> 7 (% + kws) )

or

Proof. To compute g4, we take v on Fig. [5.2]to be the discrete-time unit impulse, whose DTFT is the constant
unit function. Then we have 4i(w) = h#(w), thus y = g(w)a(w), and the result follows from Lemma O

Note that if the transfer function G(w) of the continuous-time plant G is band-limited to the interval
(—wn,wn), we have then

~ iwh)

Jale = J(w)f(iw), —wy <w < wy,

and at low frequencies ‘
Ga(e™") =~ g(iw),

or somewhat more precisely, the ZOH essentially introduces a delay of h/2. Otherwise distortion by aliasing
occurs, which can significantly change the frequency content of the system. This in particular intuitively justifies
the presence of an anti-aliasing filter (AAF) with cutoff frequency wy < w,/2 at the output of the plant, if
a digital control implementation with sampling frequency ws is expected. Indeed, aliasing can potentially
introduce undesired oscillations impacting the performance of a closed-loop control system without proper
AAF. The following example, taken from [AW97, chapter 1], illustrates this issue.

Example 5.4.1. Consider the continuous-time control system shown on Fig. The plant in this case is a
disk-drive arm, which can be modeled approximately by the transfer function
k
P(s) = —,

where k is a constant and J is the moment of inertia of the arm assembly. The arm should to be positioned with
great precision at a given position, in the fastest possible way in order to reduce access time. The controller is
implemented for this purpose and we focus here to the response to step inputs u.. Classical continuous-time
design techniques suggest a controller of the form

K(6) = 01 (20.06) = 222 (9)) =1 (20(s) - (o) + T2 (0). (5.2)

where
Jwd
k )
and wyq is a design coefficient. The transfer function of the closed loop system is

a=2wy, b=wp/2, and M =

w2
V() st s
U(s) s34 2wps? +2wis +wi ’

This system has a settling time to 5% equal to 5.52/wq. The step response of the closed-loop system is shown
on Fig. .3 as well.

Let us now assume that a sinusoidal signal n(t) = 0.1sin(12¢) of amplitude 0.1 and frequency 12 rad/s
perturbs the measurements of the plant output. It turns out that this disturbance has little impact on the
performance of the continuous-time closed-loop system, see the left column of Fig. Then consider the
following simple discretization of the controller . First, a continuous-time state-space realization of the
transfer function K(s) is realized by

utt) = 3 (Zuclt) = y(0) +20))

z(t) = —ax + (a — b)y.
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Figure 5.3: Feedback control system and step response for example [6.4.1| with J = k = wy = 1.

Next, we approximate the derivative of the controller state with a simple forward difference scheme (we will
see soon that we could be more precise here, but this will do for now)

x(t+h) — x(¢)
h

where h is the sampling period. We then obtain the following approximation of the continuous-time controller

z[k 4+ 1] = (1 — ah)z[k] + h(a — b)y[k],

ulk] = M (Zuc[k] ]+ x[m> |

= —azx(t) + (a — b)y(t),

where u.[k] = u.(kh) and y[k] = y(kh) are the sampled values of the input reference and (noise perturbed)
plant output. A Simulink model of this implementation is shown on Fig. As you can see on the right of
Fig. for a choice of sampling period h = 0.5 that is too large, there is a significant deterioration of the
output signal due to the presence of a clearly visible low frequency component.

This phenomenon is explained by the aliasing phenomenon, as discussed above. We have wy = 27/h =
27/0.5 &~ 12.57 rad/s, and the measured signal has a frequency 12 rad/s, well above the Nyquist frequency.
After sampling, we then have the creation of a low frequency component with the frequency 12.57 — ws = 0.57
rad/s, in other word with a period of approximately 11 s, which is the signal observed on the right of Fig. [5.4

Exercise 4. Derive (j5.3).

Step-Invariant discretization of linear state-space systems

In this section, we consider a state-space realization of an LTI plant instead of working in the frequency
domain as in the previous paragraph. It turns out that the step-invariant discretization of such a plant can be
described ezactly (i.e., without approximation error) by a discrete-time LTI system. This discrete-time system
gives exactly the state of the continuous-time plant at the sampling instants. Although this process might
not be able to detect certain hidden oscillations in the continuous-time system, it forms the basis of a popular
design approach that consists in working only with the discretized version of the plant and using discrete-time
control methods.
Hence suppose that we have a CT LTI system G with state-space realization

& = Az + Bu (5.4)
y = Cx + Du, (5.5)
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Figure 5.4: Effect of a periodic perturbation on the continuous-time design (left) and discretized design with
sampling period 0.5 (right), for example The bottom row shows the analog input u to the plant. The
analog controller provides a significant action, whereas the digital controller does not seem to be able to detect
the high-frequency measurement noise.
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Figure 5.5: Simulink model for the digital implementation of example [5.4.1
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and consider the step-invariant transformation SGH, with sampling times {¢j}r. The control input u to the
CT plant in (5.4), (5.5) is then piecewise constant equal to u[k] on tj <t < tr41. We are also interested in the
sampled values of the output y[k] = y(¢x). Directly integrating the differential equation ([5.4]), we have

t

x(t) = eA(t*t’“)x(tk) +/ A=) Bdr ulk], for tp <t < tgiq.
ti

In particular, for a periodic sampling scheme with tx11 — tx = h,

(NN
z(tpyr) = eMa(ty) —|—/ eAter1=7) Bir k]

123

h
z(try1) = eAhm(tk) —|—/ e Bdr ulk], for tp <t < tpiq.
0

Writing x[k] = x(tx) for all k, the state of the plant at the sampling times can then be described by the
following LTI difference equation
zlk + 1] = Aqz|k] + Bqulk],

with Ag = e and By = foh eA"Bdr. Note that this exact discretization could have been used in example
instead of the approximate Euler scheme. In summary, with periodic sampling the plant is represented
at the sampling instants by the DT LTI system
z[k + 1] = Agx[k] + Bqulk]
ylk] = Cx[k] + Dulk].
Remark 5.4.1. The matrix exponential, necessary to compute A4, can be computed using the MATLAB expm
funtion. There are various ways of computing By. The most straightforward is to simply use the MATLAB
function c2d which performs the step-invariant discretization with a sampling period value provided by the
user. In fact, this function also provides other types of discretization, including plant discretization using FOH,

and other types of discretization for continuous-time controllers (rather than controlled plants), discussed later
in this chapter.

A few identities are sometimes useful for computations or in proofs. First define

h 2
Ah
\If:/ eATdr =Th+ — + ...
0 2!

Then we have By = YB, and Ay = I + AV. Moreover, we have the following result.

Lemma 5.4.2. Let Ay1 and Ass be square matrices, and define for t > 0
A Az [Fuu(t) Fia(t)
exp {t [ 0 Anl(=| 0 Foa(t)| (5.6)
Then Fyp(t) = et411, Fyy = €422 and
t
Flg(t) :/ €(t_T)A11A12€7—A22dT.
0

Using this lemma, one can compute Ay and By using only the matrix exponential function for example, by
taking t= h,AH = A,AQQ = O,Alg = B, so that Fll(h) = Ay and Flg(h) = By.

Proof. The expressions for Fy; and Fyo are immediate since the matrices are block triangular. To obtain Fis,

differentiate ; [Fu 0 Flz(t)} - [Au Alg] [Fn(t) Flz(t)y

dt| 0 Fy(t)| | 0 A 0 Fy(t)
hence p
£F12(t) = A1 Fa(t) + Ao Foo(t).
We then solve this differential equation, using the facts Fo(t) = e*422 and Fj2(0) = 0. O

45



5.4.2 Nonlinear Systems

5.4.3 Poles and Zeros of Linear Sampled-Data Systems
5.4.4 Incremental Models

5.4.5 Choice of Sampling Frequency

5.4.6 Generalized Sample and Hold Functions

5.5 Discretization of Linear Stochastic Differential Equations

Many models of dynamical systems involve differential equations containing white noise. The mathematically
rigorous way to treat white noise is by using Brownian motion. However, an engineering approach will be
sufficient for our purposes, with the caveat that certain formulas cannot really be justified and one needs to be
careful with differential calculus since the rules familiar from the deterministic case do not necessarily apply.
Mathematically, it is also impossible to sample directly a signal containing white noise. Formally, the
autocovariance function of a continuous-time zero-mean, vector valued white noise process w(t) € R? is a Dirac
delta
Elwt)wt)) =rt—t)=Wst—1t), (5.7)

where W € R%*?_ In other words, the values of the signal at different times are uncorrelated, as for discrete-time
white noise. The power spectral density (PSD) of w is defined as the Fourier transform of the autocovariance
function
(o] o0
w(w) = / r(T)e”“Tdr = / Wo(r)e “Tdr = W,
— 00 — 00
hence W is called the power spectral density matriz of w. The frequency content of w is flat with infinite
bandwidth. Hence, intuitively, according to the frequency folding phenomenon due to sampling, the resulting
sampled signal would have infinite power in a finite band.
Mathematically rigorous theories for manipulating models involving white noise are usually developed by
working instead with an integral version of white noise

B(t):/o w(s)ds, B(0)=0.

One can then use these results to justify a posteriori the engineering formulas often formulated in terms of Dirac
deltas such as 1' The stochastic process B has zero mean value and its increments I(s,t) = B(t) — B(s)
over disjoint intervals are uncorrelated with covariance

E[(B(t) — B(s))(B(t) — B(s))"] = [t — s|W.

For this reason, Wdt is sometimes called the incremental covariance matrix of the process B. The stochastic
process B is called Brownian motion or Wiener process if in addition the increments have a Gaussian distribu-
tion. Note that in this case the increments over disjoint intervals are in fact independent, as a consequence of a
well-known property of Gaussian random variables. We then called the corresponding white noise a (zero-mean)
Gaussian white noise.

Gaussian white noise (or equivalently the Wiener process) is the most important stochastic process for signal
processing and control system applications, in particular because one can derive from it other noise processes
with a desired power spectral density by using it as an input to an appropriate filter (this is a consequence of
spectral factorization, which you might want to review). The usefulness of this approach is that we can then
only work with white noise and take advantage of the uncorrelated samples property to simplify computations.

Continuous-time processes with stochastic disturbances are thus often described by a stochastic differential

equation, e.g., of the linear form

CZTJ; = Az + Bu + Guw(t), (5.8)

5 Another rigorous approach would be to work with white noise directly using the theory of distributions, but in general this
is unnecessarily complicated and it is just simpler to use integrated signals.
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where w is a zero-mean white noise process with power spectral density matrix W, which moreover we will
assume to be Gaussian. Mathematically, it is more rigorous to write this equation in the incremental form

dx = (Az + Bu)dt + Gd B (t), (5.9)

where B; is a Wiener process with incremental covariance Wdt. This equation is just a formal expression for
the integral form

x(t) = z(0) + /Ot(Aac + Bu)dt + /Ot GdB (t),

where the last term is called a stochastic integral and can be rigorously defined. Similarly, white noise can be
used to model measurement noise. In this case, instead of the form

y = (Cx + Du) + Hv, (5.10)

where y is the measured signal and v is white Gaussian noise with power spectral density matrix V, we work
with the integrated signal z(t) = fg y(s)ds, so that we can write again more rigorously

dz = (Cx + Du)dt + HdBs(t), (5.11)

where B is a Wiener process with incremental covariance Vdt. It is assumed that the processes By and By
are independent.

Now assume that the process (5.8)), (5.10), or equivalently (5.9), (5.11)), is sampled at discrete times {¢}x,

and that we want as in the deterministic case to evaluate the values of z and z at the sampling times. Integrating
1) and denoting hy =ty — tg, we gedﬂ

th+1 tret1
T(tpy1) = eMra(ty) —I—/ et +1-7) Budr —|—/ A=) QdB (7).

tr tr

Assuming a fixed value hy = h for the intersample intervals and a ZOH, we get
x[k + 1] = Aqz[k] + Baulk] + w[k],

where Ay and By are given by (?7) as in the deterministic case, and the sequence {w[k]}« is a random sequence.
This random sequence has the following properties, which come from the construction of stochastic integrals
and are admitted here. First, the random variables w[k] have zero mean

tht1
E(w[k]) = E (/ eA(t’““_T)GdBl(T)) =0,
ty
and a jointly Gaussian distribution. Their variance is equal to
tk+l tk+1 T ’
E(w[k]w[k]T) =E (/ eA(thrliT)GdBl (T)/ dB?(T/)GTeA (tpgy1—7 ))
th b

t t
_ / k1 / k1 eA(tk+1*T)GWGT(5(T . T/)eAT(tk+17T/)deT,
tr tr
t
— / - eA(tkﬂ—T)GWGTeAT(t’““_T)dT. (5'12)
ti

Here we have used formal manipulations of Dirac deltas, but formula ([5.12) is in fact a consequence of the
so-called Ito isometry. Finally, essentially by the independent increment property of the Brownian motion, we
have that variables w[k] and w[k'] for k # k' are uncorrelated (hence independent since they are Gaussian)

E(w[klw[k']) =0, kK.

6This can be admitted formally, by analogy with the deterministic case.
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In other work, {w[k]|}; is a discrete-time white Gaussian noise sequence with covariance matrix Wy given by

(5.12), which we can rewrite
h T
Wy = / eMaWGT et tat, (5.13)
0

by the change of variables u = ;41 — 7. Note in particular that
Wy~ GWGTh (5.14)

for h sufficiently small, which is a sometimes used approximation (but can be quite inaccurate [FarO8, p.
142]). Higher order Taylor expansions can provide approximate analytical formulas that are useful for online
computation in the time-dependent case [Far0O8, p. 144]. We can also compute the matrix (5.13) much more

precisely using Lemma Indeed, from (5.6), we have

_ T h T
expi h A GW:,g = My = ATMGWGTeA Tdr = A;lVVd.
0 A 12 0

Hence we can compute Wy by first computing M, extracting its (1,2) block Mja, and letting
Wy = AgMyy = ML, M. (5.15)

Let us now consider the sampling of the stochastic measurement process (5.11). Note first that we have

Gl + 1] = 2(tess) — 2(ta) = / Ty, (5.16)

ty

which corresponds physically to the fact mentioned earlier that the continuous-time random signal y containing
high-frequency noise is not sampled directly but first integrated by the digital senso Thus we have

glk + 1] = z(tk41) — 2(tk)
tk+1 tha1 t
( Alt= fk>dt> x[k] + < / CeA'""drdt B + th> ulk] + v[k],
tk tk

C ]+Ddu[ ]+U[k]a

where

tha1 t

’U[k‘] = / C@A(t_T)GdBl (T)dt + HBQ(tk+1) - HBQ(tk).
tr tr
Note first that the expressions for Cy, Dy can be rewritten
h
Cy= / Cetdt
0

thy1 tht1
Dy = / / CeA'""7dtdrB + Dh

te41 tht1—T
/ < / C’eASds> drB + Dh
tr 0
t

tht1
=: / O(tg+1 — 7)dTB + Dh

h
z/ 6(u)du B + Dh.
0

7Other forms of analog pre-filtering are possible and must be accounted for explicitly, by including a state-space model of the
anti-aliasing filter. The simple “integrate and reset” filter discussed here (or “average and reset”) is the most commonly discussed
in the literature on stochastic systems however.
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In the expressions above, we defined 0(t) := C f(f e*ds. Similarly for v[k] we have

’U[k] = / " 9(tk+1 - ’T)GdBl(T) + HBQ(tk+1) - HBQ(tk)

ty

Again {v[k]} is a sequence of jointly Gaussian, zero-mean and independent random variables, i.e., a discrete-
time Gaussian white noise. We can also immediately compute [Ast06, p.83]

tht1
E(v[k]v[k]T) = / O(tps1 — TVGWGTO(tyy1 — 7)dr + HVH' R

= /h 0(s)GWGTOT (s)ds + HVH h =: V (5.17)
0
E(w[k)v[k'|") = 5[k — k'] /h e*GWGTOT (5)ds =: 5[k — k'] Sy. (5.18)
0

Note in particular that the discrete samples w[k] and v[k] are not independent even if B and Bs are independent
Wiener processes (or in engineering terms, w and v are independent continuous time white noise signals)!

Summary of the Formulas for the Discretization of Linear Stochastic Differential Equation

In summary, we obtain from the continuous time model (5.7)), (5.10), after integration of the output and
sampling, a stochastic difference equation of the form
x[k + 1] = Aqx[k] + Baulk] + w[k] (5.19)
glk + 1] = Cyz[k] + Dqulk] + v[k] (5.20)

where
h h h
Aqg =, By :/ AT Bdr, Cy :/ Ce"dr =: 0(h), Dy :/ 6(t)dr B + Dh.
0 0 0

One can verify that the covariance matrix of the discrete-time noise can be compactly expressed as
T h
’LU[I{] 'Ll)[k] _ Wd Sd o At GWGT 0 ATy
& { [v[k]} {v[k’] I T 71 I o HvVHT|¢ (5.21)

i=fo = =logova 1l 1
¢ 0 Cfyetrdr I o(t) I
using (?7). Lemmaalso allows us to compute the matrices Cy, Dy and using the matrix exponential
only, following the method used to compute Wy in . The details are left as en exercise.

Time-delay in the Measurement Equation: Note that in , there is a delay in the measurement,
in contrast to the standard form for DT systems

with

y[k] = Cyz[k] + Dqulk] + v[k].

Such a discrete-time delay is theoretically not problematic, since we can redefine the state as 2[k] = [x[k], z[k—
1]717" and the measurement as k] = [0 Cy] Z[k]. Doubling the dimension of the state space has compu-
tational consequences however. In practice, this issue is handled in a less rigorous way, making a slightly
non-causal approximation consisting in replacing [k + 1] by g[k] in (5.20).

Integrate and Reset vs. Average and Reset Filter: The formulas above are valid for the interpretation
of the discrete-time measurement as an integral of the continuous-time measurement over the sampling period,
see (5.16). This expression corresponds physically to an integrate and reset filter in the sensor. An equally
popular assumption is that of an ”average and reset” filter, namely

ol = =20 [ e, (5.22)

49



see, e.g., [GYACI10]. Note in that we have again made the convenient non-causal approximation assuming
that the discrete-time sample k contains the information of the continuous-time signal until ¢41. If convention
is used, this results in a covariance matrix where should be multiplied on the left and right by
blkdiag(l,/h). In other words, we get Wy = Wy, Vy = Vy/h?,Sq = Sq/h. Moreover, 8(h) ~ C for h close
to zero, instead of §(h) = Ch as h — 0 above. As a consequence of this choice however, the variance of the
discrete-time measurement noise v[k] diverges as h — 0, and one should work with power spectral densities
[GYAC1Q].

Units: If w has units denoted by &, then its PSD has units x2/Hz (an energy per Herz) or equivalently
k2 - 5. For example, if w is a scalar white noise perturbing the derivative of an acceleration signal, its PSD o2,
has units (m/s?)? - s = m?/s%. After discretization, a noise w entering the right-hand side of the dynamics
produces a discrete-time noise sequence w|k|, with covariance expressed in x? - 52, see . In other words,
wlk] has the same units as z[k], and the covariance of a discrete-time noise perturbing an acceleration is
expressed in (m/s?)?. In the measurement equations, v(¢) has the same units as z(t), say p. Its PSD V has
units u?/Hz or u? - s. The covariance Vz has units u? - s2, see . Note however that V; for the average
and reset filter has units p2.

Covariance Approximations for small sampling period: As h — 0, we have Wy ~ GWGTh, V; ~
HVHTh, Sq = O(h?). For the averaging filter, V; ~ HVHT /h,S; = O(h). There are various numerical issues
arising as we take h — 0, not to mention the difficulty of interpreting the z-transform of models of the standard
form , . For example, we always have A; — I as h — 0, no matter what A is. Numerically and
intuitively more satisfying discrete-time models can be derived in a different form, the so-called delta-form,
which is particularly useful for fast sampling rates, see [GYAC10].

Remark 5.5.1. The conceptual difficulties linked to the discretization of the measurement equation can be
bypassed by providing a measurement model directly in discrete time. Such a model, involving continuous-time
dynamics and discrete-time measurements, is sometimes called hybrid. Moreover, the issue of the correlation
between the process and measurement noise in discrete-time is often conveniently ignored (one could design
discrete-time filters taking this correlation into account, but the formulas are more complicated and not provided
in the notes. The reader can find them for example in [AMO5] [Sim06]). This essentially means that the small
sampling period approximation Sy &~ 0 is made.

5.6 Discretization of Analog Controllers

So far, we have mainly discussed the step-invariant discretization, which, given a sampler and hold device,
produces from a continuous-time plant G and discrete-time system G4 = SGH. For linear systems, we have
discussed the effect of this transformation in the frequency domain by establishing the relationship between
the transfer functions of the G and G, including the potential creation of undesired frequency components
by aliasing and the introduction of a perturbation term due to the hold device. We have also derived exact
state-space recurrence equations for Gg.

The discrete-time G4 captures the behavior of G at the sampling times. One of the most common ways
of designing digital controllers is then to perform the design in discrete-time directly using G4, provided we
somehow verify that nothing bad happens for the resulting closed-loop system between the sampling times.
For example, we can design a discrete-time controller Ky that optimizes a discrete-time performance criterion
for the discrete-time closed-loop system composed of Gy and Ky, see Chapter 7?7. Note that optimizing
a discrete-time performance criterion does not guarantee that the continuous-time behavior is satisfying in
general however, see Example

Continuing with our discussion of system discretization however, there are many situations where we have
an analog controller design available, and we simply would like to obtain a digital implementation of it. This
situation can result for example from the following facts

e for various reasons we prefer designing controller in continuous-time, e.g., because frequency domain
reasoning is easier than for DT systems (PID controller design is usually discussed only in continuous-
time), we do not have to worry about the choice of the sampling period at this stage (changing the
sampling period changes the transfer function of the DT system) or about neglecting intersample behavior,
and some calculations can be easier (.e.g. the CT Riccati equations are easier to handle).
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> Plant

Figure 5.6: Step-Invariant Transformation for the Discretization of a Continuous-Time Controller Design. The
blocks S and H that are directly connected operate at the same sampling times. The blocks S and H external
to K4 correspond to physical devices, where the blocks S and H within Ky are mathematical operations
producing Ky = SKH.

e an analog controller was inherited from a previous system implementation, and we do not wish to redesign
it (for example, due to the cost of retesting and recertifying).

Assume therefore that a CT controller K is available, and we would like to derive from it a DT controller K,
operating with the sampling period h. One way of doing this is to use again the step-invariant transformation
and let Ky = SK H. Note however that here the operators S and H do not correspond to actual physical devices,
they are just a mathematical representation of the discretization process. There is still however the physical
barrier to the synchronicity assumption of these operators, coming from the computation time requirements
of the processor. We continue to neglect this issue for now, but in general the mathematical H device at the
input of K, operates at the same instants as the physical S device it is connected to, and similarly at the
output of K. Starting then from a state-space representation of K, we obtain then an implementation of Ky
in terms of difference equations, as discussed in Section (assuming K is linear).

For the plant, the discretization is dictated by the choice of sampling and hold device, and the use of the
step-invariant transformation is essentially a consequence of these technological choices. On the controller side
however, there is no such restriction and the step-invariant transformation is only one possible way of obtaining
K, from the continuous-time system K.

5.6.1 Bilinear Transformation

Another particularly common way of discretizing an analog controller is the bilinear transformation (also called
Tustin’s method). It is based on the trapezoidal approximation of integrals. Namely consider an integrator,
i.e., a block with transfer function 1/s, with input v and output y, over a sampling period
(k+1)h
y((k+ 1)h) = y(kh) + / u(r)dr.
kh

We approximate this formula by
h
y((k+ 1)h) = y(kh) + §[u((k + 1)) + u(kh)].
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The transfer function of this recurrence is

MY (N =Y(\) + ﬁ[)FlU(/\) + U(N)]

2
Y(\) _ ﬁ 1+ A
UN)  21-)\
This motivates the bilinear transformation

1 — 271 * A
s 21— X\
“— 271 —A
h1+ X

Using this change of variable, we can map a continuous-time transfer matrix G(s) to a discrete-time transfer

matrix Gpe (), i.e.,
21—-X
Gu(N) =G (hl—i->\> '

In terms of state-space models, we can derive that starting with G(s) = [ é, g }, we get Gp(\) =

{ Ayt | By

, with
Che Dbt]

Cot =C(I+ Ap)
Dy = D + CBy,

provided 2/h is not an eigenvalue of A. The mapping from s to A is

1—hs/2

A_1+hyf

which maps the right half-plane into the unit disk.

Bilinear Transformation with Prewarping

5.6.2 Classical Software Implementation of a Digital Controller
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