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Dissipative Dynamical Systems

The notion of dissipativity is of fundamental theoretical and practical importance in control, and was intro-
duced and studied in particular in the early work of J. C. Willems [Wil71b, Wil72a, Wil72b]. In a sense, it
establishes a natural link between the properties of input-output and state-space models. It also forms the foun-
dation of many modern computational tools for the analysis and synthesis of control systems based on solving
Linear Matrix Inequalities (LMIs), which have received considerable attention for the past two decades. Some
references on dissipativity include [van17, SW05] ([SW05] does not define a storage function to be necessarily
nonnegative, however).

4.1 Dissipative State-Space Systems

4.1.1 The Dissipation Inequality

Consider a continuous-time, time-invariant dynamical system ⌃ with input u(t) 2 U, output y(t) 2 Y, state
x(t) 2 X and state-space representation

ẋ = f(x, u) (4.1)

y = g(x, u). (4.2)

We assume that at least for a certain class of signals U , a solution to (4.1), (4.2) for a given initial condition
exists and is unique. Moreover, recall that the input-output relation between u and y defined by such a
state-space system is necessarily causal.

Let � : U ⇥ Y ! R be a mapping such that t ! �(u(t), y(t)) is locally absolutely integrable for all input-

output pairs (u, y) satisfying (4.1), (4.2), i.e.,
R
t1

t0
|�(u(t), y(t))|dt < 1, for all t0, t1 2 R. The mapping � is

called a supply function or supply rate.

Definition 4.1.1 (dissipativity). The system ⌃ with supply rate � is said to be dissipative with respect to
the supply rate � if there exists a nonnegative function V : X ! R+, called a storage function, such that

V (x(t1))  V (x(t0)) +

Z
t1

t0

�(u(t), y(t))dt (4.3)

for all t0  t1 and all signals (u, x, y) satisfying (4.1), (4.2). ⌃ is said to be conservative or lossless with respect
to � if equality holds in (4.3) for all t0  t1 and all signals (u, x, y) satisfying (4.1), (4.2). Finally, it is said to
be cyclo-dissipative if V (x) is not necessarily nonnegative for all x.

The storage function generalizes the notion of an energy function. The supply rate �(u(·), y(·)) can be
interpreted as the rate at which energy flows into the system if the system generates the input-output pair

(u, y). So on a time interval [0, T ], work has been done on the system if
R
T

0 �(u(t), y(t))dt � 0 is positive, and
is done by the system otherwise. Inequality (4.3) is called the dissipation inequality. Without interpretation,

it means that the sum of the V (x(t0)) initially stored in the system and the energy
R
t1

t0
�(u(t), y(t))dt supplied
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to the system during [t0, t1] is greater or equal to the final energy V (x(t1)) stored in the system. In other
words, the system has not created energy during (any interval) [t0, t1], and has dissipated a strictly positive
amount of energy during that interval if the inequality is strict. Part of the energy supplied is stored, and part
is dissipated.

Note that when t ! V (x(t)) is di↵erentiable, then the dissipation inequality (4.3) is equivalent to

d

dt
V (x(t)) =


@V

@x
|(x(t))

�
· f(x(t), u(t))  �(u(t), y(t))

for all t and all solutions (u(·), x(·), y(·)) of (4.1), (4.2). Hence, ⌃ is dissipative with respect to � if


@V

@x
|x

�
· f(x, u)  �(u, g(x, u)) (4.4)

holds for all points x 2 R
n and u 2 R

m. Here @V

@x
|x denotes the row vector of partial derivatives @V/@xi,

for i = 1, . . . , n, evaluated at x. We call (4.4) the di↵erential dissipation inequality. It states that the rate of
change of storage along trajectories of the system never exceeds the rate of supply.

Remark 4.1.1. A system can be simultaneously dissipative with respect to several supply functions. Each ad-
ditional dissipation inequality further constrains the trajectories of the system. For example, a thermodynamic
system at uniform temperature T on which mechanical work is being done at rate W and which is being heated
at rate Q is lossless with respect to �1 := W +Q with storage function the internal energy and dissipative with
respect to �Q/T with storage function the entropy [SW05, Chapter 2].

4.1.2 Quadratic Supply Rates

In Section 4.2 we will come back to the fundamental questions of certifying when a system is dissipative
with respect to a given supply rate, i.e., when a storage function exists. First however, let us consider the
consequences of dissipativity for the special case of quadratic supply rates, which is also the case most amenable
to computations. A particularly important class of supply functions � : U ⇥ Y ! R are the quadratic forms

�(u, y) =


u
y

�T 
Q S
ST R

� 
u
y

�
= uTQu + 2uTSy + yTRy. (4.5)

They arise in network theory, bond graph theory, scattering theory, H1 theory, game theory and linear
quadratic and H2 optimal control theory, among others. Among them, two are even more important. The first
one is

�(u, y) = �2
|u|

2
� |y|

2, (4.6)

i.e., Q = �2I, R = �I and S = 0. This reminds us of the notion of L2-gain. Indeed, we have the following
proposition.

Proposition 4.1.1. Suppose that ⌃ defined by (4.1), (4.2) is dissipative with respect to the supply rate �(u, y) =
�p

|u|
p

� |y|
p, for some p � 1 and some � > 0. Then, as an input-output system, ⌃ ⇢ Lpe

⇥ Lpe has Lp-gain
at most �.

Proof. Note that each initial condition x0 defines a di↵erent input-output map u(·) ! y(·) by (4.1), (4.2). We
have by dissipativity et nonnegativity of V that for any (u, y) 2 ⌃,

0  V (x(T ))  V (x0) +

Z
T

0
�p

|u|
p

� |y|
pdt, 8T � 0

hence, kyT k
p

p
 �p

kuT k
p

p
+ V (x0),

which is the definition of finite Lp-gain bounded by �.

The second fundamental example of supply rate is �(u, y) = uT y, i.e., u and y have the same dimensions,
Q = R = 0 and S = I/2 in (4.5). In this case, the system ⌃ (as input-output system or state-space system) is
called passive, a name motivated by the theory of electrical circuits. We will come back to this case if needed.
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The di↵erential dissipation inequality leads to computational methods to compute the L2-gain. For example,
suppose ⌃ is of the input-a�ne form

ẋ = f(x) + G(x)u

y = h(x),

where G(x) is an n ⇥ m matrix for all x. Then (4.4) with (half of the) supply rate (4.6) reads

@V

@x
f(x) +

1

2
|h(x)|2 

1

2
�2

|u|
2

�
@V

@x
G(x)u,

which needs to be valid for all x and all u, in particular for the u minimizing the right-hand side. Carrying
out this simple quadratic minimization, we obtain

@V

@x
f(x) +

1

2�2

@V

@x
G(x)G(x)T

✓
@V

@x

◆T

+
1

2
h(x)Th(x)  0, 8x 2 R

n.

This is called a Hamilton-Jacobi inequality, a partial di↵erential inequality in the unknown function V . If it
has a solution, then the L2-gain of the system is less than �. A particular case of interest is the linear case

ẋ = Ax + Bu

y = Cx + Du,

where the term Du has been added for generality. In this case, searching for a quadratic storage function of
the form V (x) = xTPx for P ⌫ 0, the procedure above leads to the quadratic inequality

ATP + PA + CTC + (PB + CTD)(�2I � DTD)�1(PB + CTD)T � 0,

provided � > �max(D), which guarantees the positive definiteness of �2I � DTD. By the Schur complement,
this inequality is equivalent to the Linear Matrix Inequality (LMI)


ATP + PA + CTC PB + CTD

BTP + DTC DTD � �2I

�
� 0,

which can in fact be found directly more simply by writing the dissipation inequality as a quadratic form in
both x and u. This LMI can take various equivalent forms found in the literature. For example, one can show
by another Schur complement argument that is is equivalent to

2

4
ATP + PA PB CT

BTP ��I DT

C D ��I

3

5 � 0.

To arrive at these LMIs, we have made the initial assumption that a quadratic storage function always exists for
the LTI system and supply rate (4.6) when the L2 gain is bounded by �. In fact, a deep result says that indeed
quadratic storage functions are always su�cient to show dissipativity of LTI systems with general quadratic
supply rates. For the special case of the L2 gain above, this result is called the bounded real lemma, and for
the case of passivity, it is called the positive real lemma.

Remark 4.1.2. For completeness, the LMI to certify dissipativity of an LTI system with respect to (4.5) (based
on a storage function xTPx) takes the form P ⌫ 0, F (P ) � 0, with the following equivalent forms

F (P ) :=


I AT

0 BT

� 
0 P
P 0

� 
I 0
A B

�
�


0 CT

I DT

� 
Q S
ST R

� 
0 I
C D

�

=


ATP + PA � CTRC PB � CTS � CTRD
BTP � SC � DTRC �Q � SD � DTST

� DTRD

�

=

2

664

I 0
A B
0 I
C D

3

775

T 2

664

0 P 0 0
P 0 0 0
0 0 �Q �S
0 0 �ST

�R

3

775

2

664

I 0
A B
0 I
C D

3

775 .
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Using the Schur complement and denoting W := Q + SD + DTST + DTRD, the LMI F (P ) � 0 is also
equivalent to W � 0 together with the quadratic inequality in P

ATP + PA � CTRC + (PB � CTST
� CTRD)�1W�1(BTP � SC � DTRC) � 0.

This is typically used in the other direction, with the Schur complement allowing us to convert the quadratic
inequality into an LMI that can be handled by semi-definite programming solvers.
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